一般复合应用题(二)

合集下载

简单应用题和一般复合应用题

简单应用题和一般复合应用题

简单应用题和一般复合应用题应用题在数学学科中起着非常重要的作用,它们不仅可以帮助学生巩固所学知识,还可以培养学生解决实际问题的能力。

其中,简单应用题和一般复合应用题都占据了重要的位置。

本文将从定义、特点、例题以及解题方法等方面对简单应用题和一般复合应用题进行介绍,以帮助学生更好地理解和应对这两类应用题。

一、简单应用题1. 定义和特点简单应用题是指在数学学科中所涉及的运算、几何、代数等知识运用到实际生活中的简单情境中。

它的特点是问题简单、解题思路明确,通常只需要运用简单的数学知识和运算方法即可解答。

2. 例题例题1:某商场打折促销活动中,原价为200元的商品现在打八折出售,请问现在商品的售价是多少?解答:根据题目所给条件,原价为200元,打八折就是将原价乘以0.8,因此现在商品的售价为200 × 0.8 = 160元。

例题2:小明参加长跑比赛,他在前1000米用时4分30秒,求他每分钟跑多少米。

解答:根据题目所给条件,小明用时4分30秒,换算成秒为4 × 60 + 30 = 270秒。

因此,他每秒跑的距离为1000 ÷ 270 ≈ 3.7米,每分钟跑的距离为3.7 × 60 ≈ 222米。

二、一般复合应用题1. 定义和特点一般复合应用题是指在数学学科中所涉及的多种运算、几何、代数等知识综合运用到实际生活中的复杂情境中。

它的特点是问题较为复杂,需要学生综合运用多种数学知识和解题方法进行分析和解决。

2. 例题例题1:甲、乙两个人合作修建一座大楼,甲单独工作10天可以完成该项目的1/5,乙单独工作12天可以完成该项目的1/4。

请问他们合作多少天可以完成整个项目?解答:设他们合作x天可以完成整个项目,根据题目所给条件,可以列出如下方程:1/10x + 1/12x = 1求解上述方程可以得到x ≈ 6.67,即他们合作大约需要6天零16小时。

例题2:某座山峰高度为A,山脚到山顶的距离为B。

一般复合应用题及其常见的解题方法

一般复合应用题及其常见的解题方法

一般复合应用题及其常见的解题方法A.综合法:从已知条件出发,逐步推出要求问题的方法。

例1.林红有课外书28本,李强的课外书是林红的一半,王华的课外书比李强多8本,王华有课外书多少本例2.铅笔每支6角钱,日记本的单价比铅笔贵元,小丽买了5支铅笔和5个日记本,付给售货员一张20元钱,应找回多少元例3.星期六,小丽在家发现水龙头发生了故障,不停的滴水,于是做了一个实验,下面是她做实验的记录:(1)请你根据小丽的记录算一算,这个水龙头每分钟滴水约滴水毫升(2)某市有1000万个水龙头,若每1000个水龙头中有3个是有故障的滴水龙头,则这个城市中的滴水龙头一年浪费水多少吨(1毫升水约重1克)例 3.林红骑自行车去某地,计划每小时行15千米,3小时可以到达。

因任务紧急,要在2小时内赶到某地,现在每小时需比计划多行多少千米例4.工厂有一堆煤,原计划每天烧3吨,可以烧96天。

由于改进烧煤的方法,每天可节约吨,这样可以比原计划多烧多少天练习1.林红有弹子15个,李强的弹子数是林红的2倍,王华的弹子数比李强的少5个。

林红、李强、王华共有弹子多少个2.105个学生收番茄,其中有78人平均每人收50千克,其余的人平均每人收60千克,他们一共收了多少千克3.学校开运动会,每人发1瓶饮料。

(1)填表如下:(3)这三个年级买18箱饮料够吗至少要多少箱(每箱饮料20瓶)4.一个人买了两条毛巾和3块香皂,每条毛巾元,每块香皂元,她给了售货员一张10元的人民币,应该找回多少钱/5.甲乙丙三个小朋友分一盒糖果,甲分得23块,比乙少分得6块,丙分得比甲乙二人的和少16块。

这盒糖果一共有多少块6.出租车的车费标准是;3千米以内(含3千米)按7元计费,超过3千米的部分,每超过1千米按元计费。

星期天小明乘出租车去公园,下车时出租车的路程表显示共行驶了11千米,小明应付出租车费多少钱7.四年级的同学去春游,若租24座中巴车,正好需租7辆,实际租车时,只租到了2辆24座的中巴,其余的租用40座的大巴车,需租大巴车多少辆8.小明上学骑自行车,回家步行路上共需40分钟;若来回都步行,路上就需1小时。

奥数五年级一般应用题稍难

奥数五年级一般应用题稍难

第7周一般应用题(一)专题简析:一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。

因此,一般应用题没有明显的结构特征和解题规律可循。

解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。

在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。

在实际解时,可以根据题中的已知条件,灵活运用这两种方法。

例1 五年级有六个班,每班人数相等。

从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数。

原来每班多少人分析与解答:从每班选16人参加少先队活动,6个班共选16×6=96(人)。

剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人)。

练习一1,五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。

原来每人存款多少2,把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。

这堆货物一共有多少箱3,老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。

这批树苗一共有多少棵例2 某车间按计划每天应加工50个零件,实际每天加工56个零件。

这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。

这个车间实际加工了多少个零件分析如果按原计划的天数加工,加工的零件就会比原计划多56×3+120=288(个)。

为什么会多加工288个呢是因为每天多加工了56-50=6(个)。

因此,原计划加工的天数是288÷6=48(天),实际加工了50×48+120=1520(个)零件。

练习二1,汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提前2小时到达了乙地。

人教版四年级数学上册四年级数学上册典型例题系列之第6单元:一般复合应用题专项练习(解析版)人教版

人教版四年级数学上册四年级数学上册典型例题系列之第6单元:一般复合应用题专项练习(解析版)人教版

2022-2023学年四年级数学上册典型例题系列之 第六单元:一般复合应用题专项练习(解析版)1.王伯伯用1000元钱买了12把椅子后还剩下184元钱。

每把椅子多少元钱?【答案】68元【分析】单价=总价÷数量,因此先用1000元减去买了12把椅子后剩下的钱计算出买12把椅子用掉的钱,然后再用买12把椅子用掉的钱除以12即可,依此计算。

【详解】1000-184=816(元)816÷12=68(元)答:每把椅子68元。

【点睛】此题考查的是经济问题的计算,熟练掌握总价、单价、数量之间的关系是解答此题的关键。

2.王叔叔带900元购买种子,买了45千克,还剩90元,每千克种子多少钱?【答案】18元【分析】已知买的种子的数量和剩下的钱数,用总钱数减去剩下的钱数,再除以种子的数量,就可以得出每千克种子的价格,列式计算即可。

【详解】()9009045-÷81045=÷18=(元)答:每千克种子18元。

【点睛】解答本题时注意运用公式:单价=总价÷总量。

3.李叔叔要把500吨货物从甲地运往乙地,运了16次,还剩下20吨,平均每次运多少吨?【答案】30吨【分析】用500吨减剩下没运的吨数等于已经运了的吨数,再除以运的次数即可解答。

【详解】(500-20)÷16=480÷16=30(吨)答:平均每次运30吨。

【点睛】先求出运了货物的吨数,再作进一步解答。

4.修路队修一条3840米长的路,修了24天后,还剩360米没有修,平均每天修多少米?【答案】145米【分析】路的全长减去没修的360米,等于已经修了的长度,再除以修的天数即等于平均每天修的米数。

【详解】(3840-360)÷24=3480÷24=145(米)答:平均每天修145米。

【点睛】本题是工程问题应用题,先求出24天修路的长度,再作进一步解答。

5.一本故事书共有320页,小飞已经看了12天,还有68页没有看。

一般复合应用题

一般复合应用题

一般复合应用题
1、化肥厂在一周的前3天平均每天生产化肥250吨,后4天共生产化肥1126吨,这一周平均每天生产化肥多少吨?
2、修路队修一条公路,原计划每天修350米,20天完成,实际每天比原计划多修50米,实际提前多少天完成?
3、一批零件计划每天生产800个,25天完成任务。

实际提前5天完成任务,实际每天比原计划多生产多少零件?
4、修路队修一条长11.7千米的公路,前3天每天修1.5千米,余下的每天多修0.3千米,还要几天完成?
5、A、B两城相距770千米,甲、乙两车在早上8时同时从A、B两城出发相向而行,在中午12:30两车相遇。

已知甲车每小时行80千米,乙车每小时行多少千米?。

应用题归类练习(试题)五年级下册数学人教版

应用题归类练习(试题)五年级下册数学人教版

五下数学应用题归类练习一般复合应用题1)新春小学四、五年级学生411人,分乘7辆大客车去春游,第一辆车乘了63人,后6辆平均每辆车乘坐学生多少人?2)电视机厂要装配2704台彩色电视机,两个装配小组同时开始装配,26天正好完成,已知第一组每天装配54台,第二组每天装配多少台?3)农药厂生产一批农药,计划每天生产48吨,需要15天完成,实际只用9天就完成了这批任务,实际每天生产农药多少吨?4)一桶煤油连桶重8千克,用去一半后连桶还重4.5千克,桶重多少千克?5)四方家具厂要制造366套家具,先按计划每天生产12套,做了18天以后,余下的任务要在10天内完成,平均每天生产多少套?6)张叔叔原计划每小时加工48个零件,15小时完成一批加工任务,现在要求用8小时完成,平均每小时比原计划多加工多少个?7)某厂计划全年生产机床480台,实际提前3个月就完成了全年计划的1.2倍,实际平均每月生产多少台?几倍多几、少几应用题1)学校去年买课外读物680本,今年买的读物比去年的3倍少180本,今年买了多少本?2)新村里今年绿化面积18000平方米,比去年绿化面积的2倍多4000平方米,去年绿化多少平方米?3)两个小组加工一批零件,第一组一天工作8小时共加工零件440个,第一组每小时加工的零件比第二组的1.2倍还多1个,第二组8小时加工零件多少个?4)电器店购进彩电数比电冰箱的3倍多6台,购进淋浴器90台,是彩色电视机的1.5倍,求彩电和冰箱的台数。

5)条水渠,还剩1.2米没有完成,已经完成的比剩下的1.5倍还多0.5千米,这条水渠全长多少米?6)园里种了三种树,已知苹果树有668棵,是梨树棵数的2倍,梨树的棵数比桃树的3倍少50棵,桃树有几棵?梨树有几棵?归一应用题1)台织布机2小时织布96米,照这样计算,a.7台织布机3小时织布多少米?__________________________b.8台织布机192米布要多少小时?__________________________c.增加6台同样的织布机,5小时织布多少米?__________________________2)汽车从甲地开往乙地,3.2小时行了144千米。

四年级奥数题第19讲 应用题(二)

四年级奥数题第19讲 应用题(二)

第19讲应用题(二)一、知识要点解答复合应用题时一般有如下四个步骤:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间de关系,找出解题de途径;3.拟定解答计划,列出算式,算出得数;4.检验解答方法是否合理,结果是否正确,最后写出答案。

二、精讲精练【例题1】某发电厂有10200吨煤,前10天每天烧煤300吨,后来改进炉灶,每天烧煤240吨。

这堆煤还能烧多少天?练习1:1.某电冰箱厂要生产1560台冰箱,已经生产了8天,每天生产120台。

剩下de每天生产150台,还要多少天才能完成任务?2.某工厂计划生产36500套轴承,前5天平均每天生产2100套,后来改进操作方法,平均每天可以生产2600套。

这样完成这批轴承生产任务共需多少天?【例题2】师傅和徒弟同时开始加工200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务。

徒弟每小时加工多少个?练习2:1.张师傅和李师傅同时开始各做90个玩具,张师傅每天做10个,完成任务时,李师傅还要做1天才能完成任务。

李师傅每天做多少个?2.小华和小明同时开始写192个大字,小华每天写24个,完成任务时,小明还要写4天才能完成。

小明每天写多少个字?【例题3】甲、乙两地相距200千米,汽车行完全程要5小时,步行要40小时。

张强从甲地出发,先步行8小时后改乘汽车,还需要几小时到达乙地?练习3:1.玩具厂一车间要生产900个玩具,如果用手工做要20小时才能完成,用机器只需要4小时。

一车间工人先用手工做了5小时,后改用机器生产,还需要几小时才能完成任务?2.甲、乙两地相距200千米,汽车行完全程要5小时,步行要40小时。

张强从甲地出发,先乘汽车4小时,后改步行,他从甲地到乙地共用了多少小时?【例题4】某筑路队修一条长4200米de公路,原计划每人每天修4米,派21人来完成;实际修筑时增加了4人,可以提前几天完成任务?练习4:1.羊毛衫厂要生产378件羊毛衫,原计划每人每天生产3件,派18人来完成。

五年级下数学暑假提升第2课

五年级下数学暑假提升第2课

五年级下数学暑假提升第2课《复合应用题二》学习提示:复合应用题数量关系复杂,没有固定的解题规律,这就要求解答时要借助各种手段分析题意(线段图,画重点,演示法等)。

运用“转化”将复杂的问题简单化。

例1:把一条大鱼分成鱼头、鱼身和鱼尾三部分。

鱼尾重4千克,鱼身质量的一半加上鱼尾的质量等于鱼头的质量,而鱼身的质量等于鱼头加上鱼尾的质量。

这条鱼重多少千克?练习题:一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长之和的一半,这条大鲨鱼全长多少米?例2:甲、乙、丙三人拿出同样多的钱买一批苹果,分配时,甲、乙都比丙多拿24千克,结账时甲和乙都要付给丙24元,每千克苹果多少元?练习题:甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6元,问每支铅笔多少钱?例3:甲城有177吨货物要运到乙城。

大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车跑一趟的耗油量分别是10升和5升。

用多少辆大卡车和小卡车来运输时耗油最少?练习题:五名选手在一次数学竞赛中共得404分,每人得分互不相同,并且都是整数。

如果最高分是90分,那么得分最少的选手至少是多少分?例4:有一栋居民楼,每家都订2份不同的早餐,该居民楼共订了三种套餐,其中A套餐34份、B套餐30份、C套餐22份。

那么订B套餐和C套餐的共有多少家?练习题:五(一)班全体同学每人带2个不同的水果去慰问解放军叔叔,全班共带了3种水果,其中苹果40个、梨32个、橘子26个。

那么,带梨和橘子的有多少个同学?例5:一艘轮船发生漏水事故,立即安排两台抽水机向外抽水,此时已经漏进了800桶水。

一台抽水机每分钟抽水18桶,另一台抽水机每分钟抽水14桶,50分钟把水抽完。

每分钟漏进水多少桶?练习题:一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。

已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?自己的收获:课堂练兵:1、一段木头,用一根绳子来量,绳子多1.5米;将绳子对折以后来量,则绳子短了0.4米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲一般复合应用题(二)
范例1:下午放学时,小巧以每分钟40米的速度步行回家,爸爸以每分钟120米的速度骑自行车来接小巧,5分钟后两人在途中相遇,小巧家到学校一共有多少米?
解法一:120×5+40X5
=600+200
=800(米)
解法二:(120+40)×5
=160×5
=800(米)
答:小巧家到学校一共有800米
模仿训练
1.哥哥和弟弟在公园小河边的小路上散步,哥哥每分钟走60米,弟弟每分钟走40米,他们同时从起点向相反方向走,10分钟后两人相遇,公园的小河一周有多少米?
2.幸福村小学有一条环形跑道,冬冬和晶晶同时从起跑线向相反方向跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,20秒钟后两人在途中相遇,幸福村小学这条环形跑道有多少米?
变式训练
3.小明从学校放学回家,每分钟走80米,爸爸骑自行车从家里出发,每分钟行150米,两人同时出发,8分钟后两人还相距400米,小明家到学校一共有多少米?
4.一列高速列车的速度是180千米/时,一列动车的速度是320千米/时,两列车
同时从两个城市相向出发,经过4小时后,两列车还相距80千米,两个城市之间的距离是多少千米?
范例2:小王在图书馆借读一本文艺书,每天看8页,5天看了这本书的一半,以后他每天多看2页,小王看完这本书共用多少天?
8×5÷(8+2)+5
=10÷10+5
=4+5
=9(天)
答:小王看完这本书共用9天.
模仿训练
5.修路队修一条公路,前6天每天修250米,修好了公路的一半。

如果每天多修50米,那么,一共要多少天才能把这条公路修完?
6.李师傅要生产一批零件,原计划每天做36个,做了10天完成了这批零件的一半,如果每天多生产4个零件,那么李师傅完成任务一共需要多少天?
变式训练
7.服装厂加工1000套童装,原计划20天完成。

现在要多做200套,要求提前4天完成,这样平均每天要比原来多做多少套?
树状算图
8.某自行车厂去年每月生产600辆自行车,今年10个月就完成了去年全年的产量照这样计算,今年全年能生产多少辆自行车?
综合训练
9.师傅每天加工200个零件,徒弟5天的工作量等于师傅4天的工作量。

徒弟单独工作多少天才能完成1120个零件?
树状算图:
1O.小巧和小亚在400米的跑道上练跑步。

小巧用6分钟跑了3圈还多300米,小亚每分钟比小巧快50米,小亚每分钟跑多少米?。

相关文档
最新文档