高三电磁复合场计算题(共23道题,有答案)
高考物理带电粒子在复合场中的运动题20套(带答案)含解析

一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v 0=vcosφ vsinφ=at d=v 0t设电场强度的大小为E ,由牛顿第二定律得 qE=ma 解得:2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E ,由:mg qE =可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
高二物理【磁场】复合场练习题 带解析

班级姓名学号高二物理第三章《磁场》复合场练习题一、选择题:1、一个带正电荷的微粒(重力不计)穿过图中匀强电场和匀强磁场区域时,恰能沿直线运动,则欲使电荷向下偏转,应采用的办法是()A.增大电荷质量.B.增大电荷电量.C.减少入射速度.D.增大磁感应强度.2、如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a、b、c带有等量同种电荷,其中a静止,b向右做匀速运动,c向左做匀速运动.比较它们的重力G a、G b、G c的关系,正确的是( )A.G a最大B.G b最大C.G c最大D.G c最小3、如图所示,空间的某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域并沿直线运动,从C点离开场区;如果这个场区只有电场,则粒子从B点离开场区;如果这个区域只有磁场,则这个粒子从D点离开场区。
设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1、t2和t3,比较t1、t2、和t3的大小,则()A、t1=t2=t3B、t1=t2<t3C、t1<t2=t3D、t1<t2<t34、在图中虚线所示的区域存在匀强电场和匀强磁场。
取坐标如图。
一带电粒子沿x 轴正方向进入此区域,在穿过此区域的过程中运动方向始终不发生偏转。
不计重力的影响,电场强度E 和磁感强度B 的方向可能是( )A . E 和B 都沿x 轴正方向 B . E 沿y 轴正向,B 沿z 轴正向C . E 沿x 轴正向,B 沿y 轴正向D .E 、B 都沿z 轴正向5、一长方形金属块放在匀强磁场中,将金属块通以电流,磁场方向和电流方向如图所示,则金属块两表面M 、N 的电势高低情况是( ) A .N M ϕϕ<. B .N M ϕϕ=. C .N M ϕϕ>. D .无法比较.6、设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动的最低点,忽略重力,以下说法中正确的是( ) A .这离子必带正电荷.B .A 点和B 点位于同一高度.C .离子在C 点时速度最大.D .离子到达B 点后,将沿原曲线返回A 点.二、填空题:7、一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。
复合场例题与习题(含答案)

高三物理复合场例题与习题(含答案)例1.设在地面上方的真空室内,存在匀强电场和匀强磁场。
已知电场强度和磁感强度的方向是相同的,电场强度的大小E =4.0V/m ,磁感强度的大小B =0.15T 。
今有一个带负电的质点以=υ20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量q 与质量之比q/m 以及磁场的所有可能方向。
例2.一带电液滴在如图所示的正交的匀强电场和匀强磁场中运动。
已知电场强度为E ,竖直向下;磁感强度为B ,垂直纸面向内。
此液滴在垂直于磁场的竖直平面内做匀速圆周运动,轨道半径为R 。
问:(1)液滴运动速率多大?方向如何?(2)若液滴运动到最低点A 时分裂成两个液滴,其中一个在原运行方向上作匀速圆周运动,半径变为3R ,圆周最低点也是A ,则另一液滴将如何运动?例3.如图所示,半径为R 的光滑绝缘竖直环上,套有一电量为q 的带正电的小球,在水平正交的匀强电场和匀强磁场中。
已知小球所受电场力与重力的大小相等。
磁场的磁感强度为B 。
则 (1)在环顶端处无初速释放小球,小球的运动过程中所受的最大磁场力。
(2)若要小球能在竖直圆环上做完整的圆周运动,在顶端释放时初速必须满足什么条件?例4.如图所示,直角坐标系xOy 位于竖直平面内,其x 轴沿水平方向,在该空间有一沿水平方向足够长的匀强磁场区域,磁场方向垂直于xOy 平面向里,磁感强度为B ,磁场区域的上、下边界面距x 轴的距离均为d 。
一质量为m 、电量为q 的带正电的微粒从坐标原点O 沿+x 方向发射。
求:(1)若欲使该微粒发射后一直沿x 轴运动,求发射速度的值v 0(2)若欲使发射后不从磁场区域的上界面飞出磁场,求发射速度允许的最大值v 0m复合场(习题)1. 如图3-4-1所示,带电平行板中匀强电场竖直向上,匀强磁场方向 垂直纸面向里,某带电小球从光滑绝缘轨道上的a 点滑下,经过轨道 端点P 进入板间后恰好沿水平方向做直线运动,现使小球从稍低些的 b 点开始自由滑下,在经过P 点进入板间的运动过程中 A 、 动能将会增大 B 、其电势能将会增大C 、 受的洛伦兹力增大D 、小球所受的电场力将会增大2.如图3-4-2所示的正交电磁场区,有两个质量相同、带同种电荷的带电粒子,电量分别为q a 、、q b ,它们沿水平方向以相同速率相对着直线穿过电磁场区,则A 、它们若带负电,则 q a 、>q bB 、它们若带负电,则 q a 、<qb C 、它们若带正电,则 q a 、>q b D 、它们若带正电,则q a 、<q b3.氢原子进入如图3-4-3所示的磁场中,在电子绕核旋转的角速度不变的前提下 A 、如电子逆时针转,旋转半径增大 B 、如电子逆时针转,旋转半径减小 C 、如电子顺时针转,旋转半径增大 D 、如电子顺时针转,旋转半径减小4.如图3-4-4所示,带电粒子在没有电场和磁场的空间以v 从坐标原点O 沿x 轴方向做匀速直线运动,若空间只存在垂直于xoy 平面的匀强磁场时,粒子通过P 点时的动能为E k ;当空间只存在平行于y 轴的匀强电场时,则粒子通过P 点时的动能为 A 、E k B 、2E k C 、4E k D 、5E k5.质量为m ,电量为q 带正电荷的小物块,从半径为R 场强度E ,磁感应强度为B 的区域内,如图3-4-56.如图3-4-6所示,空间分布着图示的匀强电场E (宽为L )和匀强磁场B ,一带电粒子质量为m ,电量为q (重力不计)。
2015高三复习电磁复合场附答案.

h=1.0 m , M和 N
(1)小球 a 水平运动的速率;
(2)物体 c 刚进入 M右侧的场区时的
加速度;
(3)物体 c 落到 Q点时的速率.
电场磁场专题练习 第 2 页
11 、( 17 分)如图甲所示,偏转电场的两个平行极板水平放置,板长
L=0.08m ,板距足够大,两板的右侧有
水平宽度 l =0.06m、竖直宽度足够大的有界匀强磁场.一个比荷为
9、如图所示,在直角区域 aob 内,有垂直纸面向里的匀强磁场,磁感应强度为
B,一电子(质量为
荷量为 )从 O点沿纸面以速度 射入磁场中,速度方向与边界 ob 成 30°角。求:
( 1)电子射出磁场在 ob 上的位置;
( 2)电子在磁砀中运动的时间。
、电
7、如图所示,虚线上方有场强为 E 的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,
磁场右侧有一对平行金属板 M和 N,两板间距离为 6L0,板长为 12L 0,板的中心线 O1O2 与磁场的圆心 O在同一
直线上且 O1恰在磁场边缘。给 M、 N板加上变化情况如图所示的电压,电压大小恒为
U0,周期大小可调。在
t=0 时刻,有一电荷量为 q、质量为 m的带电粒子,从 M、 N 板右侧沿板的中心线以大小为 v 的速度向左射入
N 平行的竖直界面 M左侧存在竖直向下的匀强电场,电场强度
E1=100 N/C .在界面 M与 N 之间还同时存在着
水平向左的匀强电场,电场强度 E2=200 N/C .在紧靠界面 M处有一个固定在水平地面上的竖直绝缘支架,支
架上表面光滑,支架上放有质量
m2=1. 8× 10-4 kg 的带正电的小物体 b(可视为质点),电荷量 q2=1. 0× 10 -5
高中物理带电粒子在复合场中的运动题20套(带答案)

一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12 mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφvsinφ=atd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:3.如图所不,在x轴的上方存在垂直纸面向里,磁感应强度大小为B0的匀强磁场.位于x 轴下方的离子源C发射质量为m、电荷量为g的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O(坐标原点)垂直x轴并垂直磁场射入磁场区域,最后打到x轴上.在x轴上2a〜3a区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N0,打到x轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O射入磁场后打到x轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B1;(3)保持磁感应强度B1不变,求每秒打在探测板上的离子数N;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a,由半径公式也就能求出磁感应强度;取时间t=1s,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.4.如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.25m 的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m。
高考物理带电粒子在复合场中的运动题20套(带答案)含解析

一、带电粒子在复合场中的运动专项训练1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向;(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析) 【答案】(1)mg qE =,方向竖直向上 (2)min (962)qBhv -=(3)0.68qBh v m =;0.545qBh v m =;0.52qBhv m= 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零; (2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度; (3)作出粒子运动轨迹,应用几何知识求出粒子的速度. 【详解】(1)粒子在磁场中做匀速圆周运动, 电场力与重力合力为零,即mg =qE , 解得:mg qE =,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=(﹣;(3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(922h x -≥,x = 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 9qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
高三电磁复合场计算题共23道题-有答案复习过程

精品文档带电粒子在电、磁场中的运动学进辅导高三物理学习资料---2012-11-17轴正方向的匀强电场y1.在图所示的坐标系中,x轴水平,y轴垂直,x轴上方空间只存在重力场,第Ⅲ象限存在沿轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大x和垂直xy平面向里的匀强磁场,在第Ⅳ象限由沿轴负方向抛出,xa,从y轴上y=h处的P点以一定的水平速度沿小相等。
一质量为m,带电荷量大小为q的质点1 y轴上方y= -2h的P点进入第Ⅳ象限,试求:= -2它经过xh处的P点进入第Ⅲ象限,恰好做匀速圆周运动,又经过32a到达P点时速度的大小和方向;⑴质点2⑵第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;进入第Ⅳ象限且速度减为零时的位置坐标⑶质点a 分)如图所示。
(2解.v,由(1)质点在第Ⅱ象限中做平抛运动,设初速度为012gth? 2分)①( (2)(2分)2h=vt……②0hv?2g(1分)解得平抛的初速度0ghgt?2?v(1在P点,速度v的竖直分量分)2y x gh分)所以,v =2(,其方向与1轴负向夹角θ=45°)带电粒子进入第Ⅲ象限做匀速圆周运动,必有(2 (2分)mg=qE……③PP又恰能过负y轴2h为圆的直径,转动半径处,故32OP2?h2?22h??2……④(1R=分)222v gm2m?qvB = (2分)/q (1分);又由 B 可解得……⑤(2分). E =mg R hq mg2,方向与角进入第Ⅳ象限,所受电场力与重力的合力为(3)带电粒以大小为v,方向与x轴正向夹45°P点的速度方向相反,故带电粒做匀减速直线运动,设其加速度大小为a,则:过32mg2ghv422g?2a?h?2as?2,得s??O?v?2 分)由(;……⑥(2分)m a2g22??h?h,分)(由此得出速度减为0时的位置坐标是1、第轴沿水平方向,y轴沿竖直方向在x轴上空间一2.如图所示的坐标系,x场轴正方向的匀电强第二象限内,既无电场也无磁场,在第三象限,存在沿y场、y轴负方向和垂直xy平面(纸面)向里的均强磁场,在第四象限,存在沿电带强大小与第三象限电场场强相等的匀强电场。
高考物理试题库 专题3.23 复合场问题(基础篇)(解析版)

(选修3-1)第三部分磁场专题3.23 复合场问题(基础篇)一.选择题1.(6分)(2019湖南师大附中三模)如图所示,一带电量为﹣q的小球,质量为m,以初速度v0从水平地面竖直向上射入水平方向的匀强磁场中、磁感应强度,方向垂直纸面向外。
图中b为轨迹最高点,重力加速度为g。
则小球从地面射出到第一次到达最高点过程中()A.小球到达最高点时速率为0 B.小球距射出点的最大高度差为C.小球从抛出到第一次到达最高点所用时间为D.最高点距射出点的水平位移为【参考答案】:BC。
【名师解析】、取一水平向右的速度v1,使qv1B=mg,向左的速度v2,此时有v1=v2=v0,小球的运动可看作一沿水平向右的匀速直线运动和以v2和v0的合速度为初速度的匀速圆周运动,其合速度大小为v0,小球到达最高点时竖直方向速率为零,在最高点速率为(﹣1)v0;故A错误;水平方向利用动量定理,有:即为:qBh=m(﹣1)v0,代入数据,得:h=,故B正确;匀速圆周运动的初速度方向和水平方向成45°斜向上,则小球到最高点的时间为:t==,故C正确;设水平位移为x,竖直方向利用动量定理,有:即为:qBx+mgt=mv0,代入数据,得:x=(1﹣),选项故D错误。
2.(6分)(2019湖南师大附中三模)如图所示,两根无限长通电直导线水平且平行放置,分別通有电流互I1和I2,且I1=2I2.一无限长光滑绝缘杆垂直于两导线水平放置,三者位于同一高度,一带正电的小球P 穿在绝缘杆上,小球P从靠近a的地方以某一速度向右运动,其对的弹力设为F.已知始終同定不动,通有电流I的无限长直导线在其周围产生的磁场的磁感应强度B=,其中k为常数,r为到长直导线的距离。
下列说法正确的是()A.两导线之间某位置的磁场最弱B.小球沿杆方向做减速运动C.F先减小后增大再减小D.F先水平向里后水平向外【参考答案】:C。
【名师解析】由安培定则可知,b右侧的磁场方向向上;a左侧的磁场的方向也向上,所以a、b之间的磁场的方向向上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学进辅导高三物理学习资料---带电粒子在电、磁场中的运动 2012-11-171.在图所示的坐标系中,x 轴水平,y 轴垂直,x 轴上方空间只存在重力场,第Ⅲ象限存在沿y 轴正方向的匀强电场和垂直xy 平面向里的匀强磁场,在第Ⅳ象限由沿x 轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。
一质量为m ,带电荷量大小为q 的质点a ,从y 轴上y=h 处的P 1点以一定的水平速度沿x 轴负方向抛出,它经过x = -2h 处的P 2点进入第Ⅲ象限,恰好做匀速圆周运动,又经过y 轴上方y = -2h 的P 3点进入第Ⅳ象限,试求:⑪质点a 到达P 2点时速度的大小和方向;⑫第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小; ⑬质点a 进入第Ⅳ象限且速度减为零时的位置坐标 解.(2分)如图所示。
(1)质点在第Ⅱ象限中做平抛运动,设初速度为v 0,由212h gt =……①(2分)2h =v 0t …… ② (2分)解得平抛的初速度 0v =(1分)在P 2点,速度v 的竖直分量 y v gt ==(1分)所以,v =2gh ,其方向与x 轴负向夹角 θ=45° (1分) (2)带电粒子进入第Ⅲ象限做匀速圆周运动,必有 mg =qE ……③ (2分) 又恰能过负y 轴2h 处,故23P P 为圆的直径,转动半径R=h h OP 2222222=∙=∙ …… ④(1分) 又由 2v q v B m R=……⑤(2分). 可解得 E =mg /q (1分); B = hg q m2(2分)(3)带电粒以大小为v ,方向与x 轴正向夹45°角进入第Ⅳg ,方向与过P 3点的速度方向相反,故带电粒做匀减速直线运动,设其加速度大小为a ,则:g am==…… ⑥(2分); 由2222,2vO v as s a-=-===得(2分)由此得出速度减为0时的位置坐标是(),h h -(1分)2.如图所示的坐标系,x 轴沿水平方向,y 轴沿竖直方向在x 轴上空间第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y 轴正方向的匀强电场和垂直xy 平面(纸面)向里的均强磁场,在第四象限,存在沿y 轴负方向、场强大小与第三象限电场场强相等的匀强电场。
一质量为m 、电荷量为q 的带电质点,从y 轴上y =h 处的P 1点以一定的水平初速度沿x 轴负方向进入第二象限。
然后经过x 轴上x = -2h 处的P 2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y 轴上y = -2h 处的P 3点进入第四象限。
已知重力加速度为g .求:(1)粒子到达P 2点时速度的大小和方向;(2)第三象限空间中电场强度和磁感应强度的大小;(3)带电质点在第四象限空间运动过程中最小速度的大小和方向。
分析和解: (1)参见图,带电质点从P 1到P 2,由平抛运动规律 221gt h =……①(2分); v 0=2h /t ……②(1分)gt v y =v y =gt ……③(1分) 求出gh v v v y O 222=+=……④(2分)方向与x 轴负方向成45°角……(1分)(2)质点从P 2到P 3,重力与电场力平衡,洛伦兹力提供向心力 Eq =mg ……⑤(1分);RvmBqv 2=……⑥(2分)222)2()2()2(h h R +=……⑦(2分); 由⑤解得qmg E =(2分)联立④⑥⑦式得hg qm B 2=……(2分)(3)质点进入等四象限,水平方向做匀速直线运动,竖直方向做匀减速直线运动. 当竖直方向的速度减小到0,此时质点速度最小,即v 在水平方向的分量v min =v cos45°=gh 2……(2分)方向沿x 轴正方向……2分)3.如图所示,在xoy 平面的第一、第三和第四象限内存在着方向竖直向上的大小相同的匀强电场,在第一和第四象限内存在着垂直于纸面向里的匀强磁场。
一个质量为m ,电量为+q 的带电质点,在第三象限中以沿x 轴正方向的速度v 做匀速直线运动,第一次经过y 轴上的M 点,M 点距坐标原点O 的距离为L ;然后在第四象限和第一象限的电磁场中做匀速圆周运动,质点第一次经过x 轴上的N 点距坐标原点O 的距离为L 3。
已知重力加速度为g ,求:⑪匀强电场的电场强度E 的大小。
⑫匀强磁场的磁感应强度B 的大小。
⑬质点第二次经过x 轴的位置距坐标原点的距离d 的大小。
解:⑪带电质点在第三象限中做匀速直线运动,电场力与重力平衡,则:qE =mg 得:E =mg/q⑫设质点做匀速圆周运动的半径为R ,则:222)3(+)-(=L L R R解得:R =2L由RvmqvB 2=; 得:qBmv R =.联立解得:qLmv B 2=⑬质点在第二象限做平抛运动后第二次经过x 轴,设下落的高度为h ,则:L L R h 3=-2= 由平抛运动的规律有:221=gt h ; vt d =.解得:gL vd 6=4.(20分)如图所示,在xOy 坐标系的第Ⅱ象限内,x 轴和平行x 轴的虚线之间(包括x 轴和虚线)有磁感应强度大小为B 1=2×10—2T 、方向垂直纸面向里的匀强磁场,虚线过y 轴上的P 点,OP =1.0m ,在x ≥O 的区域内有磁感应强度大小为B 2、方向垂直纸面向外的匀强磁场。
许多质量m =1.6×10—25kg 、电荷量q =+1.6×10—18C 的粒子,以相同的速率v =2×105m/s 从C 点沿纸面内的各个方向射人磁感应强度为B 1的区域,OC =0.5 m .有一部分粒子只在磁感应强度为B 1的区域运动,有一部分粒子在磁感应强度为B 1的区域运动之后将进入磁感应强度为B 2的区域。
设粒子在B 1区域运动的最短时间为t 1,这部分粒子进入磁感应强度为B 2的区域后在B 2区域的运动时间为t 2,已知t 2=4t 1。
不计粒子重力.求:(1)粒子在磁感应强度为B 1的区域运动的最长时问t 0=? (2)磁感应强度B 2的大小? 分析与解:(1)设粒子在磁感应强度为B 1的区域做匀速圆周运动的半径为r ,周期为T 1,则 r =r=mv/qB 1 ……(1分), r = 1.0 m ……(1分); T 1 ==2 π m /qB 1…… (1分) 由题意可知,OP = r ,所以粒子沿垂直x 轴的方向进入时,在B 1区域运动的时间最长为半个周期,即t 0 =T 1/ 2 ……(2分), 解得t 0 = 1.57×10–5s ……(2分)(2)粒子沿+x 轴的方向进入时,在磁感应强度为B 1的区域运动的时间最短,这些粒子在B 1和B 2中运动的轨迹如图所示,在B 1中做圆周运动的圆心是O 1,O 1点在虚线上,与y 轴的交点是A ,在B 2中做圆周运动的圆心是O 2,与y 轴的交点是D ,O 1、A 、O 2在一条直线上。
由于OC =21r ……(1分);所以∠AO 1C = 30°……2分)则t 1=T 1/12 ……(2分)设粒子在B 2区域做匀速圆周运动的周期为T 2,则T 2 =22qB m π ……(1分)由于∠PAO 1 =∠OAO 2 =∠ODO 2 = 30°……(1分) 所以∠AO 2D = 120°……(2分)则t 2 =232T ……(2分),由t 2 = 4 t 1 , 解得B 2 = 2B 1 ……(1分).B 2 = 4×10–2 ……(1分)5.如图所示,在xoy 坐标平面的第一象限内有一沿y 轴正方向的匀强电场,在第四象限内有一垂直于平面向外的匀强磁场.现有一质量为m ,电荷量为q 的负粒子(重力不计)从坐标原点o 射入磁场,其入射方向与y 轴负方向成45°角.当粒子运动到电场中坐标为(3L ,L )的P 点处时速度大小为v 0,方向与x 轴正方向相同.求: (1)粒子从O 点射人磁场时的速度v . (2)匀强电场的场强E(3)粒子从O 点运动到P 点所用的时间. 解: (1)v =v 0/cos45°=2v 0 (2)因为v 与x 轴夹角为45°,由动能定理得:q E L mvmv -=-2202121, 解得 E =mv 02/2qL(3)粒子在电场中运动L =2221at ,a =qE /m 解得:t 2=2L /v 0粒子在磁场中的运动轨迹为l/4圆周,所以 R =( 3L —2L )/2 =2L /2粒子在磁场中的运动时间为:t 1=004//221v L v R ππ=⨯粒子从O 运动到P 所用时闯为:t =t 1+t 2=L (π+8)/4v o6.如图所示,x 轴上方存在磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外(图中未画出)。
x 轴下方存在匀强电场,场强大小为E ,方向沿与x 轴负方向成60°角斜向下。
一个质量为m ,带电量为+e 的质子以速度v 0从O 点沿y 轴正方向射入匀强磁场区域。
质子飞出磁场区域后,从b 点处穿过x 轴进入匀强电场中,速度方向与x 轴正方向成30°,之后通过了b 点正下方的c 点。
不计质子的重力。
(1)画出质子运动的轨迹,并求出圆形匀强磁场区域的最小半径和最小面积;(2)求出O 点到c 点的距离。
【解析】(1)质子先在匀强磁场中做匀速圆周运动,射出磁场后做匀速直线运动,最后进入匀强电场做类平抛运动,轨迹如图所示.根据牛顿第二定律,有ev 0B = Rv m2(2分)要使磁场的区域面积最小,则Oa 为磁场区域的直径,由几何关系可知: r =R cos30° (4分)求出圆形匀强磁场区域的最小半径2r eB=(2分) 圆形匀强磁场区域的最小面积为222min 2234m S r B eππ==v (1分) (2)质子进入电场后,做类平抛运动,垂直电场方向: s sin30°=v 0t (3分) 平行电场方向:scos30°=a t 2 / 2,(3分)由牛顿第二定律eE =ma , (2分)解得:2s eE=v 。
O 点到c点的距离:d ==7.如图所示,坐标系xOy 位于竖直平面内,在该区域内有场强E =12N/C 、方向沿x 轴正方向的匀强电场和磁感应强度大小为B =2T 、沿水平方向且垂直于xOy 平面指向纸里的匀强磁场.一个质量m =4×10—5kg ,电量q =2.5×10—5C 带正电的微粒,在xOy 平面内做匀速直线运动,运动到原点O 时,撤去磁场,经一段时间后,带电微粒运动到了x 轴上的P 点.取g =10 m/s 2,求: (1)带电微粒运动的速度大小及其跟 x 轴正方向的夹角方向. (2)带电微粒由原点O 运动到P 点的时间.解答.微粒运动到O 点之前要受到重力、电场力和洛仑兹力作用,在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得222()B E F F m g =+ ①………(2分) 电场力 E F Eq = ②………(2分) 洛仑兹力 B F Bqv =…… ③(2分)联立求解、代入数据得 v =10m/s …… ④(2分)微粒运动的速度与重力和电场力的合力垂直,设该合力与y 轴负方向的夹角为θ, 则:tan E F m gθ=…… ⑤(2分);代入数据得tan θ= 3/4 ,θ = 37°带电微粒运动的速度与 x 轴正方向的夹角为θ = 37°……⑥(2分)微粒运动到O 点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,且方向与微粒在O 点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动,可沿初速度方向和合力方向进行分解.设沿初速度方向的位移为s 1,沿合力方向的位移为s 2,则因为 s 1=v t …… ⑦222s m=……⑧ 12t a n s s =θ……⑨联立⑦⑧⑨求解,代入数据可得: O 点到P 点运动时间 t =1.2 s …⑩ 8.(20分)如图所示,x 轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为B ,x 轴下方有一匀强电场,电场强度的大小为E ,方向与y 轴的夹角θ为30°,且斜向上方,现有一质量为m 电量为q 的质子,以速度为v 0由原点沿与x 轴负方向的夹角θ为30°的方向射入第二象限的磁场,不计质子的重力,磁场和电场的区域足够大,求:(1)质子从原点到第一次穿越x 轴所用的时间。