纳米材料抗菌性能的研究
纳米无机材料抗菌性能检测方法及评价-最新国标

纳米无机材料抗菌性能检测方法及评价1范围本文件规定了纳米无机材料抗菌性能的术语和定义、试验方法、试验数据处理、检测结果计算、性能评价、检测报告和注意事项等。
本文件适用于纳米抗菌粉末以及以纳米抗菌粉末为抗菌功能组分(结构单元)的材料,如纤维、织物、塑料、涂料和陶瓷等。
其它材料的抗菌性能检测也可以参照本标准执行。
2规范性引用文件下列文件中的条款通过本文件的引用而成为本标准的条款。
凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。
然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T9266建筑涂料涂层耐洗刷性的测定GB/T13221纳米粉末粒度分布的测定X射线小角散射法GB19258紫外线杀菌灯GB/T19619纳米材料术语GB/T20944.2-2007纺织品抗菌性能的评价第2部分:吸收法(ISO20743)GB/T21866-2008抗菌涂料抗菌性测定法和抗菌效果中华人民共和国卫生部《消毒技术规范规范》(2017年版)T/CIAA抗菌专业名词和术语3术语和定义GB/T19619中的术语及下列术语适用于本文件。
3.1抑菌具有抑制或妨碍细菌或真菌生长繁殖及其活性的作用。
3.2杀菌具有杀灭细菌或真菌生长繁殖的作用。
3.3抗菌采用化学或物理等方法杀灭或妨碍包括细菌、真菌在内的微生物生长繁殖及其活性的过程。
3.4纳米无机材料三维空间尺度至少有一维处于纳米量级(1-100nm)的无机材料,可以是粉末形式或分散在溶液中存在。
3.5纳米抗菌材料纳米抗菌粉末以及以纳米抗菌粉末为抗菌活性组分(结构单元)的材料。
4试验方法4.1试验方法4.1.1纳米粉末抗菌性能的试验方法按附录A规定的方法进行。
4.1.2纤维、织物、塑料粉体和微孔滤材等材料抗菌性能的试验方法按附录B规定的方法进行。
4.1.3塑料、陶瓷、漆膜、板材和金属等硬质表面材料抗菌性能的试验方法按附录C规定的方法进行。
光热纳米材料在抗菌领域的研究进展

2021,40(2)河南大学学报(医学版)㊃147㊀㊃文章编号:1672-7606(2021)02-0147-05光热纳米材料在抗菌领域的研究进展杨莹莹,冯闪,马陇豫,孙梦瑶,张审,刘超群∗河南大学药学院,河南开封475004摘㊀要:细菌感染威胁着人类健康,特别是耐药菌导致的疾病,临床上的发病率和死亡率极高,如耐甲氧西林金黄色葡萄球菌(MRSA)是临床上最可怕的致病菌(超级细菌)之一,可导致败血症和急性心内膜炎㊂目前耐药菌的快速变异和新抗生素开发的严重滞后,迫切需要对新型抗菌剂的研究㊂具有光热效应的纳米材料将光能转化为热能,使局部温度升高,可破坏细菌细胞膜㊁导致蛋白质变性㊂因其独特的抗菌机制,产生耐药菌的可能性较小,可以作为抗生素的替代品㊂光热纳米材料分为三类,包括金属类㊁碳类和聚合物类纳米材料㊂本文对近几年来具有光热效应的抗菌纳米材料领域的研究进展进行综述,并讨论其特点及未来的发展方向㊂关键词:纳米材料;光热效应;抗菌活性;金属类纳米材料;碳类纳米材料;聚合物类纳米材料中图分类号:R318.08㊀㊀㊀㊀㊀㊀文献标志码:A㊀收稿日期:2021⁃02⁃16㊀基金项目:河南省重点研发与推广专项(212102310231);河南省高等学校重点科研项目(21A430006);河南省青年科学基金(20230041006)㊀作者简介:杨莹莹(1997⁃),女,硕士研究生㊂研究方向:纳米材料的生物医学应用㊂㊀∗通信作者:刘超群(1989⁃),男,博士,讲师㊂研究方向:钠米材料的生物医学应用㊂ResearchprogressofphotothermalnanomaterialsinantibacterialYANGYingying FENGShan MALongyu SUNMengyao ZHANGShen LIUChaoqun∗SchoolofPharmacy HenanUniversity Kaifeng475004 ChinaAbstract Bacterialinfectionisthreateninghumanhealth especiallythediseasescausedbydrug⁃resistantbacteria withhighclinicalmorbidityandmortality.Forexample methicillinresistantstaphylococcusaureus MRSA isoneofthemostfearedpathogensintheclinical superbacteria whichcanleadtosepsisandacuteendocarditis.Atpresent therapidmutationofdrug⁃resistantbacteriaandtheseriouslaginthedevelopmentofnewantibioticsmakeiturgenttostudynewantimicrobialagents.Nanomaterialswithphotothermaleffectconvertlightenergyintoheat whichcanincreaselocaltemperature anddestroybacterialcellmembraneandcauseproteindenaturation.Becauseofitsuniqueantibacterialmechanism drug⁃resistantbacteriaarelesslikelytobeproducedandcanbeusedasasubstituteforantibiotics.Photothermallyenablednanomaterialsareclassifiedintothreegroups includingmetal⁃ carbon⁃ andpolymer⁃basednanomaterials.Inthisreview wesummarizetheresearchprogressofantibacterialnanomaterialswithphotothermaleffectinrecentyears anddiscusstheircharacteristicsandfuturedevelopmentdirection.Keywords nanomaterial photothermal antibacterialactivity metal⁃basednanomaterials carbon⁃basednanomaterials polymer⁃basednanomaterials㊀㊀目前,由细菌引起的感染性疾病,尤其是耐药菌,已成为全球性重大健康问题之一,引起了人们的广泛关注[1]㊂一项研究[2⁃3]表明,如果不能控制耐药菌感染,每年将导致1000多万患者死亡,损失高㊃148㊀㊃JournalofHenanUniversity(MedicalScience)2021,40(2)达100万亿美元㊂为解决细菌感染带来的危害,目前常用的抗菌方法,包括抗生素㊁重金属离子㊁抗菌肽和季铵盐化合物[4⁃5]㊂其中抗生素是一种有效的抗菌药物,在临床上有广泛的应用㊂但抗生素的滥用导致的细菌耐药,已成为当今医学领域和人类生存环境面临的一个严重问题[6]㊂金属离子长期以来被用作不同形式的杀菌化学品,并显示出抗广谱细菌的抗菌性能,但是,它们会对哺乳动物细胞产生毒性[7]㊂抗菌肽是一种新型高效抗菌药物,但是存在合成困难㊁纯化复杂㊁成本高等问题,限制了它们的广泛应用[8]㊂季铵类化合物具有高效㊁方便的抗菌作用,但长期使用后也会引起耐药性[9]㊂基于上述问题,利用纳米材料及其复合材料的光处理方法是近年研究的热点[10⁃11]㊂在这些纳米材料中,光热疗法(photothermaltherapy,PTT)具有高效的靶向选择性㊁远程可控性㊁最小侵袭性及良好的生物安全性等优点㊂此外,PTT不引起细菌耐药性,并且具有广泛的抗菌谱[12⁃13]㊂用于治疗细菌感染的PTT纳米材料有三类:金属类纳米材料[14⁃15]㊁碳类纳米材料[16⁃17]㊁聚合物类纳米材料[18]㊂本文就这三种纳米材料的合成原理㊁抗菌机理及抗菌领域应用的研究进展进行综述㊂1㊀金属类纳米材料金属类纳米材料包括纳米金㊁纳米铂和二硫化钼等,在近红外激光照射后,激发态通过非辐射衰变以热量的形式释放能量[19]㊂金属类纳米材料在近红外窗口的吸收波长和强度取决于纳米材料的形貌和尺寸[20⁃21]㊂产生了多种金属纳米结构,如纳米棒[22⁃23]㊁纳米星[24]㊁纳米线[25⁃26]㊁纳米花[27]等㊂由于纳米金在近红外窗口具有强烈的局部表面等离子体共振(LSPR)效应㊁可调控的尺寸和形貌㊁良好的生物相容性,使其成为金属类光热纳米材料的代表㊂Wang[28]等采用中间层转换法制备了包覆在金纳米棒上的海胆型Bi2S3,解决半导体Bi2S3快速的光诱导电子空穴复合和近红外光的低吸收限制了活性氧的产生和光热转换效率的问题㊂实验结果表明,Au@Bi2S3核-壳结构的纳米材料具有较强的光热转换效率和产生更多的ROS,通过光热效应和光动力协同抗菌,对大肠杆菌和金黄色葡萄球菌均有较好的抗菌活性㊂金银纳米材料因其独特的光学特性而备受关注,由于具有易于表面功能化的优点,在成像㊁给药和PTT等领域得到了广泛的应用[29⁃30]㊂金银纳米材料也被开发为抗菌剂,与光热效应构建联合抑菌平台㊂Wu[31]等人研究了一种镀硅的金-银纳米笼(Au⁃Ag@SiO2NCs),在近红外激光照射下,将金纳米材料的光热效应与银离子的持续释放联合进行抗感染治疗㊂实验结果表明,Au⁃Ag@SiO2NCs浓度为50mg/mL,近红外光照射10min后从20.7ħ上升到57.4ħ,具有良好的光热性质㊂体外和体内实验表明制备的纳米材料在近红外激光照射下能有效抑制金黄色葡萄球菌(S.aureus)和大肠杆菌(E.coli)㊂将SiO2涂层应用于金银纳米材料表面,提高其生物相容性,使银离子的实现缓释,体外治疗12h仍然具有杀菌效果㊂Qiao[32]等人提出了一种复合结构的含铜中空纳米壳(AuAgCu2ONS),作为光热治疗剂用于皮肤慢性感染和伴有耐药细菌感染的不愈合性角膜炎㊂光热性质实验结果表明AuAgCu2ONS具有良好的光热效应,光热转换效率为57%,同时具有良好的光稳定性,在激光照射五次循环后,光热转换效率不变㊂通过(808nm,1.5W/cm2,10min)近红外激光照射,用平板计数法与ESBLE.coli和MR⁃SA孵育来评估AuAgCu2ONS的光热抗菌性能㊂结果表明,AuAgCu2ONS具有较强的抗菌能力,用26.4μg/mL的浓度即可有效杀灭两种菌株㊂二硫化钼(MoS2)纳米片是一种新兴的二维材料,它具有优异的光热性能,此外它较大的比表面积可用于负载药物㊂由于其特殊的物理和化学特性,可应用于生物成像[33]㊁癌症[34⁃35]和抗菌[36⁃37]治疗等多种生物医学领域㊂为解决MoS2在缓冲溶液中易聚集现象,Huang[38]等人将带正电荷的季化壳聚糖对MoS2纳米薄片进行改性,制备了含抗生素的联合抗菌平台㊂由于抗生素⁃光热联合治疗,通过体内体外实验表明在适宜的温度(45ħ)和低抗生素浓度下抗MRSA感染㊂2㊀碳类纳米材料碳类纳米材料在近红外区具有较强的光吸收性和稳定性,即使经过长时间照射,其光吸收性能也不会衰减,所以碳基纳米材料在光热抗菌方面有着广阔的应用前景㊂主要包括碳纳米管㊁富勒烯㊁石墨烯和碳量子点等㊂碳纳米管(CNTs)具有优异的光热转换性能,且体积小㊁表面积大,可与生物分子㊁细胞产生独特的相互作用,增强伤口敷料的生物活性,促进伤口愈合[39]㊂He[40]等人以N⁃羧乙基壳聚糖(CEC)和末端苯甲醛F127/碳纳米管(PF127/CNT)为基础,制备了具有优异的光热和导电性能的水凝胶㊂实验结果表明,CNTs使水凝胶具有光热特性,可显著提高其体外/体内抗菌活性㊂在ZOI试验中,2021,40(2)河南大学学报(医学版)㊃149㊀㊃CEC/PF/CNT水凝胶具有较好的缓释性能和抗菌活性㊂通过小鼠皮肤创面感染模型进一步证明,在近红外激光照射下,CEC/PF/CNT水凝胶有较强的抗菌作用,促进创面愈合㊂由于石墨烯具有优异的光热转换能力㊁较大的表面积和表面易于修饰的特性,近年来在光热抗菌领域得到了广泛的研究㊂特别是石墨烯㊁氧化石墨烯(GO)㊁还原氧化石墨烯(rGO)等一系列石墨烯类纳米材料㊂Fan[41]等人制备了MOF衍生掺杂ZnO的石墨烯二维材料,通过局部大量Zn2+离子穿透㊁物理切割和热疗杀死,协同破坏细菌被膜和细胞内物质㊂实验结果表明,极低的纳米材料浓度具有强大的局部杀菌效果,短时间的光热处理,有助于对皮肤创面进行快速㊁安全的杀菌,不会损伤正常皮肤组织㊂细菌感染伤口处于低氧微环境,低氧微环境不仅能促使细菌生长,而且还会促进它们对药物和治疗方法的耐药性,从而导致生物膜的形成㊂临床上为促进细菌感染伤口的愈合,通过高压氧疗法来改善低氧微环境,将气态氧输送到全身,但对患者易造成氧中毒㊁费用负担等㊂载氧载体如微/纳米气泡(MNBs)能够将局部氧气输送到低氧微环境中,但易出现氧气未到达伤口部位而过早的释放㊂Janne⁃sari[42]等人提出还原氧化石墨烯/CuO2纳米复合材料的制备,该复合材料更易控制氧气的释放,且释放时间更长㊂实验表明,将氧化铜(作为氧气的固体来源)与还原氧化石墨烯纳米片结合的情况下,通过局部温度升高和增多活性氧种类产生广谱抗菌作用(包括革兰氏阳性金黄色葡萄球菌㊁革兰氏阴性大肠杆菌和耐药MRSA细菌)㊂Yu[11]等人为解决细菌感染伤口的低氧微环境抑制光动力治疗的抗菌效果,提出一种不依赖局部组织氧浓度清除耐药菌的方法㊂使用乙二醇壳聚糖修饰聚多巴胺(PDA)包覆的羧基石墨烯纳米片(CG),使其成为水溶性壳聚糖衍生物,将AIBI作为自由基源,将其负载材料上㊂在近红外光的照射下,PDA@CG的光热效应使局部温度升高,导致AIBI分解生成烷基自由基(R),造成细菌损伤㊂通过体内体外抗菌实验表明,在常氧和低氧条件下,产生的烷基自由基均具有较强的抗菌效果㊂3㊀聚合物类纳米材料有机共轭聚合物是一类具有π⁃π共轭骨架的大分子,具有制备成本低㊁尺度易调控㊁稳定性好㊁优异的光热转换能力等优点,是光热材料中研究的热点㊂Zhou[43]等人提出了一种在近红外激光照射下由季铵盐修饰的共轭聚合物同时具有PDT和PTT效应,实现了单光源双光治疗的治疗方法㊂共轭聚合物侧链上的季铵基团与带负电荷的细菌膜相互作用,提高局部抗菌效率,共轭主链能同时产生活性氧(ROS)和热量,对细菌造成损伤㊂在近红外光照射(808nm,1.0W㊃cm-2,8min),40μg㊃mL-1的实验条件下,共轭聚合物能有效地杀死金黄色葡萄球菌和耐药大肠杆菌㊂为能有效杀死白色念珠菌则需更高浓度共轭聚合物㊂聚多巴胺(PDA)是贻贝分泌的类似蛋白结构的聚合物,制备方法简单㊁附着力强㊁生物相容性好,易于修饰于材料表面提高其分散性,也是一种优良的光热材料㊂Yu[44]等人将聚多巴胺(PDA)包覆氧化铁纳米复合材料(Fe3O4@PDA)作为光热材料,将第三代树突状聚氨基胺(PAMAM⁃G3)接枝在Fe3O4@PDA表面,然后将NO负载其复合材料上㊂将制备的纳米复合材料在近红外激光照射下表现出可控的NO释放性能㊂光热效应和NO协同抗对大肠杆菌和金黄色葡萄球菌,显著降低了细菌活力和生物膜生物量㊂聚苯胺(PANI)由于亚胺氮原子的掺杂,在近红外区有较强的吸收,能够在近红外光照下产生大量的热量来对抗细菌和肿瘤细胞㊂Hsiao[45]将PANI接枝在壳聚糖(CS)上作为侧链,可以在水环境中自组装成胶束,并在局部pH值升高的驱动下转化为胶体凝胶,这些自掺杂的聚苯胺胶束作为光热剂,利用近红外光照射触发反应㊂在体内实验中,复合材料注射溶液最终分布在酸性脓肿上,遇到健康组织的边界时,就会形成胶体凝胶㊂由于PANI侧链,胶体凝胶在近红外光照射下(808nm,0.5W/cm2)产生热疗,导致细菌热裂解,修复感染创面而不留下残留的植入材料㊂减少对周围健康组织不必要的热损伤㊂4㊀结语金属类㊁碳类和聚合物类复合材料的光热抗菌效果优于单独使用相同材料的光热抗菌效果,除产生热量外,复合材料还具有某些特性,如酶活性(蛋白酶)㊁ROS生成㊁促进离子释放(银离子)以及复合材料表面电荷与细菌细胞壁电荷之间的静电吸引㊂这些特性与PTT结合,有利于破坏细菌细胞膜,提高抗菌效果㊂通过对纳米材料进行修饰,达到多种治疗手段联合治疗的目的,如光热和化疗联合㊁光热和光动力治疗联合等㊂光热纳米材料的发展为治疗㊃150㊀㊃JournalofHenanUniversity(MedicalScience)2021,40(2)耐药菌引起的感染提供了机会,应用于临床仍有许多问题需要解决㊂首要问题是生物安全性,尽管文献中报道的大部分纳米材料没有细胞毒性,但是这些材料是否可生物降解㊁是否会引起潜在的毒副作用等问题需要进一步研究㊂参考文献:[1]ANDERSSONDI,HUGHESD.Antibioticresistanceanditscost:isitpossibletoreverseresistance?[J].NatRevMicrobiol,2010,8(4):260⁃271.[2]SHANKARPR.Bookreview:tacklingdrug⁃resistantinfec⁃tionsglobally[J].ArchPharmaPract,2016,7(3):110⁃111.[3]CHENZW,WANGZZ,RENJS,etal.Enzymemimicryforcombatingbacteriaandbiofilms[J].AccChemRes,2018,51(3):789⁃799.[4]WUQ,QIQF,ZHAOC,etal.Ahybridproteolyticandantibacterialbifunctionalfilmbasedonamphiphiliccarbo⁃naceousconjugatesoftrypsinandvancomycin[J].JMaterChemB,2014,2(12):1681⁃1688.[5]TIANTF,SHIXZ,CHENGL,etal.Graphene⁃basednanocompositeasaneffective,multifunctional,andrecy⁃clableantibacterialagent[J].ACSApplMaterInterfaces,2014,6(11):8542⁃8548.[6]DAIXM,ZHAOY,YUYJ,etal.Singlecontinuousnear⁃infraredlaser⁃triggeredphotodynamicandphotothermalablationofantibiotic⁃resistantbacteriausingeffectivetarge⁃tedcoppersulfidenanoclusters[J].ACSApplMaterInter⁃faces,2017,9(36):30470⁃30479.[7]CAOFF,JUEG,ZHANGY,etal.Anefficientandbe⁃nignantimicrobialdepotbasedonsilver⁃infusedMoS2[J].ACSNano,2017,11(5):4651⁃4659.[8]NGUYENLT,HANEYEF,VOGELHJ.Theexpandingscopeofantimicrobialpeptidestructuresandtheirmodesofaction[J].TrendsBiotechnol,2011,29(9):464⁃472.[9]LIUCQ,WEIZH,HUOZY,etal.Constructingacon⁃tact⁃activeantimicrobialsurfacebasedonquarternizedam⁃phiphiliccarbonaceousparticlesagainstbiofilms[J].ACSApplBioMater,2020,3(8):5048⁃5055.[10]ZHANGC,HUDF,XUJW,etal.Polyphenol⁃assistedexfoliationoftransitionmetaldichalcogenidesintonanosheetsasphotothermalnanocarriersforenhancedanti⁃biofilmactivity[J].ACSNano,2018,12(12):12347⁃12356.[11]YuXZ,HEDF,ZhangXM,etal.Surface⁃adaptiveandinitiator⁃loadedgrapheneasalight⁃inducedgeneratorwithfreeradicalsfordrug⁃resistantbacteriaeradication[J].ACSApplMaterInterfaces,2019,11(2):1766⁃1781.[12]ZHANGY,SUNPP,ZHANGL,etal.Silver⁃infusedporphyrinicmetal⁃organicframework:surface⁃adaptive,on⁃demandnanoplatformforsynergisticbacteriakillingandwounddisinfection[J].AdvFunctMater,2019,29(11):1808594.[13]WANGXC,LUF,LIT,etal.Cu2Snanoflowersforskintumortherapyandwoundhealing[J].ACSNano,2017,11(11):11337⁃11349.[14]AGOSTINODA,TAGLIETTIA,DESANDOR,etal.Bulksurfacescoatedwithtriangularsilvernanoplates:an⁃tibacterialactionbasedonsilverreleaseandphoto⁃thermalEffect[J].Nanomaterials,2017,7(1):7.[15]LANDISRF,GUPTAA,LEEYW,etal.Cross⁃linkedpolymer⁃stabilizednanocompositesforthetreatmentofbacterialbiofilms[J].ACSNano,2017,11(1):946⁃952.[16]LINJF,LIJ,GOPALA,etal.Synthesisofphoto⁃exci⁃tedChlorine6conjugatedsilicananoparticlesforenhancedanti⁃bacterialefficiencytoovercomemethicillin⁃resistantStaphylococcusaureus[J].ChemCommun,2019,55(18):2656⁃2659.[17]YANGY,MAL,CHENGC,etal.Nonchemotherapicandrobustdual⁃responsivenanoagentswithon⁃demandbacterialtrapping,ablation,andreleaseforefficientwounddisinfection[J].AdvFunctMater,2018,28(21):1705708.[18]CALOE,KHUTORYANSKIYVV.Biomedicalapplica⁃tionsofhydrogels:areviewofpatentsandcommercialproducts[J].EurPolymJ,2015,65:252⁃267.[19]HUDF,ZOULY,LIBC,etal.Photothermalkillingofmethicillin⁃resistantstaphylococcusaureusbybacteria⁃tar⁃getedpolydopaminenanoparticleswithnano⁃localizedhy⁃perpyrexia[J].ACSBiomaterSciEng,2019,5(10):5169⁃5179.[20]CHENGCH,LINKJ,HONGCT,etal.Plasmon⁃acti⁃vatedwaterreducesamyloidburdenandimprovesmemoryinanimalswithAlzheimer sDisease[J].SciRep,2019,9(1):13252.[21]YANGCP,FANGSU,TSAIHY,etal.Newlypre⁃paredsurface⁃enhancedRamanscattering⁃activesubstratesforsensingpesticides[J].JElectroanalChem,2020,861:113965.[22]YEXC,ZHENGC,CHENJ,etal.Usingbinarysurfac⁃tantmixturestosimultaneouslyimprovethedimensionaltunabilityandmonodispersityintheseededgrowthofgoldnanorods[J].NanoLett,2013,13(2):765⁃771.[23]QUYENTTB,CHANGCC,SUWN,etal.Self⁃focu⁃singAu@SiO2nanorodswithrhodamine6Gashighlysen⁃sitiveSERSsubstrateforcarcinoembryonicantigendetec⁃2021,40(2)河南大学学报(医学版)㊃151㊀㊃tion[J].JMaterChemB,2014,2(6):629⁃636.[24]LIUXL,WANGJH,LIANGS,etal.TuningplasmonresonanceofgoldnanostarsforEnhancementsofnonlinearopticalresponseandramanscattering[J].JPhysChemC,2014,118(18):9659⁃9664.[25]MURPHSEH,MURPHCJ,LEACHA,etal.Apossi⁃bleorientedattachmentgrowthmechanismforsilvernanowireformation[J].CrystGrowthDes,2015,15(4):1968⁃1974.[26]WUCY,CHENGHY,OUKL,etal.Real⁃timesen⁃singofhepatitisBvirusXgeneusinganultrasensitivenanowirefieldeffecttransistor[J].JPolymEng,2014,34(3):273⁃277.[27]WANGL,LIUCH,NEMOTOY,etal.Rapidsynthesisofbiocompatiblegoldnanoflowerswithtailoredsurfacetextureswiththeassistanceofaminoacidmolecules[J].RSCAdvances,2012,2(11):4608⁃4611.[28]WANGWN,PEIP,CHUZY,etal.Bi2S3coatedAunanorodsforenhancedphotodynamicandphotothermalan⁃tibacterialactivitiesunderNIRlight[J].ChemEngJ,2020,397:125488.[29]CHENJY,WANGDL,XIJF,etal.Immunogoldnanocageswithtailoredopticalpropertiesfortargetedpho⁃tothermaldestructionofcancercells[J].NanoLett,2007,7(5):1318⁃1322.[30]HUANGSN,DUANSF,WANGJ,etal.Folic⁃Acid⁃Mediatedfunctionalizedgoldnanocagesfortargeteddeli⁃veryofanti⁃miR⁃181bincombinationofgenetherapyandphotothermaltherapyagainsthepatocellularcarcinoma[J].AdvFunctMater,2016,26(15):2532⁃2544.[31]WUSM,LIAH,ZHAOXY,etal.Silica⁃coatedgold⁃silvernanocagesasphotothermalantibacterialagentsforcombinedanti⁃infectivetherapy[J].ACSApplMaterIn⁃terfaces,2019,11(19):17177⁃17183.[32]QIAOY,HEJ,CHENWY,etal.Light⁃activatablesy⁃nergistictherapyofdrug⁃resistantbacteria⁃infectedcuta⁃neouschronicwoundsandnonhealingkeratitisbycuprifer⁃oushollownanoshells[J].ACSNano,2020,14(3):3299⁃3315.[33]LIUT,SHISX,LIANGC,etal.IronoxidedecoratedMoS2nanosheetswithdoublePEGylationforchelator⁃freeradiolabelingandmultimodalimagingguidedphotothermaltherapy[J].ACSNano,2015,9(1):950⁃960.[34]ZHUXB,JIXY,KONGN,etal.Intracellularmecha⁃nisticunderstandingof2DMoS2Nanosheetsforanti⁃exo⁃cytosisenhancedsynergisticcancertherapy[J].ACSNano,2018,12(3):2922⁃2938.[35]YADAVV,ROYS,SINGHP,etal.2DMoS2⁃basednanomaterialsfortherapeutic,bioimaging,andbiosensingapplications[J].Small,2019,15(1):e1803706.[36]YINWY,YUJ,LUFT,etal.Functionalizednano⁃MoS2withperoxidasecatalyticandnear⁃infraredphoto⁃thermalactivitiesforsafeandsynergeticwoundantibacte⁃rialapplications[J].ACSNano,2016,10(12):11000⁃11011.[37]GAOQ,ZHANGX,YINWY,etal.FunctionalizedMoS2nanovehiclewithnear⁃infraredlaser⁃mediatednitricoxidereleaseandphotothermalactivitiesforadvancedbac⁃teria⁃infectedwoundtherapy[J].Small,2018,14(45):1802290.[38]HUANGY,GAOQ,LIX,etal.OfloxacinloadedMoS2nanoflakesforsynergisticmild⁃temperaturephotothermal/antibiotictherapywithreduceddrugresistanceofbacteria[J].NanoRes,2020,13(9):2340⁃2350.[39]YOUGBARES,MUTALIKC,KRISNAWATIDI,etal.Nanomaterialsforthephotothermalkillingofbacteria[J].Nanomaterials,2020,10(8):1123.[40]HEJH,ShiMG,LIANGYP,etal.Conductiveadhe⁃siveself⁃healingnanocompositehydrogelwounddressingforphotothermaltherapyofinfectedfull⁃thicknessskinwounds[J].ChemEngJ,2020,394:124888.[41]FANX,YANGF,HUANGJB,etal.Metal⁃organic⁃framework⁃derived2Dcarbonnanosheetsforlocalizedmultiplebacterialeradicationandaugmentedanti⁃infectivetherapy[J].NanoLett,2019,19(9):5885⁃5896.[42]JANNESARIM,AKHAVANO,MADAAHHOSSEINIHR,etal.Graphene/CuO2nanoshuttlewithcontrollablere⁃leaseofoxygennanobubblespromotinginterruptionofbac⁃terialrespiration[J].ACSApplMaterInterfaces,2020,12(32):35813⁃35825.[43]ZHOUSR,WANGZJ,WANGYX,etal.Near⁃infra⁃redlighttriggeredsynergisticphototherapyforantimicro⁃bialtherapy[J].ACSAppliedBioMaterials,2020,3(3):1730⁃1737.[44]YUSM,LIGW,LIUR,etal.DendriticFe3O4@Poly(dopamine)@PAMAMnanocompositeascontrollableNO⁃Releasingmaterial:AsynergisticphotothermalandNOantibacterialstudy[J].AdvFunctMater,2018,28(20):1707440.[45]HSIAOCW,CHENHL,LIAOZX,etal.Effectivephotothermalkillingofpathogenicbacteriabyusingspa⁃tiallytunablecolloidalgelswithnano⁃localizedheatingsources[J].AdvFunctMater,2015,25(5):721⁃728.[责任编辑㊀李麦产]。
纳米颗粒的抗菌性能机理及其应用

纳米颗粒的抗菌性能机理及其应用随着生活水平的提高,人们对于食品安全、环境卫生、医疗保健等方面的需求越来越高。
而在这些领域中,细菌感染问题一直是人们所关注的难题。
传统的消毒方式或抗菌剂所面临的问题越来越明显,例如有副作用、耐药性及破坏环境等弊端。
近年来,研究人员发现纳米材料对于抗菌方面起到了十分重要的作用,其中纳米颗粒就是一种颇受关注的材料。
纳米颗粒的抗菌性能被广泛研究,其机理和应用已成为纳米医学、纳米食品安全等领域的热门研究方向。
一、纳米颗粒的抗菌性能机理纳米颗粒抗菌性能的机理主要涉及其颗粒尺寸、表面电位、表面活性及特有的化学反应等板块。
首先,纳米颗粒将呈现与体积相比非常大的比表面积,因此在与细菌接触的时候,可以将起到更多的物理作用,例如捕捉、影响代谢和摧毁细菌细胞的能力。
其次,纳米颗粒的表面电位和表面活性有助于吸附细菌细胞,将细菌细胞与抗菌材料的接触面积扩大到最大,加强了物理原理的作用和穿透性。
第三,在特定的应用环境中,纳米颗粒可能通过化学反应释放活性成分,如阳离子表面活性剂,氧化剂等,从而破坏细菌细胞壁和代谢过程。
这些化学反应具有极高的反应速度和反应结构的精度,因此非常适用于高效的细菌抗菌。
在应用纳米颗粒进行抗菌实验时,不同纳米材料的抗菌效果及机理也有所不同。
奈米银颗粒、氧化锌颗粒、氧化镁颗粒、氧化钛颗粒等是目前被广泛应用的几种纳米材料。
在自然环境中,纳米银颗粒可以通过激活细菌细胞对生物成份进行部分氧化,破坏细菌的细胞结构。
奈米银颗粒还可以与细菌细胞膜和基因等核酸结合,从而对其起到杀菌作用。
氧化锌颗粒的抗菌机理主要包括其高度氧化剂的性质、紫外线照射和光催化活性等方面,可以有效破坏细菌细胞壁和细胞膜,或直接破坏核酸。
氧化锌颗粒的抗菌机理也与其颗粒尺寸有关,小于20nm的氧化锌颗粒可在细胞内溶解,产生致死效果。
相比之下,氧化镁颗粒在没有外力作用下本身不具备抗菌作用,但在合适的条件下,可以通过氧化、释放氧分子等方式进行细菌的破坏和消毒。
纳米材料在抗菌材料中的性能与应用研究

纳米材料在抗菌材料中的性能与应用研究随着科学技术的不断发展,纳米材料的研究与应用已成为当前科学界的热点之一。
在医疗领域中,纳米材料的应用也引起了广泛的关注。
其中,纳米材料在抗菌材料中的性能与应用研究备受关注。
抗菌材料是一种能抑制或杀灭细菌、真菌、病毒等微生物生长的材料。
常见的抗菌材料包括银离子材料、聚合物材料和纳米材料等。
然而,由于长期使用抗生素和消毒剂的滥用,导致许多微生物对常见的抗菌材料产生了抗药性。
因此,开发新型的抗菌材料以应对抗药性微生物的需求变得尤为重要。
纳米材料作为一种具有独特结构和性能的材料,在抗菌材料中表现出许多优势。
首先,纳米材料具有较大比表面积,这意味着纳米材料相同质量下的表面积较大,有利于与微生物的作用。
其次,纳米材料具有尺寸效应和量子效应,这使得纳米材料具有独特的物理和化学性质。
最后,纳米材料具有显著的固体和液体相互作用的效果,这使得纳米材料与微生物之间的相互作用更加复杂和多样化。
纳米银是纳米材料中最常用的抗菌材料之一。
银具有广谱抗菌作用,能够杀灭多种细菌、病毒和真菌。
纳米银具有较大的比表面积和独特的物理化学性质,能够与微生物的细胞膜、细胞壁和细胞内的蛋白质发生反应,破坏其结构和功能,从而抑制或杀灭微生物。
除了纳米银,一些其他的纳米材料也被广泛研究用于抗菌材料中。
例如,纳米氧化锌、纳米二氧化钛和纳米碳材料等都显示出一定的抗菌活性。
这些材料具有独特的光催化性质,可以利用紫外光或可见光产生活性自由基,破坏微生物的细胞膜和细胞内的核酸、蛋白质等重要生物分子,从而实现抗菌效果。
此外,纳米材料还可以通过调控材料的表面形貌和结构来实现抗菌性能的提升。
例如,利用纳米材料的疏水性能和抗菌剂之间的相互作用,可以制备出具有超疏水性能的抗菌材料。
这种材料能够使微生物无法附着在其表面上,从而实现抗菌效果。
纳米材料在抗菌材料中的应用不仅局限于医疗领域,还具有广泛的应用前景。
例如,在食品包装领域,纳米材料可以用于制备具有抗菌性的食品包装膜,有效地抑制食品中的微生物生长,延长食品的保鲜期。
纳米银在高分子材料中的抗菌性能研究

纳米银在高分子材料中的抗菌性能研究摘要:纳米银作为一种强有效的抗菌剂,已被广泛应用于高分子材料中。
本文综述了纳米银在不同高分子材料中的抗菌性能研究,对其应用领域和机制进行了详细探讨。
结果表明,纳米银能够显著提高高分子材料的抗菌性能,可有效对抗多种细菌,并具有长效的抗菌效果。
然而,应用纳米银也面临一些挑战,如环境风险和生物毒性等。
因此,未来的研究需要深入探索纳米银在高分子材料中的抗菌机制,同时关注其环境安全性,以推动其更广泛而安全的应用。
1. 引言随着抗菌耐药性的增加和公共卫生意识的提高,寻找新型高效抗菌材料成为当今研究的热点。
纳米银由于其较大的比表面积和独特的物理化学性质,被广泛认为是一种潜力巨大的抗菌剂。
纳米银的应用领域众多,尤其在高分子材料中的抗菌性能研究引起了广泛关注。
本文旨在总结纳米银在高分子材料中的抗菌性能研究,探讨纳米银在高分子材料中的应用前景。
2. 纳米银的抗菌性能纳米银具有很强的抗菌活性,可以抑制多种细菌的生长,包括耐药菌株。
纳米银通过释放银离子和直接与细菌交互作用的方式表现出抗菌性能。
研究发现,纳米银能够破坏细菌的细胞膜和核酸,干扰其代谢过程,从而导致细菌的死亡。
此外,纳米银还能抑制细菌的生物膜形成,阻断其在高分子材料表面的生长。
3. 纳米银在高分子材料中的应用纳米银在高分子材料中的抗菌应用广泛,包括医疗器械、包装材料、纺织品等领域。
在医疗器械方面,纳米银被用于制备抗菌涂层,可以有效抑制细菌的生长,降低医院内感染的发生率。
在包装材料方面,纳米银被应用于食品包装,可以延长食品的保鲜期并保持其卫生安全。
在纺织品方面,纳米银能够使纤维表面具有抗菌性能,从而防止细菌滋生和异味产生。
4. 纳米银应用中的挑战和安全性问题尽管纳米银在高分子材料中的抗菌性能得到了广泛认可,但也面临一些挑战和安全性问题。
首先,纳米银的环境风险引起了关注,其释放的银离子可能对环境造成潜在影响。
其次,纳米银具有一定的生物毒性,长期暴露可能对人体健康产生潜在危害。
纳米涂料的抗菌性能及应用探讨

纳米涂料的抗菌性能及应用探讨在当今科技迅速发展的时代,纳米技术已经在众多领域展现出了其独特的魅力和巨大的应用潜力。
其中,纳米涂料作为一种新型的功能性材料,凭借其出色的抗菌性能,逐渐成为了研究和应用的热点。
纳米涂料之所以能够具备抗菌性能,关键在于其独特的纳米结构和成分。
纳米尺度的粒子具有较大的比表面积,这使得它们能够与细菌等微生物充分接触,并通过多种机制发挥抗菌作用。
常见的纳米抗菌材料包括纳米银、纳米氧化锌、纳米二氧化钛等。
以纳米银为例,银离子本身就具有较强的抗菌活性。
在纳米尺度下,其表面积大幅增加,从而释放出更多的银离子,能够更有效地破坏细菌的细胞膜、干扰细菌的代谢过程,最终导致细菌死亡。
纳米氧化锌则通过产生氧自由基来破坏细菌的细胞结构,实现抗菌效果。
纳米二氧化钛在光照条件下能够激发产生强氧化性的物质,对细菌进行氧化分解。
纳米涂料的抗菌性能具有诸多显著的优点。
首先,其抗菌效果持久且高效。
与传统的抗菌剂相比,纳米粒子在涂料中的分散更加均匀稳定,不易流失和失效,能够长时间保持良好的抗菌性能。
其次,纳米涂料具有广谱抗菌性。
它不仅能够有效抑制常见的细菌,如金黄色葡萄球菌、大肠杆菌等,还对一些真菌、病毒等微生物有一定的抑制作用。
再者,纳米涂料的使用相对安全环保。
由于纳米粒子的使用量较少,且其抗菌作用机制相对温和,对人体和环境的潜在危害较小。
纳米涂料的抗菌性能在众多领域都有着广泛的应用。
在医疗领域,医院的墙壁、医疗器械的表面涂层等都可以采用纳米涂料,有效减少交叉感染的风险。
例如,病房内的墙壁涂上纳米抗菌涂料后,能够抑制病菌的滋生和传播,为患者提供更清洁、安全的治疗环境。
手术器械经过纳米涂料处理后,可以降低术后感染的几率,提高手术的成功率。
在食品工业中,纳米涂料可应用于食品包装材料。
通过在包装材料表面涂覆纳米抗菌涂层,可以延长食品的保质期,防止食品受到细菌、霉菌等微生物的污染。
这对于保障食品安全、减少食品浪费具有重要意义。
纳米材料的抗菌性能研究

纳米材料的抗菌性能研究纳米材料是具有尺寸在纳米级别的物质,其特殊的结构和性质在不同领域具有广泛的应用前景。
近年来,科学家们对纳米材料的抗菌性能进行了深入研究,探索其在医疗和食品安全等方面的潜在用途。
本文将探讨纳米材料的抗菌性能研究领域的一些重要进展。
抗菌性能是纳米材料广受关注的一个重要特性。
传统的抗菌方法,如化学药剂和物理灭菌,往往存在着副作用和局限性。
然而,纳米材料通过其特殊的结构和功能带来了新的解决方案。
纳米颗粒的尺寸远小于细菌和病毒的尺寸,使其可以穿透细胞膜并破坏细胞结构。
此外,纳米材料表面的高比表面积也有利于与细菌相互作用,从而抑制其生长。
因此,纳米材料展现出了卓越的抗菌性能。
银纳米颗粒是目前研究最为广泛的一类纳米材料。
银离子的抗菌活性已经被广泛证明,而银纳米颗粒在材料表面的释放具有持久的抗菌效果。
研究表明,银纳米颗粒可以抑制多种细菌和真菌的生长,包括耐药菌株。
此外,银纳米颗粒还可以作为抗菌剂纳入纺织品和聚合物中,有效地提高这些材料的抗菌性能。
除了银纳米颗粒,其他纳米材料也被广泛研究用于抗菌应用。
碳纳米管、二氧化钛纳米颗粒和氧化锌纳米颗粒等材料也展现出了优秀的抗菌性能。
碳纳米管的高比表面积和独特的结构特性使其具有卓越的抗菌效果。
而二氧化钛和氧化锌纳米颗粒则通过产生活性氧物种和破坏菌体结构来实现其抗菌作用。
这些纳米材料的抗菌性能在医疗器械、包装材料和水处理等领域有着广泛的应用潜力。
纳米材料的抗菌性能研究还面临一些挑战和问题。
首先,纳米材料的生物安全性仍然是一个关键问题。
虽然纳米材料能够有效抑制细菌的生长,但对于人类和环境的潜在毒性尚不完全了解。
因此,相关的毒性评估和安全性研究非常必要。
其次,纳米材料的稳定性和长期持久的抗菌效果也需要进一步改进。
在实际应用中,纳米材料的抗菌效果可能会受到周围环境和物质的影响,因此需要进行更多的研究来优化其抗菌性能。
总的来说,纳米材料的抗菌性能研究在医学、食品安全和环境保护等方面具有重要的应用前景。
纳米抗菌材料的研究进展

毛 勇 邓 玉 明
( 州娃哈哈集 团有限公司质监部 ,杭州 ,3 0 1 杭 10 8)
摘 要 : 纳米抗菌材 料中抗菌剂以纳米尺寸分散 ,具 有高比表面积和高反应活性 , 抗茵材料 整体的抗菌效果较传统抗菌 剂有显著提高 ,更能 显著的抑制细 菌、真 菌等微生物的生长和繁殖 , 改兽抗菌材料的 力学性 能 ,引起了国内外研究者的广泛 关注 。本文对具有广泛应用 前景 的金属 并 型、光催化型 、季铵盐或季磷盐 修饰 无机 纳米颗粒等纳 米抗菌剂的研究及应用情况进行 了综述。 关键词 : 纳米 ; 抗菌剂 ; 金属型 ;光催化型 ; 无机纳米颗粒
A >C >Z >C 。=C g u n e a
种 抗 菌作 用 的银 离子 通过 溶 胶 一 凝胶 、离 钛 矿 型 3 晶体 结构 ,其 中锐钛 矿 型 的 子 交换等 技术依 附在 纳米级 的载体 上 ,
TO存在 品格 缺陷 ,结构 比较 开放 ,当 i
危害 程度 :A = b S >H > s S = e g
之 间的复 合物等 。在 目 使用 的这些 半 前
导体 物质 中从使 用程序和 性价 比来看 , 纳米 T 0 明显 优于 其他 几种光 催 化抗 菌 i
剂 。 T 0 有 金 红 石 型 、板 钛 矿 型 和 锐 1
锌等几 种 。金属 离子对 细菌 的抗 菌效果
和 对人体 的危害程 度如 下H : 抗菌 效果 :A 针 S = e >H > s = b S g
Z > C >Ag n u >C 。=C e a
如 沸 石 、 SO T O z O 1 1 n 、磷 酸 复盐 颗 粒尺 寸降到 纳米级 时 ,具 有 良好 的光 等 。由于超 细纳 米级粉 体颗 粒高 比表面 催 化活性 。 积和高 反应 活性 的特殊 效应 ,大 大提 高 了整体 的抗 菌效 果 ,使 抗菌 剂耐温性 、 粉体细 度 、分散性 和功 能效 应都得 到 了 纳米 T 0抗菌 作 用较 为长效 ,抗 菌 i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料抗菌性能的研究王帆;郑先哲【摘要】基于纳米材料的抗菌特性,采用纳米沸石银和纳米沸石锌作为抗菌材料,研究其对垃圾堆肥样品的抑菌效果.研究结果如下:2种纳米材料均具有抗菌作用.从同一菌液浓度的抑菌圈大小看,纳米沸石-Ag对细菌的抑制效果优于纳米沸石-Zn,这2种材料的抑菌圈大小均随着菌液稀释度的增大而增大;纳米沸石-Ag的最小抑菌浓度为3 mg/mL,最大杀菌浓度为28 cfu/mL.而纳米沸石-Zn的最小抑菌浓度为0.5 mg/mL,最大杀菌浓度为0.28 cfu/mL.纳米复合沸石的质量浓度越高,作用时间越长,抑菌效果越好.综合比较,纳米沸石-Ag抑菌效果优于纳米沸石-Zn.【期刊名称】《长春工程学院学报(自然科学版)》【年(卷),期】2015(016)002【总页数】4页(P122-124,128)【关键词】纳米沸石银;纳米沸石锌;堆肥;抗菌【作者】王帆;郑先哲【作者单位】东北农业大学农业工程学院,哈尔滨150030;大连大学环境与化学工程学院,辽宁大连116622;东北农业大学农业工程学院,哈尔滨150030【正文语种】中文【中图分类】X799主要研究纳米材料应用和固体废物处理。
纳米抗菌材料是在纳米技术出现后,将抗菌剂通过一定的方法和技术制备成纳米级抗菌剂,再与抗菌载体通过一定的方法和技术制备而成的具有抗菌功能的材料。
随着近几年对纳米抗菌剂、载体及制备方法的广泛研究,纳米抗菌材料的种类愈来愈丰富多彩,制备方法趋于成熟,应用领域也愈来愈广[1]。
目前,纳米抗菌材料作为一种新型的抗菌剂,其抗菌的广谱性和高效性等优点被越来越多地认识,市场上已经出现抗菌陶瓷、抗菌涂料及抗菌织物等纳米抗菌产品[2-3]。
关于金属离子纳米材料的抑菌机理存在2种假说:酶阻断说、活性氧说[4-6],尚无定论。
而前者是由于金属离子与细菌细胞接触时穿透细胞膜,与细菌中巯基(-SH)反应,使细菌的蛋白凝固,从而破坏细胞合成酶的活性,使细菌失去增殖能力而死亡,这个过程中还存在着一个缓释过程。
后者则认为是金属离子激活环境中的氧,产生自由基,氧化菌体从而使其死亡。
为观察不同纳米材料的抗菌效果,本实验选取纳米沸石银和纳米沸石锌作抗菌剂,综合性评价其抑菌效果[7]。
1.1 实验材料纳米Y沸石[8-9]和堆肥样品。
1.2 实验方法1.2.1 纳米复合沸石的制备分别称取纳米Y沸石粉末12.5 g,加入一定质量浓度的AgNO3溶液25 mL和ZnCl2溶液50 mL,pH值为6~8,在一定温度下振荡5 h,使其充分进行离子交换,然后离心分离,用蒸馏水洗涤至洗液中无Ag+、Zn2+离子,洗后的沸石在80~90℃条件下烘干[10]。
1.2.2 纳米复合沸石的抑菌试验1)菌液的制备[2]。
2)抑菌圈试验[10]。
3)最小抑菌浓度(MIC)的测定:将不同质量的纳米沸石银和纳米沸石锌及一定量的浓度为280 cfu/mL的菌悬液(稀释度为10-6)混入一定量液体培养基中培养。
取培养液0.2 mL,将其涂布到细菌总数平板上培养,以不长菌的最低质量浓度为最小抑菌浓度(MIC),同时作对照试验。
4)最大杀菌浓度(MBC)的测定:取一定稀释度的堆肥试验样品稀释液,其中分别加入上述实验测定的最小抑菌质量的纳米复合银沸石和纳米复合锌沸石,接种加到一定量的液体培养基中培养,然后取培养液0.2 mL,涂布到营养琼脂平板上培养。
以不长菌的最低浓度为最大杀菌浓度(MBC),同时作对照试验。
5)质量浓度及作用时间与抑菌率的关系。
以堆肥试验样品稀释液作为受试菌株,选抑菌纳米材料一定质量浓度的3个质量浓度梯度作为试验质量浓度,在作用2 h、4 h、6 h、8 h、10 h、12 h、14 h的时间点上,取0.2 mL混合液涂布在相应的固体培养基上,测定作用时间和抑菌率的关系。
统计各个平板上的菌落数并计算出各个时间点下不同质量浓度的纳米沸石银和纳米沸石锌的抑菌率。
2.1 2种纳米材料对堆体中细菌的抑菌圈试验由表1可以看出,2种纳米复合沸石对堆肥中细菌均产生较为明显的抑菌圈,说明其对堆肥中细菌都有较好的抑菌效果。
而仅从纳米复合沸石对同一稀释度菌液的抑菌圈大小看,纳米沸石-Ag对细菌的抑制效果优于纳米沸石-Zn。
这2种材料的抑菌圈大小均随着菌液浓度的减小而增大。
菌液浓度由2.8×104 cfu/mL变为2.8×102 cfu/mL时,纳米沸石-Ag抑菌圈由21 mm增加至33 mm,纳米沸石-Zn由16 mm增至23 mm,这一结果同时说明纳米沸石-Ag的抑菌能力较纳米沸石-Zn强。
2.2 2种纳米复合沸石最小抑菌浓度的确定由表2可以看出,当菌液浓度为2.8×102 cfu/mL时,纳米沸石-Ag对堆肥中细菌的最小抑菌浓度为3 mg/mL,纳米沸石-Zn对堆肥中细菌的最小抑菌浓度为5 mg/mL。
表明了纳米沸石-Ag对细菌的抑菌能力强于纳米沸石-Zn。
2.3 2种纳米复合沸石最大杀菌浓度的确定根据上述试验得到的最小抑菌浓度,选取纳米沸石(3 mg/mL)及纳米沸石-Zn(5 mg/mL)测定其最大杀菌浓度。
结果见表3。
由表3得,纳米沸石-Ag对细菌的最大杀菌浓度为28 cfu/mL(即稀释度为10-7),当菌液浓度小于28 cfu/mL时,培养基上并没有出现菌落,即培养液中的细菌已经被杀灭。
而纳米沸石-Zn对细菌的最大杀菌浓度为0.28 cfu/mL(即稀释度为10-9)。
测定结果同样可以表明纳米沸石-Ag对细菌的抑菌能力强于纳米沸石-Zn。
同比类似试验[1],纳米复合沸石最大杀菌浓度偏小,这可能是由于试验中选取混菌而非特定单一菌作为受试菌种或者所采用的抑菌材料不同而导致的。
2.4 2种纳米复合沸石的质量浓度及作用时间与抑菌率的关系在菌液浓度为2.8×102 cfu/mL条件下进行的不同质量浓度及作用时间的2种复合沸石与抑菌率关系的试验结果如图1~2所示。
由图1~2可以看出,在同一质量浓度的作用下,随着作用时间的增加,2种纳米沸石的抑菌率都呈现增长的趋势。
当纳米沸石-Ag和纳米沸石-Zn质量浓度分别为2 mg/mL、5 mg/mL时抑菌率增幅最大(43%、41%)。
同时在2种纳米复合沸石质量浓度相同的情况下,作用时间越长,抑菌率越高。
在相同的作用时间下,不同质量浓度的2种纳米沸石抑菌率也是不同的,会随着抑菌剂质量浓度的增加而增加,最大增幅发生都在作用时间为4 h后,分别达到18%、33%。
即抑菌剂质量浓度越高、作用时间越长,抑菌率越高,也就是杀菌效果越好。
图1和图2进行比较可知在作用时间为2 h时,各质量浓度的纳米沸石-Ag就表现出比相应质量浓度纳米沸石-Zn明显的抑菌作用。
随着作用时间的延长,差距逐渐增大。
当纳米沸石-Ag质量浓度为4 mg/mL时,作用10 h后抑菌率即可达到100%,且3个不同作用质量浓度在作用12 h后最终均达到100%左右。
而当纳米沸石-Zn质量浓度为4 mg/mL时,作用12 h后的最终抑菌率仍为82%。
即表明纳米沸石-Ag的抑菌能力比纳米Y沸石-Zn的抑菌能力强。
此结论可以从抑菌理论第一种假设得到支持,尤其是研究抑菌材料与作用时间的试验,由于随着反应时间的增加,2种纳米复合沸石对细胞的破坏能力是明显增强的,理解为在接触过程中抑菌材料在不断地进行缓慢释放,从而使抑菌率随着增加而不是降低。
综上所述可知纳米沸石-Ag比纳米Y沸石-Zn更具有抑菌能力。
这是由于纳米沸石-Ag中Ag+的抑菌活性比纳米沸石-Zn中的Zn2+强,但Ag+成本较Zn2+大,因此需在具体试验中综合分析各自的优劣性来选择抑菌材料。
1)2种材料的抑菌圈大小均随着菌液浓度减小而增大,对同一菌液浓度的抑菌圈,纳米沸石-Ag对细菌的抑制效果优于纳米沸石-Zn;纳米沸石-Ag和纳米沸石-Zn的最小抑菌浓度分别为3 mg/mL、5 mg/mL,最大杀菌浓度分别为28 cfu/mL、0.28 cfu/mL。
2)2种纳米复合沸石的抑菌效果与其质量浓度成正比,与作用时间成正比,纳米复合沸石的质量浓度越高,作用时间越长,抑菌效果越好。
综合比较,纳米沸石-Ag 抑菌效果比纳米沸石-Zn抑菌效果明显。
【相关文献】[1] 孔彬彬.纳米材料抑菌作用及机理的研究[D].山东:山东轻工业学院,2009:4-5.[2] 陈江魁,孔彬彬,陈丽梅,等.2种纳米材料抗菌性能的研究[J].中国酿造,2010(4):55-58.[3] 代小英,许欣,陈昭斌,等.纳米抗菌剂的概况[J].现在预防医学,2008,35(13):2513-2515.[4] 曲锋,许恒毅,熊勇华,等,纳米银杀菌机理的研究进展[J].食品科学,2010,17(31):420-423.[5] Kim K J,Sung W S,Suhb K,et al.Antifungal activity and mode of action of silvernano-particles on Candida albicans[J].Biometals,2009,22(2):235-242.[6] 俞波,王芳.复合金属离子抗菌沸石的制备及研究[J].无机材料学报,2005,4(20):921-926.[7] 孔彬彬.纳米抗菌材料抗菌作用及机理的研究进展[J].中国酿造,2008(8):1-3.[8] 张健,万东锦,朱云云,等.两种ZSM-5沸石分子筛吸附水中氨氮的研究[J].环境科学与技术,2011,8(34):104-108.[9] 李晓韬,祁晓岚,冯刚,等.Na/H交换度对高硅丝光沸石及其吸附二甲苯性能的影响[J].化学反应工程与工艺,2011,27(6):502-508.[10] 张婷.纳米沸石对堆肥中氨气吸附技术及相关因素的研究[D].大连:大连大学,2013:20-21.。