高效晶硅太阳能电池生产的前沿技术介绍
晶体硅太阳能电池技术发展方向PPT精选文档

这个电池结构的特 点是表面电极通过化学 镀埋在硅衬底的沟槽里 ,电极与沟槽接触部位 采用重掺杂,表面的其 它地方进行淡磷扩散。
上海太阳能工程技术研究中心
Page 12
晶体硅太阳能电池的技术发展趋势—高效化
埋栅电池具有高效的原因是: (1)绒面、减反射膜和背面反射器的结合使太阳光充分被利用; (2)栅指电极只占电池表面积2~4%,遮光率很小,提高短路电流密度; (3)栅指电极排列紧密减小发射极电阻; (4)淡磷扩散避免形成“死层”,增加对短波的吸收; (5)埋栅电极处实行重掺杂使接触电阻降低,有利于欧姆接触; (6)埋栅电极深入到硅衬底内部增加对基区光生电子的收集; (7)浓磷扩散降低浓磷区电阻功耗和栅指电极与衬底的接触电阻功耗,提高
实验室最好效率: =21.2%,面积100cm×100cm
上海太阳能工程技术研究中心
Page 14
晶体硅太阳能电池的技术发展趋势—高效化
HIT电池具有高效的原理是: (1)全部制作工艺都是在低温下完成,有效地保护载流子寿命; (2)双面制结,可以充分利用背面光线; (3)表面的非晶硅层对光线有非常好的吸收特性; (4)采用的n型硅片其载流子寿命很大,远大于p型硅,并且由于硅片较薄,
用限边喂膜法进行大批量生产时, 应满足的主要技术条件为:①采用自动 控制温度梯度、固液交界的新月形的高 度及硅带的宽度等,以有效地保证晶体 生长的稳定性。②在模具对硅料的污染 方面进行控制。
上海太阳能工程技术研究中心
Page 27
晶体硅太阳能电池的技术发展趋势—薄片化
②枝蔓蹼状(WEB)带硅技术
在表面张力的作用下,插在熔硅中的两条枝蔓晶的中间会同时长 出一层如蹼状的薄片,所以称为蹼状晶。切去两边的枝晶,用中间的 片状晶制作太阳电池。蹼状晶为各种硅带中质量最好,但其生长速度 相对较慢。 ③Delaware大学多晶片状硅制造技术
高效晶体硅电池技术综述

高效晶体硅电池技术综述以及商业化现状摘要:太阳能、风能、水能等清洁能源随着能源危机的初现端倪已经越来越为人们所重视和提倡,能源问题已经成为制约国家经济发展的重要战略问题。
其中太阳能不论从资源的数量、分布的普遍性、技术的成熟度和对环境的影响都体现出巨大的优势。
光伏发电也逐渐从传统发电的补充能源形式过渡到替代能源形式。
这当中发电成本始终是制约推广的首要因素。
寻求新技术、新材料、新工艺,以提高太阳电池转换效率,大幅度降低生产成本是整个光伏行业面临的紧迫课题。
晶体硅电池是目前商业化程度最高,制备技术最成熟的太阳能电池。
以晶体硅技术为基础,着力于降低生产成本,提高发电效率的高效晶体硅电池研发始终是国际光伏领域研究的热点之一。
本文旨在从影响常规晶体硅电池转换效率的几个可能方面出发,简介目前欧美,日本等光伏技术发达国家以及业界几种较为流行的高效晶体硅制备技术及其商业化现状。
关键词:高效、晶硅、太阳能电池、光伏发电前言太阳能光伏发电是太阳能利用的一种重要形式,随着技术不断进步,光伏发电成为最具发展前景的发电技术之一。
光伏发电的基本原理为半导体的光伏效应,即在太阳光照射下产生光电压现象。
20世纪50年代,美国贝尔实验室三位科学家首次研制成功具有实用价值的单晶硅太阳电池,诞生了将太阳的光能转换为电能的实用光伏发电技术,在太阳电池发展史上起到了里程碑的作用。
太阳能电池主要有两大类,一类是以单晶硅和多晶硅硅片为基础的晶体硅太阳能电池;另一类是非晶硅、铜铟硒和碲化鎘薄膜太阳能电池等。
晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池,至2009年止超过90%,薄膜太阳电池市场占有率不足10%[1]。
晶体硅太阳能电池在可预见的未来仍将占主导地位。
现行光伏发电技术推广的最大制约因素是发电成本,围绕降低生产成本的目标,以高效电池获取更多的能量来替代低效电池一直是科学研究的热门课题之一。
近年来高效单晶硅太阳能电池研究已取得巨大成就,在欧美,日本等商业化高效电池的转换效率已超过20%。
太阳能光伏技术研发及应用现状与前沿

太阳能光伏技术研发及应用现状与前沿太阳能光伏技术是当前最为热门的新能源技术之一,在世界范围内得到了广泛应用和推广。
以下为太阳能光伏技术的研发及应用现状与前沿的相关参考内容:1. 研发现状(1)晶薄太阳能电池技术晶薄太阳能电池技术是近年来快速发展的一种新型电池技术,其具有体积小、重量轻、柔性好、透明性高等优点,在建筑物、交通工具等领域有广泛应用前景。
(2)高效太阳能电池技术高效太阳能电池技术是目前太阳能光伏技术研发的热点之一,主要集中在晶体硅太阳能电池与薄膜太阳能电池等方面。
研究人员通过材料优化、外延生长技术、光学设计等手段,不断提高太阳能电池的转化效率和稳定性,使其在实际应用中具有更高的性价比和可靠性。
(3)钙钛矿太阳能电池技术钙钛矿太阳能电池技术是一种新兴的太阳能电池技术,在高效性和较低生产成本方面具有潜在优势。
目前研究人员已经通过材料改进和制备工艺优化等措施,使得钙钛矿太阳能电池的转化效率逐步提高,并在实验室条件下达到了超过25%的高效率。
2. 应用现状(1)太阳能光伏电站太阳能光伏电站是目前太阳能光伏技术最为成熟的应用之一,其集中式装置能够实现大规模电力供应,具有内部化风险少、经济效益高等优点。
目前全球已建成的太阳能光伏电站已经突破1000GW,其中新能源光伏发电占比逐年增大。
(2)户用太阳能光伏发电系统户用太阳能光伏发电系统是近年来得到广泛应用的分布式光伏电站,其具有方便快捷、灵活可调等优点,能够满足家庭、企事业单位等不同需求的供电需求。
目前,我国已建成众多的户用太阳能光伏发电系统,为新能源的普及和推广做出了重要贡献。
3. 应用前沿(1)光伏-储能技术光伏-储能技术是近年来新兴的技术热点之一,其能够解决光伏电站存在的间歇性供电问题,提高太阳能的利用效率和经济效益。
目前,光伏-储能技术已经在我国多个城市实现了应用,并取得显著成效。
(2)可穿戴太阳能光伏设备可穿戴太阳能光伏设备是太阳能光伏技术应用的新型领域,包括太阳能手表、太阳能背包、太阳能充电宝等多种应用形式。
晶体硅太阳电池制造技术

晶体硅太阳电池制造技术
晶体硅太阳能电池是目前应用最广泛的太阳能电池之一,其制造技术主要包括以下几个步骤:
1. 制备硅单晶材料:通过在高温环境下,将硅原料(通常为冶炼硅或多晶硅)融化并凝固形成硅单晶,然后切割成薄片。
2. 清洁处理:将硅单晶薄片进行严格的清洁处理,去除表面的杂质和有害物质。
3. 电池片制造:将清洁处理后的硅单晶薄片进行P型和N型掺杂,形成PN结构。
这一步骤一般采用扩散法、离子注入法或液相浸渍法。
4. 捕获和反射层涂覆:在电池片的前表面涂覆反射层,以提高光的利用率。
同时,在电池片的背面涂覆捕获层,以提高光的吸收。
5. 金属化和焊接:将电池片表面涂覆导电金属(通常为铝)和更薄的阳极面涂覆导电金属(通常为银),然后使用焊接技术将电池片连接成电池组。
6. 封装和测试:将电池组封装在透明的玻璃或塑料基板中,以保护电池组不受外界环境的影响,并进行电气性能测试和质量控制。
这些步骤是晶体硅太阳能电池制造的基本流程,具体制造技术还有其他细节和改进方法,以提高电池的效率和稳定性。
晶硅太阳能电池介绍

晶硅太阳能电池介绍晶体硅太阳能电池(也称为硅片太阳能电池)是一种常见且广泛应用于太阳能领域的太阳能转换技术。
它是利用硅片材料对光能的吸收和转化来产生电能的一个过程。
晶体硅太阳能电池主要由硅片、电极、导线和其他附件组成。
硅片是电池的核心部分,也是光能的主要转换区域。
硅片可分为单晶硅、多晶硅和非晶硅三种。
其中,单晶硅最为常见和普遍,它的晶格排列非常有序,电池效率相对较高。
晶体硅太阳能电池的工作原理主要涉及光电效应和PN结。
当光照射到硅片上时,光子会将电子从硅原子中激发出来,使其跃迁到空导带中,形成电流。
此时,硅片的一个表面被掺杂为N型导电层,另一个表面被掺杂为P型电导层,两者之间形成了一个PN结。
当光照射到PN结上时,电子会从N型区域流入P型区域,产生电流,同时产生电压差。
这样就完成了光能到电能的转换。
晶体硅太阳能电池的优点主要有以下几个方面:1.高效率:晶体硅太阳能电池的转换效率相对较高,可以达到20%以上,甚至高达25%。
2.长寿命:晶体硅太阳能电池的使用寿命可以达到25年以上,因此使用寿命较长,可以有效降低运维成本。
3.稳定性:晶体硅太阳能电池的稳定性较好,能够在不同环境条件下保持较高的转换效率。
4.良好的可靠性:晶体硅太阳能电池的可靠性较高,能够适应复杂多变的气候条件和环境。
5.可制造成各种形状和尺寸:晶体硅太阳能电池可以根据需求进行灵活制造,可以制作成不同形状和尺寸的太阳能板。
不过,晶体硅太阳能电池也存在一些局限性:1.成本较高:晶体硅太阳能电池的生产成本相对较高,需要较高的投资。
尽管随着技术不断进步,成本正在逐渐降低,但仍然有一定程度的限制。
2.对光强度和温度的敏感性:晶体硅太阳能电池对光强度和温度的变化较为敏感,在光强度较低或温度较高的环境下,效率会有所降低。
3.制造过程对环境的影响:晶体硅太阳能电池的生产过程中需要使用一定数量的能源和化学物质,可能会对环境造成一定的影响。
综上所述,晶体硅太阳能电池是一种广泛应用于太阳能领域的高效太阳能转换技术。
高效晶体硅太阳能电池介绍

高效晶体硅太阳能电池介绍高效晶体硅太阳能电池是目前市场上最为常见和广泛应用的一种太阳能电池。
它的高效性和可靠性使其成为太阳能发电领域的主要选择。
本文将介绍高效晶体硅太阳能电池的原理、制造过程、优点和应用领域,并探讨其未来的发展趋势。
高效晶体硅太阳能电池是由单晶硅或多晶硅制成的。
其原理基于光伏效应,即将太阳能转化为电能。
当光线照射到太阳能电池板上时,光子与半导体材料中的电子发生相互作用,激发电子跃迁到导带。
通过电子与空穴的复合,电荷被释放出来,形成电流,最终产生电能。
制造高效晶体硅太阳能电池的过程通常由几个关键步骤组成。
首先,需要从硅矿石提取原始硅材料,并通过化学方法将其转化为硅粉。
然后,硅粉与其他材料混合均匀,形成硅溶胶。
接下来,将硅溶胶涂覆在导电玻璃或衬底上,并将其烘干,形成硅膜。
最后,通过加热和连续处理,将硅膜转化为晶体硅太阳能电池。
高效晶体硅太阳能电池具有许多优点。
首先,它们具有较高的转换效率,通常在15%至25%之间。
这意味着电池可以将大部分太阳能转化为电能,提高能源利用效率。
其次,晶体硅太阳能电池寿命长,可持续使用25年以上。
此外,它们对光强的响应较好,即在弱光条件下仍能产生较高的电能输出。
最后,高效晶体硅太阳能电池的制造工艺相对成熟和稳定,成本相对较低。
高效晶体硅太阳能电池在各个领域都有广泛的应用。
在家庭屋顶和建筑物上安装太阳能电池板,可以将太阳能转化为电能,用于供电、照明和暖气等。
此外,高效晶体硅太阳能电池也广泛应用于太阳能电池板、太阳能电池组件、充电设备和太阳能灯等产品。
随着对可再生能源和环境保护的关注度不断增加,高效晶体硅太阳能电池的未来发展前景十分广阔。
为了提高其转换效率,研究人员正在不断改进太阳能电池设计和材料。
例如,人们正在研究如何改进波长选择器,以优化太阳能电池对不同波长的光线的吸收和利用效率。
此外,研究人员还在探索新型材料,如钙钛矿材料,以提高太阳能电池的效率和稳定性。
太阳能电池技术的新进展和未来发展趋势

太阳能电池技术的新进展和未来发展趋势太阳能电池是一种将太阳能转化为电能的设备,被广泛应用于领域如太阳能发电、户外装备以及移动设备等。
近年来,太阳能电池技术取得了显著的进展,不断推动了清洁能源的发展。
本文将探讨太阳能电池技术的新进展以及未来的发展趋势。
首先,太阳能电池技术的新进展之一是多晶硅电池和单晶硅电池的技术改进。
多晶硅电池是目前最常用的太阳能电池类型,其成本相对较低,但效率相对较低。
通过引入新的工艺和材料,研究人员成功地提高了多晶硅电池的效率。
而单晶硅电池则以其更高的效率和较低的光衰减而备受瞩目。
近年来,单晶硅电池的制造成本也在逐渐降低,使其更具竞争力。
其次,新兴的太阳能电池技术也在不断涌现。
其中一种重要的技术是钙钛矿太阳能电池。
钙钛矿太阳能电池具有高效率、低成本、可调制颜色和柔性等优点,被认为是下一代太阳能电池的候选。
目前,钙钛矿太阳能电池的效率已经超过了多晶硅电池,但其稳定性和寿命仍需要进一步提高。
研究人员正在不断改进材料和工艺,以解决这些问题。
另一个新兴技术是有机太阳能电池。
有机太阳能电池采用有机半导体材料,具有较低的成本、柔性和颜色可调性等特点。
然而,目前有机太阳能电池的效率还相对较低,且稳定性较差。
研究人员正在致力于提高有机太阳能电池的效率和稳定性,同时降低其制造成本,以便实现大规模商业化应用。
除了技术改进,太阳能电池的未来发展趋势还体现在材料研究和工艺创新方面。
随着对可持续发展的需求增加,研究人员正在寻找更环保和可再生的材料用于太阳能电池的制造。
例如,钙钛矿材料是一种丰富、廉价的材料,具有很高的光吸收系数,因此备受关注。
此外,新型材料如钙钛矿材料的研究也为太阳能电池提供了更多的选择。
与此同时,工艺创新也在推动太阳能电池技术的发展。
通过引入新的制造工艺和设备,生产商能够降低成本、提高效率,并实现太阳能电池的大规模生产。
例如,近几年来,有机太阳能电池中的印刷技术和喷墨打印技术等新的制造工艺得到了广泛应用,大大降低了制造成本。
p_型TOPCon_技术及其在高效晶体硅太阳电池应用的研究进展

太 阳 能第12期 总第356期2023年12月No.12 Total No.356 Dec., 2023SOLAR ENERGY0 引言2022年1月,习近平总书记指出,要把促进新能源和清洁能源发展放在更加突出的位置,积极有序发展光能源、硅能源、氢能源、可再生能源。
基于晶体硅太阳电池等应用方向的硅能源(即光伏发电技术)将成为支撑碳中和战略目标的主要清洁能源之一。
过去10多年,晶体硅太阳电池的量产光电转换效率以每年0.5%~0.6%的速度提升;而从2006年至今,光伏组件则以累计出货量每翻1倍其价格就减少39.5%的速度下降[1]。
国际光伏技术路线图(ITRPV)(第13版)[1]指出:硅太阳电池仍是未来10年光伏发电的主导技术。
根据国家发展和改革委员会的预计,2050年光伏发电量将占中国总用电量的40%[2]。
因此,提升晶体硅太阳电池的光电转换效率、降低其生产成本对增强光伏发电的竞争力,促进中国能源结构转型具有重大意义。
据德国弗劳恩霍夫太阳能研究所(Fraunhofer-ISE)的预测,钝化接触技术具有将太阳电池量产光电转换效率提升至25%~26%的潜力,代表量产晶体硅太阳电池的发展方向。
隧穿氧化硅钝化接触(TOPCon)技术是一种典型的钝化接触技术,其特征是采用超薄氧化硅和重掺杂多晶硅,同时实现优异的表面钝化和载流子选择性收集,避免金属与硅的复合损失[3]。
德国哈梅林太阳能研究所(ISFH)的研究表明:如果采用结合钝化与接触两个关键性能的选择性因子S10来评判晶体硅太阳电池技术的优劣[4],TOPCon太阳电池技术在各项技术中具有最佳的选择性因子,拥有最高理论光电转换效率,是一种可迭代升级、具有长生命周期的技术[5]。
德国ISFH开发出了实验室光电转换效率达到26.1%的概念验证型pDOI: 10.19911/j.1003-0417.tyn20220920.02 文章编号:1003-0417(2023)12-36-11p型TOPCon技术及其在高效晶体硅太阳电池应用的研究进展曾俞衡*,林 娜,刘 伟,闫宝杰,夏庆锋,叶继春(中国科学院宁波材料技术与工程研究所,宁波 315201)摘 要:隧穿氧化硅钝化接触(TOPCon)晶体硅太阳电池被广泛认可为下一代高效太阳电池技术,n型TOPCon技术已成为当前新上生产线的主流方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效晶硅太阳能电池生产的前沿技术介绍系列之
————SE电池技术
序言:
太阳能电池产品能够普及的关键是低成本发电。
当光伏发电成本与传统能源持平甚至低于传统能源的时候,太阳能电池产品将不依赖于政府的补贴,得以在民众中普及推广。
低成本的实现途径包括光电转化效率提高、生产成本下降及组件寿命提升三方面。
提高太阳能电池光电转换效率一直是光伏行业工艺研发人员的工作重点,近年来发展起来的高效晶硅太阳能电池前沿技术包括:SE选择性发射电极技术、MWT技术、EWT 技术、HIT技术、表面钝化技术、IBC技术、LBSF技术、黑硅技术、双面电池技术、二次印刷技术等。
虽然,到目前为止,上述太阳能电池前沿技术的生产成本还很难与常规电池工艺匹敌,无法实现大批量生产。
但是,低成本光伏产品的爆炸式发展将依赖于太阳能电池新工艺技术的革新。
因此,我计划对目前世界范围内研发的高效晶硅太阳能电池前沿技术进行一个系列介绍,以便于我司技术人员了解晶硅太阳能电池行业的技术动态,拓展思维方式。
本期将首先介绍SE选择性发射电极技术。
一、SE电池技术介绍
SE电池技术即选择性发射极(SE-selectiveemiter)技术,即在金属栅线(电极)与硅片接触部位进行重掺杂,在电极之间位置进行轻掺杂。
这样的结构可降低扩散层复合,由此可提高光线的短波响应,同时减少前金属电极与硅的接触电阻,使得短路电流、开路电压和填充因子都得到较好的改善,从而提高转换效率。
其电池结构示意图如图1所示:
图1:SE电池与传统电池结构比较
二、SE结构电池的优点
1、降低串联电阻,提高填充因子
在丝网印刷工艺下,前栅接触电阻、体电阻和扩散层薄层电阻对串联电阻贡献最大。
根据金属-半导体接触电阻理论,接触电阻与金属势垒(barrierheight)和表面掺杂浓度(Nb)有关,势垒越低,掺杂浓度越高,接触电阻越小。
2、减少载流子Auger复合,提高表面钝化效果
当杂质浓度大于1017cm-3时,Auger复合是半导体中主要的复合机制,而Auger复合速率与杂质浓度的平方成反比关系,所以SE的浅扩散可以有效减少载流子在扩散层横向流动时的Auger,提高载流子收集效率。
3、改善光线短波光谱响应,提高短路电流和开路电压
对于AM1.5G而言,月20%能量的入射光的吸收发生在扩散层内,所以浅扩散可以
提高这些短波段太阳光的量子效率,提高短路电流;同时,由于存在一个横向的(n++-n+)
高低结,和传统结构相比,还可提高开路电压。
三、SE电池的实现方案
SE电池技术的关键是实现掺杂区域的选择性,即在电极浆料印刷区域实现重掺杂,
而在电池片受光区域实现轻掺杂。
根据公开文献资料,目前实现SE选择性发射电极技
术的工艺路线主要有以下几类:
(1)印刷磷浆(云南师范大学研究工艺)
由云南师范大学研究出来的SE工艺,其工艺流程如下:
制绒→浅扩散→印刷磷浆→重扩散→洗磷→PECVD→印刷烧结→测试包装
该工艺路线的优点是工艺流程简单,成本相对较低;缺点是磷浆容易挥发,选择效果不佳,光电转换效率提升有限。
(2)腐蚀扩散掩膜层(南京中电工艺)
由南京中电赵建华博士开发出来的SE电池工艺,其工艺流程如下:
制绒→氧化硅层→印刷磷浆→腐蚀模板→清洗浆料→重扩散→洗磷→二次浅扩→洗磷→PECVD→印刷烧结→测试包装
该工艺路线的优点是掺杂区域的选择性较好,转换效率提升较多;缺点是其源于芯片制作工艺,工艺流程复杂,扩散均匀性较难控制,生产成本较高。
(3)直接印刷掩膜层(schmid,centrotherm工艺)
由太阳能设备厂家schmid及centrotherm开发的SE电池工艺,其工艺流程如下:
制绒→印刷掩膜→重扩散→清洗掩膜→二次浅扩→洗磷→PECVD→印刷烧结→测试包
装
该工艺路线的优点是相对南京中电SE工艺,其工艺步骤简单;困难在于扩散均匀性以及印刷对齐较难控制。
(4)硅墨技术(Innovalingt,OTB工艺)
由杜邦Innovalingt以及OBT研究开发的硅墨技术实现SE电池工艺,其工艺流程如下:
制绒→扩散→洗磷→PECVD→印刷背极→印刷背场→硅墨印刷→硅墨烘干→印刷栅线→测试包装
该工艺路线的特点是只需增加一台印刷机,就可实现较大幅度的效率提升。
在现有
工艺设备基础上也容易升级。
(5)LDSE技术(新南威尔士大学技术)
新南威尔士大学开发的SE电池技术,其工艺流程如下:
制绒→轻扩散→PECVD→喷磷源→激光扩散→电镀→烘干烧结→测试包装
该工艺路线的特点是用到激光和电镀,工序多,工艺复杂。
电镀有多种选择。
电镀的银的导电性约是银浆的10 倍。
可以节省贵金属。
用镍铜银,或镍铜锡结构,可以省掉贵金属。
可以把栅线做的很密很细,或其他优化结构。
上述工艺路线无一不涉及到印刷对准问题,即选择性发射极掺杂之后,怎样保证印刷或者电镀的电极图案能够准确的与重掺杂区域重合?这是所有SE电池工艺都需要解决的工艺设备问题。
四、我司实施SE电池的可能性
从所有公开的SE电池工艺资料介绍来看,每一种SE电池工艺均需要高昂的设备成本投入,并且其电池生产成本比常规工艺较高。
除非专门生产某些特殊要求的高效电池片,否则实施SE电池可行性不高。
但是,一种新的实施SE电池工艺的概念值得关注,即在印刷银浆中添加掺杂元素,利用高温烧结过程实现电极区域的选择性二次扩散。
该方法与硅墨技术基本相似,但相对更加简单,不需要额外设备投资,并且很好的解决了印刷对准问题。
但是该方法依赖于新浆料的研发,并且烧结过程中掺杂元素挥发导致的环境问题以及浆料中掺杂元素挥发残留的气孔降低电极导电性能的问题是一个难题。