频率特性法

合集下载

频率特性法

频率特性法

§5-2
一、幅相频率特性
1、代数形式
频率特性表达方法
即极坐标图,也称为 Nyquist 图
G( j) P() jQ()
2、指数形式
由G ( j ) A( )e j ( )
3、幅相特性表示法 极坐标图形式
二、对数频率特性 即 Bode 图
G ( j ) A( )e j ( ) A( ) P 2 ( ) Q 2 ( ) Q ( ) P ( )
对数幅频特性绘在以 10 为底的对数坐标中,幅值的对数值用分贝(dB)表示
L() 20lg A()
纵轴是 L(w),横轴实际上是 lgw,由于是用 w 标注,所以又转化成 w 的值,这使得每一单位 的 w 增加量为 10 倍,这 10 倍频记为 dec。横轴的起点不为 0。.
§5-3
一、比例环节
2 2
1 T
1
L( ) 20 lg A( ) 20 log 1 20 lg (1 2T 2 ) (2T ) 2
六、时滞环节或延迟环节
传递函数 : G ( s) e s j 频率特性 : G ( j )e 幅频特性 : A( ) 1 相频特性 : ( ) G ( j ) cos j sin e j cos j sin G ( j ) 1
积分环节的对数频率特性
四、微分环节
G (s) s G ( j ) j 代数式 G ( j ) j 0 j 指数式 G ( j ) j 90
L( w) 20 lg | G( jw) | 20 lg w G( jw) 90
理想微分环节的副相频率特性
五、振荡环节(0<§<1)

§5-2 频率特性的几种表示方法

§5-2 频率特性的几种表示方法

波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
...
0
2
1
0.01
0 .1
幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
83.1610来自5.621510.0
20
增益 0
5
使用对数坐标图的优点: 可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。 三、 对数幅相特性曲线(又称尼柯尔斯图) 尼柯尔斯图是将对数幅频特性和相频特性两条曲线合并成 一条曲线。横坐标为相角特性,单位度或弧度。纵坐标为对数 幅频特性,单位分贝。横、纵坐标都是线性分度。
第二节 频率特性的几种表示方法
1
频率特性可以写成复数形式: ( j ) P( ) jQ( ) ,也可 G 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, ( ) 为虚频特性; G ( j ) |为幅频特性, G ( j ) 为相频 Q | 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)

第五章 频率特性法 (2)

第五章  频率特性法 (2)
1 1
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .

频率特性法实验报告

频率特性法实验报告

一、实验目的1. 了解频率特性法的基本原理和测试方法。

2. 掌握用频率特性法分析系统性能的方法。

3. 熟悉实验仪器和实验步骤。

二、实验原理频率特性法是控制系统分析和设计的重要方法之一。

它通过研究系统在正弦信号作用下的稳态响应,来分析系统的动态性能和稳态性能。

频率特性主要包括幅频特性和相频特性,它们分别反映了系统在正弦信号作用下的幅值和相位变化规律。

三、实验仪器与设备1. 微型计算机2. 自动控制实验教学系统软件3. 超低频信号发生器4. 示波器5. 信号调理器6. 被测系统(如二阶系统、三阶系统等)四、实验内容与步骤1. 实验内容(1)测量被测系统的幅频特性(2)测量被测系统的相频特性(3)绘制幅频特性曲线和相频特性曲线(4)分析系统性能2. 实验步骤(1)连接实验电路,确保各设备正常工作。

(2)使用超低频信号发生器产生正弦信号,频率范围可根据被测系统特性选择。

(3)将信号发生器的输出信号送入被测系统,同时将信号发生器和被测系统的输出信号送入示波器。

(4)调整信号发生器的频率,记录不同频率下被测系统的输出幅值和相位。

(5)将实验数据输入计算机,利用自动控制实验教学系统软件进行数据处理和绘图。

(6)分析系统性能,包括系统稳定性、动态性能和稳态性能。

五、实验结果与分析1. 幅频特性曲线根据实验数据,绘制被测系统的幅频特性曲线。

从曲线中可以看出,随着频率的增加,系统的幅值逐渐减小,并在一定频率范围内出现峰值。

峰值频率对应系统的谐振频率,峰值幅度对应系统的谐振增益。

2. 相频特性曲线根据实验数据,绘制被测系统的相频特性曲线。

从曲线中可以看出,随着频率的增加,系统的相位逐渐变化,并在一定频率范围内出现相位滞后或相位超前。

3. 系统性能分析根据幅频特性和相频特性曲线,可以分析被测系统的性能。

(1)稳定性分析:通过分析相频特性曲线,可以判断系统是否稳定。

如果系统在所有频率范围内都满足相位裕度和幅值裕度要求,则系统稳定。

第五章频率特性法

第五章频率特性法

教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性

频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2

1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。

第五章 频率特性分析法

第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、

自动控制原理--第五章-频率特性法

自动控制原理--第五章-频率特性法
2.频率特性反映系统本身性能,取决于系统结构、参数,与外 界因素无关。
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出

第五章 频率特性法

第五章  频率特性法
-10 -20
度 -30 -60 -90
0.1
1
10
③特点: a.由于缩小了比例尺,能够在较宽的频率范围内研 究频率特性. b.可以简化绘制工作. G1(jw)=A1(w)ej() C.将实验获得的频率特性数据画成对数频率特性曲 线,可简便地确定频率特性表达式 3.对数幅相特性. 又称尼柯尔斯图. 以w为参变量表示对数幅频特性与对数相频特性的 关系. 横坐标表示相频特性的函数值,单位为度 纵坐标表示幅频特性的函数值,单位为分贝 优点:能比较方便地确定闭环系统的稳定性和频域 性能指标。
1
C
1
U0(t)
Ui Ui
1+T22
U0(s)=
Ts+1
Ui(s)=
Ts+1 s2+2
拉氏变换得:U0(t)=
sin(t-arctanT)
=U0sin(t+)
可见,1、输出电压仍是正弦电压 2、输出与输入的频率相同 3、输出幅值为原幅值的U0/Ui倍 4、输出相角超前 而且:A()= U0/Ui 为幅频特性 ()=-arctanT为相角特性 图形如下
在低频段,因w τ <<1,故 L(w)≈0(dB) 在高频段,因w τ>>1,故 L(w)≈20lg w τ 可见,高频段是一条斜线。斜率为 +20dB/dec,该斜率在w=1/ τ处正好与低频渐 近线相衔接。 惯性环节和一阶微分环节的对数幅频特性, 两式相比较,仅仅是一个符号之差,其结果 是两种环节的低频渐近线完全相同,高频渐 近线则一个向下倾斜,另一个向上倾斜,且 斜率大小相等,方向相反。两种环节的特性 对称于横坐标w,即以w轴为基准,互为镜像。
L (w)/dB w/(rad·-1) s
点且斜率为每十频程下降20dB的斜线,见 图。 对数相频曲线φ(w)恒为-90°,故是 一条纵坐标为- 90°的水平线。 4、微分环节的伯德图 (1)纯微分环节 L(w)=20lgA(w)=20lgw 纯微分环节的对数幅频特性亦是一条 斜线,它的斜率20dB/dec,并与零分贝线 交于w=1处。 对数相频特性的描述,由于相角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 用实验法确定系统传递函数
一、用实验法确定系统的伯德图
若线性系统是稳定的,可用实验的方 法获得其伯徳图,具体步骤如下: 12. .在用规斜定率的为频0率dB范/d围e内c、,±给2被0d测B系/de统c施、
加±不40同dB频/d率e的c等正的弦直信线号近,似并被相测应对地数测 量幅出频系特统性的曲稳线态,输得出到幅系值统和的相对位数值幅, 据频此特作性出曲系线统的的渐对近数线幅。频特性和相频 特性曲线。
第三节 用实验法确定系统传递函数
确定增益 K的几种方法
1. υ = 0
系统的伯德图: 低频渐近线为 L(ω)=20lgK=χ
L(ω)/dB
x
-20dB/dec
20lgK
-40dB/dec
0
ωc ω
χ

K=10 20
第三节 用实验法确定系统传递函数
2. υ = 1
系统的伯德图:
L(ω)/dB
ω=1
L(ω)=20lgK
0
低频段的曲线与横
轴相交点的频率为ω0
因为
0-20lgK lgω0-lg1
=-40

-40dB/dec -20dB/dec
1 ω0 ωc ω
-40dB/dec
20lgK=40lgω0 K=ω02
例:求如图所示最小相位系统的传递函数。
dB
40
dB/dec
20
-20dB/dec
G1 (
j )
1 1
jT jT1
G2 (
j )
1 1
jT jT1
L1( ) 20 lg
1 2T 2 1 2T12
1() arctgT acrtgT1
L2 ( ) 20lg
1 2T 2 1 2T12
2 () arctgT acrtgT1
arctg[(T T1) / (1 2TT1)] arctg[(T T1) / (1 2TT1)]
2ω0
的最高次数分别为m和n,则时,相频特性()
-(n-m)90°。非最小相角系统不满足此条件。
例:设两个传递函数分别为
1 Ts
1 Ts
G1(s) 1 T1s , G2 (s) 1 T1s ,
试比较两者的频率特性。
(T1 T 0)
解:很显然,G1(s)是最小相角系统,G2(s)是非最小相角系统。
3、根据伯德图确定最小相位系统传递函数
1)根据低频段的对数幅频曲线渐近线或其斜率大
小,确定增益 K =L(1)。
2)根据对数幅频曲线渐近线的转折,确定转折频 率(相应环节的时间常数)和斜率。 3)根据斜率变化大小,确定相应的典型环节类 型。 4)当斜率变化为-40dB/dec时,对应的环节 可能为振荡环节,也可能为重惯性环节。需要根 据相应转折频率附件是否存在谐振现象进一步确 定。
12
4.2( s 1) G(s) 0.5
s2( 1 s 1)
50.4(2s 1) s2 (s 12)
12
第三节 用实验法确定系统传递函数
例 已知采用积分控制液位系统的结构
和对数频率特性曲线,试求系统的传
递函数。
L(ω)/dB
20
1
4
0
-20dB/dec -20
φ(ω)
hr(t)
1
-S
K h(t) Ts+1
20lgK
-20dB/dec
L(ω)=20lgK
ω0
0 1 ω1 ωc
ω
低频段的曲线与横
-40dB/dec
轴相交点的频率为ω0
因为
0-20lgK lgω0-lg1
=-20

20lgK=20lgω0 K=ω0
第三节 用实验法确定系统传递函数
3. υ = 2
系统的伯德图:
L(ω)/dB
ω=1
20lgK
arctg[(T T1) / ] / (1/ 2 TT1) arctg[(T T1) / ] / (1/ 2 TT1)
dB 0 0.01
-20 0
°
-90°
-180°
0.1
1
10
-20dB/dec
最小相角系统的 相频曲线
非最小相角系统的 相频曲线
Bode图(T1=10, T=1)
第三节 用实验法确定系统传递函数
2、特点
1)对于最小相角系统,其幅频特性和相频特性直接 关联,即一个幅频特性只能有一个相频特性与之对 应,反之亦然。
对于最小相角系统,只要根据对数幅频曲线就可以写 出系统的传递函数。
2)若两个系统的幅频特性相同,则>0时,最小相
角系统的相角变化小于非最小相角系统的相角。
3)对于最小相角系统,若其传递函数的分子和分母
12.5 0 0.1 0.5 1
12
10
100
-20
-40dB/dec
-40 某最小相角系统的对数幅频曲线
解:因为最左端直线的斜率为:-40dB/dec 1
系统传递函数中有两个积分环节: s2
=1时,最左端直线的延长线的纵坐标为L(1)=12.5dB
20lgK=L(1)=12.5, K10^0.625=4.2。
20lgK=L(1)=0,
ω
-40dB/dec
解:
K=1;
1=1/T1=1
0
ω
2=1/T2=4
-90 -180
φ(s)=
1 (S+1) (S/4+1)
第三节 用实验法确定系统传递函数
例 由实测数据作出系统的伯德图如图
所示,试求系统的传递函数。
解: 由图可得:
L(ω ) dB
由2频0l率gM曲r=线3d得B
(也可以根据c确定K: 20lgK-40lg c+20lg2 c =0)
=0.5时,直线的斜率由:-40dB/dec-20dB/dec
系统传递函数中有一个一阶微分环节:
1 0.5
s
1
=12时,直线的斜率由:-20dB/dec-40dB/dec
1
系统传递函数中有一个惯性环节: 1
s1
系统传递函数为: 1
40
GζωM(1s根n=)rK==±=据2=1sω02.(4.Tω02901.=222==r35=12ω(ζ.ωsζ0112n6(+n122)12=02-ζ1=s=±.+-13202ζ108.0)2s2.+得5318:)
20 0
-20
0 -90
φ
-40dB/dec -20dB/dec 3dB
0.5
(ω )
第三节 用实验法确定系统传递函数
对一系统实测得到的频率特性曲线如图
近似后 得到的 渐近线:
相频特 性曲线:
L(ω)/dB
40
-20dB/dec
20
-40dB/dec
0 -20
φ(ω)
2
10 ω
-60dB/dec
0
ω
-90
-180
-270
二、根据伯德图确定传递函数
1、最小相角系统和非最小相角系统
一个开环稳定系统,若其在右半s平面无零点, 称为最小相角系统(最小相位系统);否则,称为 非最小相角系统(非最小相位系统)。
相关文档
最新文档