滤波器设计

合集下载

有源滤波器设计pdf

有源滤波器设计pdf

有源滤波器设计
6. 进行电路模拟和优化:使用电路仿真软件,对设计的有源滤波器进行模拟和优化,验证 其性能是否满足设计要求。
7. 实验验证和调整:根据仿真结果,制作实际电路并进行实验验证,根据实验结果进行调 整和优化。
8. 最终设计和制造:根据实验验证结果,进行最终的设计和制造,包括电路板设计、元件 选型和布局等。
有源滤波器设计
有源滤波器是指在滤波器电路中引入了放大器或运算放大器等有源元件,以增强滤波器的 性能和功能。有源滤波器设计的基本步骤如下:
1. 确定滤波器的类型和要求:确定需要设计的滤波器类型,如低通、高通、带通或带阻滤 波器,并确定其频率响应和阻带衰减等性能要求。
2. 选择滤波器的拓扑结构:根据滤波器的要求和设计目标,选择适合的有源滤波器拓扑结 构,如Sallen-Key、Multiple Feedback等。
有源滤波器设计
3. 确定滤波器的参数:根据滤波器类型和设计要求,确定滤波器的参数,如截止频率、增 益、阻带衰减等。
4. 选择有源元件:根据滤波器的参数和设计要求,选择合适的有源元件,如运算放大器、 放大器等。
5. 进行电路分析和计算:使用电路分析工具或手算方法,对有源滤波器进行电路分析和计 算,包括电压增益、频率响应、阻带衰减等。
有源滤波器设计
需要注意的是,在有源滤波器设计中,除了滤波器的性能和功能要求外,还需要考虑有源 元件的稳定性、功耗和噪声等因素。同时,对于复杂的有源滤波器设计,可能需要进行频域 和时域的混合分析,以及考虑非线性和非理想性等因素。因此,对于初学者来说,建议参考 相关的教材、学习资料和电路设计软件,或者咨询专业工程师的意见和指导。
பைடு நூலகம்

滤波器的设计原理

滤波器的设计原理

滤波器的设计原理
滤波器是一种用于处理信号的电路或系统,其设计原理是基于信号处理的需求和特定滤波器类型的特性。

滤波器的设计可以根据以下原理进行:
1. 滤波器类型的选择:根据信号处理的需求,选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。

2. 频率响应的设定:根据信号处理要求,在滤波器的频率响应中设定所需的增益和衰减。

3. 滤波器的阶数选择:滤波器的阶数决定了其滤波效果的陡峭程度和相位延迟的程度。

选择适当的阶数可以平衡滤波效果和系统的复杂度。

4. 滤波器的传输函数设计:根据滤波器类型和频率响应的设定,通过设计传输函数来实现所需的滤波效果。

5. 滤波器电路的搭建:将设计好的传输函数转化为实际的电路结构,包括使用各种电子元器件(如电容器、电阻器、电感器等)搭建滤波器电路。

6. 参数调整和优化:根据实际应用的需求和系统性能的要求,对滤波器进行参数调整和优化,例如调整滤波器的截止频率、增益等,以获得最佳的滤波效果。

通过以上原理和步骤,可以设计出满足特定信号处理需求的滤波器,实现对信号的滤波和去除不需要的成分。

滤波器的设计需要考虑信号的频率特性、滤波效果、系统复杂度以及实际应用的要求等因素。

完整的有源滤波器设计

完整的有源滤波器设计

完整的有源滤波器设计
有源滤波器是一种特殊的电子滤波器,它使用运算放大器等有源元件来增强滤波性能。

有源滤波器可以实现更大的增益,并且具有较低的噪声和较高的带宽。

有源滤波器的设计过程可以分为以下几个步骤:
1.确定滤波器的类型:首先需要确定所需的滤波器类型,例如低通、高通、带通或带阻滤波器。

每种类型的滤波器有不同的应用和性能特点。

2.确定滤波器的规格:根据具体的需求,确定滤波器的截止频率、增益、带宽等规格。

这些规格将直接影响之后的设计过程。

3. 选择合适的滤波器拓扑结构:根据滤波器的规格要求,选择合适的滤波器拓扑结构。

常见的有源滤波器拓扑包括Sallen-Key拓扑、多反馈拓扑等。

4.设计滤波器电路:根据选择的滤波器拓扑,设计滤波器的电路图。

这包括选择合适的元件值和计算反馈网络。

5.仿真和优化:使用电子设计自动化软件(如SPICE)对滤波器电路进行仿真,并进行优化。

通过调整元件值和拓扑结构,使得滤波器能够满足规格要求。

6.PCB设计和布局:在完成滤波器电路的设计和优化后,进行PCB设计和布局。

在布局过程中,需要考虑信号路径的长度和干扰抑制等因素。

7.绘制电路图和元件布局:最后,根据PCB设计结果,绘制滤波器的电路图和元件布局图。

这将是完整的有源滤波器设计的最终结果。

有源滤波器的设计需要理解滤波器的基本原理和电路分析技术,并且需要具备电子电路设计和PCB设计的技能。

同时,设计师还需要充分考虑电路参数的影响,如运算放大器的增益带宽积、电源电压等。

通过合理的设计和优化,可以得到满足规格要求的高性能有源滤波器。

电源滤波器的设计

电源滤波器的设计

电源滤波器的设计
不包含图片
1.什么是电源滤波器
2.电源滤波器的结构
(1)电容,电容是用小容量的多层绕组做成,工作温度范围较宽,抗电磁干扰能力强,是低频级中的主要成分。

(2)电感器,电感器也是电容的补充,其特点是高频屏蔽能力强,但可偏振性较弱,因此,需要将它与电容组合使用,以获得更好的抗电磁干扰能力。

(3)限流元件,限流元件主要是控制瞬变电流环形,以减少电源线的高频抖动,提高滤波效果。

(4)反向导通,在实际应用中,反向导通也会用于电源滤波器,它的作用是防止后端的瞬变电流反向流动,从而阻止电磁干扰被传播出去。

(1)选取滤波器元件:在设计电源滤波器时,元件的选取对系统的屏蔽效果影响至关重要,而电感器和电容。

滤波器的设计方法

滤波器的设计方法

滤波器的设计方法
滤波器的设计方法有很多种,常见的包括以下几种:
1. 理想滤波器设计方法:通过在频率域中指定理想的频率响应,然后通过傅里叶逆变换得到时间域的系数。

这种方法简单直观,但是理想滤波器在频率域是无限延伸的,实际中无法实现。

2. 巴特沃斯滤波器设计方法:巴特沃斯滤波器是一种具有最平坦的幅频响应和最小相位响应的滤波器,常用于低通、高通、带通和带阻滤波。

设计方法是通过指定阶数和过渡带宽来确定巴特沃斯滤波器的参数。

3. 频率抽样滤波器设计方法:这种设计方法是根据输入和输出信号在时间域上的采样值来确定滤波器的参数,常用于数字滤波器的设计。

4. 卡尔曼滤波器设计方法:卡尔曼滤波器是一种递归滤波器,利用系统的动态模型和测量的信号来预测和估计系统的状态。

卡尔曼滤波器在估计问题上表现出很好的性能,常用于信号处理、控制系统等领域。

5. 小波变换滤波器设计方法:小波变换滤波器是一种多分辨率分析工具,可以分析信号的时频特性。

通过选择适当的小波基函数和滤波器,可以实现不同的信号处理任务,如去噪、压缩、边缘检测等。

这些是一些常见的滤波器设计方法,根据具体的应用和需求选择合适的设计方法进行滤波器设计。

滤波器理论及滤波器设计方法

滤波器理论及滤波器设计方法

滤波器理论及滤波器设计方法滤波器是一类电路或设备,用于通过选择性地传递或阻止指定频率范围内的信号。

在电子和通信领域中,滤波器广泛应用于信号处理、通信系统、音频设备等各种应用中。

本文将介绍滤波器的理论基础以及常见的滤波器设计方法。

一、滤波器理论基础1.1 滤波器的基本概念滤波器通过改变信号的频率特性,实现对信号的频率选择性处理。

滤波器的输入为信号源提供的混合信号,输出为经过滤波处理后的目标信号。

1.2 滤波器的分类根据滤波器的频率响应特性,可以将滤波器分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等几种类型。

低通滤波器通过滤除高频信号而保留低频信号,高通滤波器则相反,而带通滤波器和带阻滤波器则可以选择性地通过或阻止一定频率范围的信号。

1.3 滤波器的频率响应与特性滤波器的频率响应是指滤波器在不同频率下对信号的响应情况。

常见的频率响应图形包括低通滤波器的衰减特性,高通滤波器的增益特性以及带通滤波器和带阻滤波器的带宽和中心频率。

二、滤波器设计方法2.1 传统滤波器设计方法传统的滤波器设计方法包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

这些滤波器设计方法基于滤波器的频率响应要求,通过选择适当的滤波器特性以及阶数,来实现所需的滤波效果。

2.2 数字滤波器设计方法随着数字信号处理技术的发展,数字滤波器设计方法得到了广泛应用。

数字滤波器设计方法基于离散信号的采样与重构过程,利用数字滤波器的差分方程或频率响应函数来实现滤波效果。

常见的数字滤波器设计方法包括FIR滤波器设计和IIR滤波器设计等。

2.3 滤波器设计软件为了简化滤波器的设计过程,许多滤波器设计软件被开发出来。

这些软件通常提供了图形界面和可视化工具,帮助工程师选择并优化滤波器参数,从而实现所需的滤波效果。

常见的滤波器设计软件有MATLAB、Simulink、Analog Filter Wizard等。

三、滤波器的应用滤波器在众多领域中都有广泛的应用。

实验四FIR数字滤波器的设计

实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。

在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。

下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。

阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。

阶数的选择需要根据实际应用来进行权衡。

2.确定滤波器的类型。

根据实际需求,选择低通、高通、带通或带阻滤波器。

低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。

3.确定滤波器的参数。

根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。

这些参数决定了滤波器的性能。

4.设计滤波器的频率响应。

使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。

5.将频率响应转换为滤波器的系数。

根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。

6.实现滤波器。

将滤波器的系数应用到数字信号中,实现滤波操作。

7.优化滤波器性能。

根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。

以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。

经典滤波器设计范文

经典滤波器设计范文一、FIR滤波器设计FIR(Finite Impulse Response)滤波器是一种常用的数字滤波器,其特点是抗混叠性能好、线性相位响应、易于设计等。

FIR滤波器的设计通常分为两个步骤:滤波器的理想频率响应设计和具体的滤波器系数设计。

1.理想频率响应设计理想的低通FIR滤波器频率响应为单位脉冲响应的离散傅里叶变换,即H(e^jω) = sum(h(n)e^(-jωn)),其中h(n)为滤波器的单位脉冲响应。

通过将理想频率响应转换为时域单位脉冲响应,可以得到容纳在有限长度L的FIR滤波器中。

其中单位脉冲响应为:h(n) = (ω_0π)^-1 * sin(ω_0n)/(nπ),其中ω_0为截止频率。

2.系数设计对于FIR滤波器,系数设计是指对滤波器的单位脉冲响应进行窗函数的处理。

窗函数可以选择矩形窗、汉宁窗、海明窗等。

二、IIR滤波器设计IIR(Infinite Impulse Response)滤波器是另一种常用的数字滤波器,其特点是滤波器具有无限长度的单位脉冲响应。

与FIR滤波器不同,IIR滤波器的设计指标更多地侧重于滤波器的幅频响应与相位响应的设计。

1.巴特沃斯滤波器设计巴特沃斯滤波器是一种IIR滤波器的设计方法,其特点是在通带中具有均匀响应,即幅频特性较为平坦。

巴特沃斯滤波器设计的关键是选择滤波器阶数和截止频率。

2.预畸变滤波器设计预畸变滤波器是为了使滤波器的相频特性更加平坦而设计的,其主要应用在通信系统中。

预畸变滤波器一般采用线性相位结构,在设计时需要考虑相位补偿。

三、其他滤波器设计方法除了上述的FIR和IIR滤波器设计方法外,还有一些其他的滤波器设计方法,如小波滤波器设计、自适应滤波器设计等。

1.小波滤波器设计小波滤波器是在小波变换领域中常用的滤波器设计方法。

小波滤波器具有多尺度分析的特点,可以提供多分辨率的信号处理。

2.自适应滤波器设计自适应滤波器是根据输入信号的特性进行动态调整的一种滤波器设计方法。

滤波器的设计方法

滤波器的设计方法滤波器的设计方法主要有两种:频域设计方法和时域设计方法。

1. 频域设计方法频域设计方法以频率域上的响应要求为基础,通过设计滤波器的频率响应来达到滤波效果。

常用的频域设计方法有理想滤波器设计、巴特沃斯滤波器设计和切比雪夫滤波器设计。

理想滤波器设计方法以理想的频率响应为基础,通过频率采样和反变换等方法来设计滤波器。

首先确定所需的频率响应曲线,然后进行频率域采样,最后通过反变换得到滤波器的时域序列。

但实际应用中理想滤波器因为无限长的冲激响应无法实现,所以需要通过截断或者窗函数等方法来实现真实的滤波器。

巴特沃斯滤波器是一种特殊的线性相位滤波器,通过在频率域上进行极点和零点的设置来设计滤波器。

巴特沃斯滤波器的设计主要分为两个步骤:首先选择通带和阻带的边缘频率以及通带和阻带的最大衰减量,然后使用双线性变换将归一化的巴特沃斯滤波器转换为实际的数字滤波器。

切比雪夫滤波器是一种用于折衷通带纹波和阻带纹波的滤波器,可以实现更尖锐的频率响应特性。

切比雪夫滤波器设计的关键是选择通带纹波、阻带纹波以及通带和阻带的边缘频率。

根据这些参数设计切比雪夫滤波器的阶数和极点位置,然后使用双线性变换将归一化的切比雪夫滤波器转换为实际的数字滤波器。

2. 时域设计方法时域设计方法以滤波器的时域响应要求为基础,通过对滤波器的脉冲响应进行设计。

时域设计方法常用的有窗函数设计和频率抽样设计。

窗函数设计方法常用于有限长度的滤波器设计。

首先根据所需的脉冲响应特性选择一个窗函数,然后将窗函数和理想滤波器的脉冲响应进行卷积,得到设计滤波器的时域序列。

常用的窗函数有矩形窗、汉宁窗、汉明窗等。

频率抽样设计方法是时域设计方法的一种变种,通过采样一组频率响应曲线来设计滤波器。

首先选择一组抽样频率和相应的理想频率响应值,然后通过傅里叶变换和反变换将频率响应转换为时域脉冲响应序列。

最后通过插值等方法得到滤波器的离散时间序列。

综上所述,滤波器的设计方法包括频域设计方法和时域设计方法。

滤波器的设计流程与步骤

滤波器的设计流程与步骤滤波器是一种电子器件或电路,用于改变信号的频率特性。

在电子领域,滤波器被广泛应用于信号处理、通信系统、音频设备等方面。

设计一个滤波器需要遵循一定的流程与步骤,本文将介绍滤波器设计的一般流程,并详细探讨每个步骤的具体内容。

第一步:需求分析在滤波器设计之前,首先需要明确设计滤波器的需求。

这包括确定滤波器的类型(如低通、高通、带通、带阻等),频率范围、阻带衰减要求、插入损耗限制等。

需求分析阶段的目标是明确设计滤波器所需的功能和性能规格。

第二步:选择滤波器结构根据需求分析的结果,根据不同的滤波器类型和频率范围,选择适合的滤波器结构。

常见的滤波器结构包括RC滤波器、LC滤波器、激励响应滤波器、数字滤波器等。

选择滤波器结构时需要综合考虑设计的难度、性能指标和实际应用需求。

第三步:确定滤波器规格在选择滤波器结构后,需要进一步确定滤波器的规格。

这包括确定滤波器的阶数、各个截止频率的具体数值、通带和阻带的设定等。

可以利用相关的数学模型、理论计算或者实验手段来确定滤波器规格。

第四步:设计滤波器设计滤波器是滤波器设计流程的核心步骤。

根据滤波器的结构和规格,运用电路理论、数学模型等手段进行滤波器的具体设计。

这包括计算和选择滤波器元件的数值、确定元件的合适布局和连接方式,以及优化设计,以满足设计要求。

第五步:仿真与分析在设计完成后,进行滤波器的仿真和分析是十分重要的。

这可以通过使用模拟电路仿真软件、信号处理工具等进行。

通过仿真结果,可以评估滤波器的性能是否满足设计要求,并进行必要的调整和优化。

第六步:原型制作与测试设计完成后,需要制作滤波器的实际原型,并进行测试和验证。

这可以通过PCB设计和制作、元器件的选取和组装等方式完成。

通过实际测试,可以验证滤波器的性能指标,并进行必要的调整和改进。

第七步:性能验证与优化通过对原型滤波器的测试结果进行分析和评估,可以判断滤波器是否满足设计要求。

若不满足,则需要针对具体问题进行调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四十二 电力电子电路滤波器设计(信号与系统—电力电子学综合实验)一、实验原理1. 滤波器及种类滤波器是由集中参数或分布参数的电阻、电感和电容构成的网络,把叠加在有用信号上的噪声分离出来。

采用滤波的方法,就是不阻止具有有用频率的工作信号通过,而衰减非工作信号的干扰的频率成分。

从信号频谱分析的原理上说,滤波器就是压缩或降低干扰信号的频谱(通常远高于信号频谱),使传导出去的干扰值不超过规范要求的限值。

滤波技术是抑制电气、电子设备传导电磁干扰的重要措施之一。

用无损耗的电抗元件构成的滤波器能阻止噪声通过,并把它反射回信号线;用有损耗元件构成的滤波器能将不期望的频率成分吸收掉。

在抗干扰和滤除高频信号的情况下常用低通滤波器。

滤波器对抑制感性负载瞬变噪声有很好的效果;电源输入端接入一定结构形式的滤波器后能降低来自电网的干扰和谐波,或抑制来自电力电子装置的干扰和谐波对电网的侵害。

设计滤波器时,必须注意电容、电感等元器件的寄生特性(如电感的寄生电容和电容的寄生电感等),以避免滤波特性偏离预期值。

在滤波电路中,通常还采用很多专用的滤波元件,如穿心电容、铁氧体磁环等(特别适合于高频滤波场合),它们能改善滤波器的高频特性。

适当地设计或选择滤波器,并正确安装和使用滤波器,是电力电子技术和抗干扰技术的重要组成部分。

滤波器分有源和无源两种。

本实验主要研究无源滤波器的设计和应用。

滤波器按类型一般分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器、吸收滤波器、有源滤波器和专用通滤波器。

滤波器按电路一般分为单容型(C型)、单电感型(L 型)、Γ型、反Γ型、T型和 p 型。

不同结构的电路合适于不同的源阻抗和负载阻抗。

选择滤波器的原则,一般根据干扰源的特性、频率范围、电压和阻抗等参数及负载特性的要求综合考虑:(1). 要求电磁干扰滤波器在相应工作频段范围内,能满足负载要求的衰减特性,若一种滤波器衰减量不能满足要求时,则可采用多级联,可以获得比单级更高的衰减,不同的滤波器级联,可以获得在宽频带内良好衰减特性。

(2).要满足负载电路工作频率和需抑制频率的要求,如果要抑制的频率和有用信号频率非常接近时,则需要频率特性非常陡峭的滤波器,才能满足把抑制的干扰频率滤掉,只允许通过有用频率信号的要求。

(3).在所要求的频率上,滤波器的阻抗必须与它连接的干扰源阻抗和负载阻抗相匹配。

如果负载是高阻抗,则滤波器的输出阻抗应为低阻抗;如果电源或干扰源阻抗是低阻抗,则滤波器的输出阻抗应为高阻抗;如果电源阻抗或干扰源阻抗是未知的或者是在一个很大的范围内变化,很难得到稳定的滤波特性,为了获得滤波器具有良好的比较稳定的滤波特性,可以在滤波器输入和输出端,同时并接一个固定电阻。

(4).滤波器必须具有一定耐压能力,要根据电源和干扰源的额定电压来选择滤波器,使它具有足够高的额定电压,以保证在所有预期工作的条件下都能可靠地工作,能够经受输入瞬时高压的冲击。

(5).滤波器允许通过应与电路中连续运行的额定电流一致。

若电流远比电路额定电流高,将加大滤波器的体积和重量;若很低,又将导致滤波器的可靠性降低。

(6).滤波器应具有足够的机械强度,结构简单、重量轻、体积小、安装方便,安全可靠。

2. 滤波器的结构形式常用的无源无损滤波器(LC 滤波器)的结构形式有LC 型、LT 型、T 型和π型等,如图42-1~图42-4所示。

(1) LC 型LC 型滤波器是电力电子电路中最常见的滤波器结构。

其中“源”指噪声源或干扰源,“负载”指需要滤波的网络。

当电路的输入电源中含有噪声或谐波信号时,为了在接入实际电路时不让这些噪声或谐波信号影响电路工作,应将“源”端接输入电源,“负载”端接实际电路的输入端,即通过滤波器将电源中的噪声或谐波信号滤除;而当所研究的电路中存在很大的噪声或谐波信号时,例如二极管构成的桥式整流电路所产生的电流谐波,或Buck 电路产生的以开关频率脉动的电压和电流纹波,为了不让这些噪声或谐波信号流入电源污染电网,应将“源”端接产生谐波的装置/电路(例如不控整流桥),“负载”端接电路的输入电源(电网),以滤除电路产生的谐波。

图中箭头指示了谐波路径。

(2) CL 型当将滤波器的“源”端接产生谐波的装置/电路,“负载”端接电路的输入电源时,实际接法为如图42-2所示的CL 型。

(3) T 型当电源和电路中都含有噪声和谐波时,均需要滤波。

将图42-1和图42-2结合起来,就构成了T型滤波器,可以同时抑制来自电源和电路侧的噪声和谐波信号。

即滤波器的“源”端既可以接电源,图42-1 LC 型 源负载图42-2 CL 型 源负载图42-3 T 型源负载也可以接电路;而“负载”端也同样如此。

(4) π型采用LC/LT 型滤波器时,往往由于源与滤波器端阻抗的不匹配导致电路在某一频率下和电路中其它元件产生谐振,影响电路的正常工作。

因此,通常在滤波器“源”或“负载”端再增加一个滤波电容,改变滤波器入端的阻抗,即构成π型滤波电路。

来自“源”或“负载”的噪声先经过低阻抗的滤波电容回路,再进入LC 型滤波电路。

同样,这样的滤波电路也可以同时抑制来自电源和电路侧的噪声和谐波信号,来自“源”的噪声信号的路径如图42-4中的实心箭头所示,而来自“负载”端的噪声信号的路径如图中的空心箭头所示。

3. 滤波器的设计路需要传递的正常工作信号而言,谐波和噪声信号都是高频信号,因此波器一般分为低频滤波器(Hz ~KHz )和高频滤波器(KHz ~MHz ,甚至GHz 对于电力电子电电力电子电路中使用的滤波器均为低通滤波器,只是频率不同。

频率比较低的无用信号通常称为谐波,而频率比较高的通常称为噪声。

一般情况下,将这些无用信号统一称为噪声。

因此,滤)。

设计时一般按照LC 滤波器设计,其频率特性为: 11)(=j G ω 2+LC ω (42-1)对于低通滤波器,ω的值通常比较大,因此上式可以近似为:LCf LC j G ω11)(=≈ πω2 (42-2) 选择合适的L 、C 值,使上式在设定的最低噪声频率下衰减所需要的倍数,就是滤波器波是不可能的,只能抑制噪声或谐波信号的幅值以流或50Hz 交流信号,因此电源滤波器通常是低频滤波器。

它的设计由于电路电流滞后于电压,电路呈感性,往往提供电容也的基本设计原则。

公式中有L 、C 两个参数可变动,通常L 不宜取大,过大容易造成磁通饱和,或体积过大。

一般按照体积重量和工作电流确定合适的L 后,通过C 来使滤波器具有尽可能大的信号衰减幅度。

从频率特性上看,完全滤除噪声或谐不超过指标限制值,而同时尽可能对正常信号不造成大的衰减。

(1) 电源滤波器由于电源通常为直原则是:对于直流电源而言需滤除电源中的交流纹波成分,对于50Hz 交流电源,则应滤除高于此频率的所有高次谐波成分。

通常电源滤波器中还含有高频滤波器,以便同时抑制电力电子电路产生的高频噪声成分。

设计原则依照式(42-2)。

在晶闸管调压等电路中,图42-4 π型 源负载能起是以开关频率脉动的,在这类变换器的滤波器设计中,压纹波尽可能小)的同时,在不需要面以单端正激变换器为例说明此类滤波器的设计[1]。

本设计假定变压器磁通完全复位DC/DC 电压源,输出滤波器的LC 要平滑二极管阴极的电压。

电感波电感的设计:流i 降为零到很好的滤波效果。

这时的滤波器仅为一个电容,称为C 型滤波电路。

(2) PWM 变换器输出滤波器PWM 变换器中,电流和电压都不要求对电压和电流同时达到无纹波的滤波效果,否则滤波器参数过大,不仅会导致成本高,而且将导致滤波延迟过大而使系统不稳定。

其设计原则是:兼顾变换器指标(例如电压源需要电变换器正常工作的前提下(例如电感电流连续),允许其它指标存在一定限度内的脉动。

下,无磁路闭合现象。

由于单端正激变换器为的选择应能够使最小直流输出负载电流下,仍能保持电感电流连续。

电容的选择,则应满足变换器作为电压源的指标要求,即输出纹波抑制在规定的最小输出电压纹波以内。

输出滤 如图42-5,当电感电L 时,开始进入不连续状态。

由于直流输出电流(负载电流)为斜坡中点值:22min max L I I I I 0Δ=−= 故不连续状态在最小电流等于mino I 电流变化量的一半:min 2o L I I =Δ (42-3)根据电感上电压与电流的关系:L dtmin o L I dI U dI L= (42-4) 2I =Δ=,式中,on T DT dt ==,0V V U rk L −=。

即电感电流流入端的电位;为变换器输出端电压,即电rk 感电流流出端的电位。

根据(42-4),有: V 是直流二极管阴极处的电位,0V 图42-5 LC 滤波器中电流与电压波形关系 LT V V I rk o (2min on )0−=(42-5) 或 min02)(o on rk I T V V L −=(42-6) 电流连续时,由于,则有: T T V V on rk /0=minmin 2)1/(2)(o on on o o on t o on o I t t T V I V t T V L −=−= (42-7) 对于单端正激变换器,5.0<on t ,设2/8.0T t on =,所以 min3.0o o I T V L = (42-8) 而当最小直流输出负载电流为额定电流的10%时(通常的设计值),则 N I N o I T V L 3=(42-9) 输出滤波电容的设计:由滤波电容的等效串联电阻决定[1]。

纹波电压总幅值为输出电压纹波几乎完全or V I ,其中,R o ΔI Δ是所选电感斜坡电流的峰-峰值,见图42-5。

设对于很宽的耐压范围范围的铝解电容,o o C R 的平均值为61065−×=o o C R ,所以有和容值电oro o V I ΔR C ×=−610656 (42-10) 类似设计例子还有Buck 变换器的滤波器设计,参见实验三十六“电力电子电路闭环控(3)备,由于其进行电能变换时的高效率而在许多行业得到使电力电子装置跨入高频化、大容量化心的电力电子装置正广泛应用于以电子计相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,用途极其广泛。

但开关电源的突出缺点是产生较强的电磁干扰(EMI )。

EMI=×−6/105 (F) 制(稳态分析))的附录部分。

其它变换器的滤波器设计可类似推导。

电磁干扰(EMI )滤波器电力电子装置作为电源与控制设了广泛的应用,目前正以突飞猛进的速度走向信息时代,在电脑产业、家电行业、通讯等方面的应用使其成为信息产业的重要支撑。

80年代后期,功率场控器件的实用化和高频化,的时代。

由于电力电子装置换流过程中产生前后沿很陡的脉冲(di/dt 可达1A/ns ;dv/dt 可达3V/ns ),从而引发了严重的电磁干扰。

相关文档
最新文档