江西2020年中考数学模拟试卷 一(含答案)
江西省2020年中考数学一模试题A卷

同的填涂方法.
A.4
B.5
C.6
D.7
中考模拟试卷(A 卷) 数学 第 1 页 (共 6 页)
12.在平面直角坐标系 xOy 中,已知点 A(﹣2,0),B(2,0),点 P 在直线 y= x 上,若
△ABP 是直角三角形,则点 P 的坐标为
.
中考模拟试卷(A 卷) 数学 第 2 页 (共 6 页)
2020 年江西省中考模拟试卷(A 卷) 数学
说明:1.全卷满分 120 分,考试时间 120 分钟。 2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分.每小题只有一个正确选项) 1.2020 的绝对值等于( )
A.2020
B.﹣2020
C.
D.﹣
2.(﹣ )÷6ab 的结果是( )
;
②∠OEC 与∠OAB 的数量关系是
;
类比探究
(2)将图 1 中△BCD 绕点 B 逆时针旋转 45°,如图 2 所示,则(1)中的结论是否仍然 成立?若成立,请给出证明;若不成立,请说明理由;
拓展迁移
(3)将△BCD 绕点 B 旋转任意角度,若 BD= ,OB=3,请直接写出点 O、C、B 在同 一条直线上时 OE 的长.
(1)这次随机抽取了
名学生进行调查;
(2)补全频数分布直方图;
(3)计算扇形统计图中扇形 B 的圆心角的度数;
(4)若该校共有 3000 名学生,请你估计每周阅读时间不足 4 小时的学生共有多少名?
19.如图,已知 AB 为⊙O 的直径,F 为⊙O 上一点,AC 平分∠BAF 且交⊙O 于点 C,过点
A.两条直线中总有一条与双曲线相交
B.当 m=1 时,两条直线与双曲线的交点到原点的距离相等
2020年江西省九年级数学中考模拟试题 含答案

2020年江西省九年级数学中考模拟试题考生须知:1.全卷共六大题,23小题.满分为120分.考试时间120分钟.2.本卷答案必须做在答题纸的对应位置上,做在试题卷上无效. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本大题共有6小题,每小题3分,共18分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1、在0 ,-2,1,5这四个数中,最小的数是() A .0 B .-2 C .1 D .5 2、下列三条线段不能构成三角形的三边的是() A .3cm ,4cm ,5cm B .5cm ,6cm ,11cm C .5cm ,6cm ,10cm D .2cm ,3cm ,4cm 3、已知sin α=23,且α是锐角,则α等于( ) A.750B.600C.450D.3004、为了调查瑞州市2016年初三年级学生的身高,从中抽取出200名学生进行调查,这个问题中样本容量为( )A .被抽取的200名学生的身高B .200C .200名D .初三年级学生的身高5、平行四边形、矩形、正方形之间的关系是( )6、下面几何体的主视图是( )二、填空题(本大题共6个小题,每小题3分,共18分.)7、2016年我市经济依然保持了平稳增长。
据统计,截止到今年4月底,我市金融机构存款余额约为1193亿元,用科学计数法应记为元8、分解因式:a3-16a=____________。
9、有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是。
10、定义新运算“※”,规则:a※b=ab-a-b,如1※2=1×2-1-2=-1。
若x2+x-1=0的两根为x1,x2,则x1※x2=。
11、如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是。
江西省2020年中考数学模拟试题及答案3套

江西省2020年中考数学模拟试题及答案3套江西省2020年中等学校招生考试数学模拟试题卷(一)说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.-2的相反数是( A )A .2B .-2C .12D .-122.下列图案中,是中心对称图形但不是轴对称图形的是( C ),A,B ,C,D3.下列运算正确的是(B)A.2a2+3a2=5a4B.a2·a=a3C.(a2)3=a5D.a2=a4.如图是由一个长方体和一个球组成的几何体,它的主视图是(C)(第4题)ABCD5.图1、图2分别是某厂六台机床10月份第一天和第二天生产零件数的统计图,与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是(D)A.平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大(第5题),(第6题)6.如图,在平面直角坐标系xOy 中,直线y =12x 与双曲线y =kx交于A ,B 两点,且点A 的坐标为(4,a),将直线y =12x 向上平移m 个单位,交双曲线y =kx(x >0)于点C ,交y 轴于点F ,且△ABC 的面积是323.给出以下结论:①k =8;②点B 的坐标是(-4,-2);③S △ABC <S △ABF ;④m =83.其中正确的结论有( C )A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分) 7.因式分解:x 3-9x =__x(x +3)(x -3)__.8.我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A 为北门中点,从点A 往正北方向走30步到B 处有一树木,C 为西门中点,从点C 往正西方向走750步到D 处正好看到B 处的树木,则正方形城池的边长为__300__步.,(第8题),(第10题)9.设m ,n 是方程x 2-x -2 019=0的两实数根,则m 3+2 020n -2 019=__2__020__.10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1 cm /s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y(cm 2)随时间x(s )变化的关系图象,则a 的值为__52__.11.如图,已知∠XOY =60°,点A 在边OX 上,OA =2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E.设OD =a ,OE =b ,则a +2b 的取值范围是__2≤a +2b≤5__.,(第11题),(第12题)12.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为“直角抛物线”.如图,直线l :y =15x +b 经过点M ⎝⎛⎭⎫0,14,一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…,B n (n ,y n )(n 为正整数),依次是直线l 上的点,第一条抛物线与x 轴正半轴的交点A 1(x 1,0)和A 2(x 2,0),第二条抛物线与x 轴交点A 2(x 2,0)和A 3(x 3,0),以此类推,若x 1=d(0<d <1),当d 为__1120或1320或320__时,这组抛物线中存在直角抛物线. 三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(-2)2-|2-2|-2cos 45°+(3-π)0;解:原式=4-(2-2)-2×22+1 2分=4-2+2-2+1 =3;3分(2)如图,点E 在AB 上,∠CEB =∠B ,∠1=∠2=∠3,求证:CD =CA.证明:∵∠1=∠2,∴∠1+∠ACE =∠2+∠ACE ,即∠DCE =∠ACB.1分 ∵∠CEB =∠B ,∴CE =CB.∵∠2=∠3,∠CEB =∠B ,∴∠DEC =∠B.2分 ∴△DCE ≌△ACB(ASA ).∴CD =CA.3分14.解方程组:⎩⎪⎨⎪⎧x -y =1,x +3y =9.解:⎩⎪⎨⎪⎧x -y =1, ∴x +3y =9.∴∴-∴,得4y =8,解得y =2.2分把y =2代入∴,得x -2=1,解得x =3.4分∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =2.6分15.在10×10的网格中,A ,B ,C 均在格点上,请用无刻度的直尺作直线MN ,使得直线MN 平分∴ABC 的周长(保留作图痕迹).(1)请在图1中作出符合要求的一条直线MN ;(2)如图2,点M 为BC 上一点,BM =5.请在AB 上作出点N 的位置.解:(1)图1中,直线MN 即为所求; 3分 (2)图2中,点N 即为所求.6分16.为弘扬中华传统文化,某校举办了学生“国学经典大赛”,比赛项目为:A .唐诗;B .宋词;C .元曲;D .论语,比赛形式分为“单人组”和“双人组”.(1)小明参加“单人组”,他从中随机抽取一个比赛项目,则抽到“唐诗”的是________事件,其概率是________;(2)若小亮和小丽组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则小亮和小丽都没有抽到“元曲”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)随机;14;3分(2)画树状图:由图可知,共有12种等可能的结果,其中小亮和小丽都没有抽到“元曲”的结果有6种,5分∴小亮和小丽都没有抽到“元曲”的概率为612=12.6分17.如图,在平面直角坐标系中,边长为2的正方形ABCD 在第一象限内,AD∴y 轴,点A 的坐标为(5,3),已知直线l :y =12x -2.(1)将直线l 向上平移m 个单位,使平移后的直线恰好经过点A ,求m 的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC 交于点E ,求∴ABE 的面积.解:(1)设平移后的直线解析式为y =12x +b.∴y =12x +b 过点A(5,3),∴3=12×5+b ,即b =12.1分∴平移后的直线解析式为y =12x +12.∴m =12-(-2)=52;3分(2)∴正方形ABCD 中,AD∴y 轴,点A 的坐标为(5,3), ∴点E 的横坐标为5-2=3.4分把x =3代入y =12x +12,得y =12×3+12=2.∴点E 的坐标为(3,2).∴BE =1.5分∴∴ABE 的面积为12×2×1=1.6分四、(本大题共3小题,每小题8分,共24分)18.在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,某校开设了“3D ”打印、数学编程、智能机器人、陶艺制作四门创客课程,分别记为A ,B ,C ,D ,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查,将调查结果整理后绘制成两幅均不完整的统计图表.请根据图表中提供的信息回答下列问题: (1)统计表中的a =________b =________; (2)“陶艺制作”对应扇形的圆心角为________;(3)根据调查结果,请你估计该校3 000名学生中最喜欢“智能机器人”创客课程的人数;(4)学校为开设这四门课程预计每生A ,B ,C ,D 四科投资比为4∴3∴6∴7,若“3D ”打印课程每人投资200元,求学校为开设创客课程需为学生人均投入多少元.解:(1)80;0.20; 2分 (2)36°; 3分(3)估计该校3 000名学生中最喜欢“智能机器人”创客课程的人数为3 000×0.2=600(人);5分(4)依题意得每生A ,B ,C ,D 四门课程的投资分别为200元、150元、300元、350元,则学校为开设创客课程需为学生人均投入200×36+150×20+300×16+350×880=222.5(元).8分19.如图,∴O 是∴ABC 的外接圆,∴BAC 的平分线交∴O 于点D ,交BC 于点E ,过点D 作直线DF∴BC.(1)判断直线DF 与∴O 的位置关系,并说明理由;(2)若AB =6,AE =1235,CE =475,求BD 的长.解:(1)直线DF 与∴O 相切.理由:连接OD.∴∴BAC 的平分线交∴O 于点D ,∴∴BAD =∴CAD.∴BD ︵=CD ︵.2分 ∴OD∴BC.∴DF∴BC, ∴OD∴DF.∴直线DF 与∴O 相切;4分 (2)∴∴BAD =∴CAD ,∴ADB =∴C.∴∴ABD∴∴AEC. ∴AB AE =BD CE ,即61235=BD 475.6分 ∴BD =2213.8分20.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P 时停止倒入,图2是它的平面示意图,请根据图中的信息解答下列问题:(1)填空:AP =______cm ,PF =______cm ; (2)求出容器中牛奶的高度CF.解:(1)5;152;4分(2)∴EF∴AB ,∴∴BPF =∴ABP =30°.又∴∴BFP =90°,∴tan 30°=BFPF.∴BF =152×33=532(cm ). 6分∴CF =BC -BF =12-532(cm ).答:容器中牛奶的高度CF 为⎝⎛⎭⎫12-532 cm .8分五、(本大题共2小题,每小题9分,共18分)21.如图,反比例函数y =kx(x >0)过点A(3,4),直线AC :y =mx +n 与x 轴交于点C(6,0),过点C 作x 轴的垂线交反比例函数图象于点B.(1)求反比例函数的解析式和直线AC 的解析式; (2)求∴ABC 的面积;(3)在平面内有点D ,使得以A ,B ,C ,D 四点为顶点的四边形为平行四边形,请直接写出符合条件的所有点D 的坐标.解:(1)把点A(3,4)代入y =kx (x >0),得k =xy =3×4=12.∴反比例函数的解析式为y =12x.1分把A(3,4),C(6,0)代入y =mx +n ,得⎩⎪⎨⎪⎧3m +n =4,6m +n =0.解得⎩⎪⎨⎪⎧m =-43,n =8.∴直线AC 的解析式为y =-43x +8;2分(2)∴点C(6,0),BC∴x 轴,∴把x =6代入y =12x ,得y =126=2.3分∴B(6,2).∴∴ABC 的面积为12×(6-3)×2=3;4分(3)∴如图,当四边形ABCD 为平行四边形时,AD 綊BC.∴A(3,4),B(6,2),C(6,0),∴x D =3,y A -y D =y B -y C 即4-y D =2-0,则y D =2.∴D(3,2);6分∴如图,当四边形ACBD′为平行四边形时,AD′綊CB.∴A(3,4),B(6,2),C(6,0),∴x D′=3,y D′-y A =y B -y C ,即y D′-4=2-0,则y D′=6.∴D′(3,6);7分∴如图,当四边形ACD″B 为平行四边形时,AC 綊BD″.∴A(3,4),B(6,2),C(6,0),∴x D″-x B =x C -x A ,即x D″-6=6-3,则x D″=9;y D″-y B =y C -y A ,即y D″-2=0-4,则y D″=-2.∴D″(9,-2).8分综上所述,符合条件的点D 的坐标是(3,2)或(3,6)或(9,-2).9分22.已知正方形ABCD 中,∴EAF =45°.(1)如图1,当点E ,F 分别在边BC ,CD 上,连接EF ,求证:EF =BE +DF ; 童威同学是这样思考的,请你和他一起完成如下解答:证明:将∴ADF 绕点A 顺时针旋转90°,得∴ABG ,则∴ADF∴∴ABG.(2)如图2,点M ,N 分别在边AB ,CD 上,且BN =DM.当点E ,F 分别在BM ,DN 上,连接EF ,探究三条线段EF ,BE ,DF 之间满足的数量关系,并证明你的结论;(3)如图3,当点E ,F 分别在对角线BD 、边CD 上.若FC =2,则BE 的长为________.(1)证明:将∴ADF 绕点A 顺时针旋转90°,得∴ABG ,则∴ADF∴∴ABG.∴AF =AG ,DF =BG ,∴DAF =∴BAG ,∴ABG =∴D =90°=∴ABC ,即G ,B ,C 在同一直线上. 在正方形ABCD 中,∴D =∴BAD =∴ABE =90°,AB =AD. ∴∴EAF =45°,∴∴DAF +∴BAE =90°-45°=45°.∴∴EAG =∴BAG +∴BAE =∴DAF +∴BAE =45°,即∴EAG =∴EAF.2分 在∴EAG 与∴EAF 中, ⎩⎪⎨⎪⎧EA =EA ,∴EAG =∴EAF ,AG =AF ,∴∴EAG∴∴EAF(SAS ).∴EG =EF.∴BE +DF =BE +BG =EG ,∴EF =BE +DF ;3分 (2)解:EF 2=BE 2+DF 2. 4分证明:图2中,将∴ADF 绕点A 顺时针旋转90°,得∴ABH ,则∴ADF∴∴ABH.∴AF =AH ,DF =BH ,∴DAF =∴BAH ,∴ADF =∴ABH. ∴∴EAF =45°,∴∴DAF +∴BAE =90°-45°=45°. ∴∴EAH =∴BAH +∴BAE =∴DAF +∴BAE =45°, 即∴EAH =∴EAF.连接EH.在∴EAH 与∴EAF 中,⎩⎪⎨⎪⎧EA =EA ,∴EAH =∴EAF ,AH =AF ,∴∴EAH∴∴EAF(SAS ),∴EH =EF.6分∴BN =DM ,BN∴DM ,∴四边形BMDN 是平行四边形.∴∴ABE =∴MDN. ∴∴EBH =∴ABH +∴ABE =∴ADF +∴MDN =∴ADM =90°.∴EH 2=BE 2+BH 2, 即EF 2=BE 2+DF 2;7分(3) 2.9分[图3中,作∴ADF 的外接圆∴O ,连接EF ,EC ,过点E 分别作EM∴CD 于点M ,EN∴BC 于点N.∴∴ADF =90°,∴AF 为∴O 直径.∴BD 为正方形ABCD 对角线,∴∴EDF =∴EAF =45°. ∴点E 在∴O 上.∴∴AEF =90°.∴∴AEF 为等腰直角三角形.∴AE =EF.由正方形的对称性可得AE =CE ,∴CE =EF.∴EM∴CF ,CF =2,∴CM =12CF =1.∴EN∴BC ,∴NCM =90°,∴四边形CMEN 是矩形.∴EN =CM =1. ∴∴EBN =45°,∴BE =2EN = 2.]六、(本大题共12分)23.如图1,抛物线C :y =x 2经过变换可得到抛物线C 1:y 1=a 1x(x -b 1),C 1与x 轴的正半轴交于点A 1,且其对称轴分别交抛物线C ,C 1于点B 1,D 1,此时四边形OB 1A 1D 1恰为正方形;按上述类似方法,如图2,抛物线C 1:y 1=a 1x(x -b 1)经过变换可得到抛物线C 2:y 2=a 2x(x -b 2),C 2与x 轴的正半轴交于点A 2,且其对称轴分别交抛物线C 1,C 2于点B 2,D 2,此时四边形OB 2A 2D 2也恰为正方形;按上述类似方法,如图3,可得到抛物线C 3:y 3=a 3x(x -b 3)与正方形OB 3A 3D 3.请探究以下问题:(1)填空:a 1=________,b 1=________; (2)求出C 2与C 3的解析式;(3)按上述类似方法,可得到抛物线C n :y n =a n x(x -b n )与正方形OB n A n D n (n≥1). ∴请用含n 的代数式直接表示出C n 的解析式;∴当x 取任意不为0的实数时,试比较y 2 018与y 2 019的函数值的大小关系,并说明理由.解:(1)1;2;4分(2)当y 2=0时,a 2x(x -b 2)=0,解得x 1=0,x 2=b 2.∴A 2(b 2,0).由正方形OB 2A 2D 2得OA 2=B 2D 2=b 2,∴B 2⎝⎛⎭⎫b 22,b 22,D 2⎝⎛⎭⎫b 22,-b 22. ∴B 2在抛物线C 1上,∴b 22=b 22⎝⎛⎭⎫b 22-2,可得b 2=0(不符合题意,舍去)或b 2=6.∴D 2(3,-3). 把D 2(3,-3)代入C 2:y 2=a 2x(x -6),得-3=3a 2(3-6),即a 2=13.∴C 2的解析式为y 2=13x(x -6)=13x 2-2x.6分当y 3=0时,a 3x(x -b 3)=0,解得x 1=0,x 2=b 3.∴A 3(b 3,0).由正方形OB 3A 3D 3得OA 3=B 3D 3=b 3,∴B 3⎝⎛⎭⎫b 32,b 32,D 3⎝⎛⎭⎫b 32,-b 32. ∴点B 3在抛物线C 2上,则b 32=13⎝⎛⎭⎫b 322-2×b 32,可得b 3=0(不符合题意,舍去)或b 3=18.∴D 3(9,-9).把D 3(9,-9)代入C 3:y 3=a 3x(x -18),得-9=9a 3(9-18),即a 3=19.∴C 3的解析式为y 3=19x(x -18)=19x 2-2x ;8分(3)∴C n 的解析式为y n =13n -1x 2-2x(n≥1); 9分∴由∴可得抛物线C 2 018的解析式为y 2 018=132 017x 2-2x ,10分 抛物线C 2 019的解析式为y 2 019=132 018x 2-2x.11分∴两抛物线的交点为(0,0).如图,由图象可得当x≠0时,y 2 018>y 2 019.12分江西省2020年中等学校招生考试数学模拟试题卷(二)说明:1.全卷满分120分,考试时间120分钟。
2020年江西省中考数学模拟试卷(一)

2020年江西省中考数学模拟试卷(一)一、选择题(共6小题,每小题3分,满分18分,每小题只有一个正确的选项) 1.(3分)1不是1-的( ) A .相反数B .绝对值C .平方数D .倒数2.(3分)下列等式一定成立的是( ) A .225a a a += B .22(1)1a a -=- C .936()()a a a -÷-=D .236(2)8a a -=3.(3分)在反比例函数1ky x-=的图象的任一支上,y 都随x 的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .24.(3分)将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是( )A .B .C .D .5.(3分)如图,矩形ABCD 中,3AB =,5BC =,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将PCD ∆沿直线PD 折叠,使点C 落到点C '处;作BPC ∠'的角平分线交AB 于点E .设BP x =,BE y =,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .6.(3分)图中是有相同最小值的两条抛物线,则下列关系中正确的是( )A .k n <B .h m =C .0k n +=D .0h <,0m >二、填空题(本小题共6小题,每小题3分,共18分) 7.(3分)188-= .8.(3分)若关于x ,y 的二元一次方程组23122x y k x y +=-+⎧⎨+=⎩的解满足2x y +>,则k 的取值范围是 .9.(3分)一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 .10.(3分)若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k = . 11.(3分)如图, 在反比例函数图象中,AOB ∆是等边三角形, 点A 在双曲线的一支上, 将AOB ∆绕点O 顺时针旋转(0180)αα︒<<︒,使点A 仍在双曲线上, 则α= .12.(3分)在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,6AB =,点D ,E 分别是BC ,AB 上的动点,将BDE ∆沿直线DE 翻折,点B 的对应点B '恰好落在AC 上,若AEB ∆'是等腰三角形,那么CB '的值是 .三、解答题(本大题共6小题,共30分)13.(5分)(1)计算:011(31)2sin30()|2017|2--+︒-+-;(2)如图,在ABC ∆中,已知30ABC ∠=︒,将ABC ∆绕点B 逆时针旋转50︒后得到△11A BC ,若100A ∠=︒,求证:11//AC BC .14.(5分)解分式方程:2211339x x x +=+--. 15.(5分)某物流公司承接A 、B 两种货物运输业务,已知3月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A 货物运费单价增加了40%,B 货物运费单价上涨到40元/吨;该物流公司4月承接的A 种货物和B 种数量与3月份相同,4月份共收取运费13000元.试求该物流公司月运输A 、B 两种货物各多少吨?16.(5分)等腰ABC ∆中,AB AC =,以AB 为直径作圆交BC 于点D ,请仅用无刻度的直尺,根据下列条件分别在图1、图2中画一条弦,使这条弦的长度等于弦BD .(保留作图痕迹,不写作法) (1)如图1,90A ∠<︒; (2)如图2,90A ∠>︒.17.(5分)体育中考前,抽样调查了九年级学生的“1 分钟跳绳”成绩,并绘制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图;(2)扇形图中m=;(3)若“ 1 分钟跳绳”成绩大于或等于140 次为优秀,则估计全市九年级5900 名学生中“1 分钟跳绳”成绩为优秀的大约有多少人?18.(5分)手机微信推出了红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设好总金额以及红包个数后,可以生成不等金额的红包,现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)下列事件中,确定事件是,①丙抢到金额为1元的红包;②乙抢到金额为4元的红包③甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.求甲抢到红包A,乙抢到红包C 的概率.四、解答题(本大题共3小题,共24分)19.(8分)如图,已知ABC∆内接于O,AB是直径,//=.OD AC,AD OC(1)当30∠=︒时,请判断四边形OCAD的形状,为什么?B(2)当B ∠等于多少度时,AD 与O 相切?请说明理由.20.(8分)如图(1),11A B 和22A B 是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道11A B 上从1A 处出发,到达1B 后,以同样的速度返回1A 处,然后重复上述过程;乙在赛道22A B 上以1.5/m s 的速度从2B 处出发,到达2A 后以相同的速度回到2B 处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边12B B 的距离为()y m ,运动时间为()t s ,甲游动时,()y m 与()t s 的函数图象如图2所示.(1)赛道的长度是 m ,甲的速度是 /m s ;当t = s 时,甲、乙两人第一次相遇,当t = s 时,甲、乙两人第二次相遇? (2)第三次相遇时,两人距池边12B B 多少米.21.(8分)如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN 是晾衣架的一个滑槽,点P 在滑槽MN 上、下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为20cm ,且20AB CD CP DM cm ====.(1)当点P 向下滑至点N 处时,测得60DCE ∠=︒时 ①求滑槽MN 的长度;②此时点A 到直线DP 的距离是多少?(2)当点P 向上滑至点M 处时,点A 在相对于(1)的情况下向左移动的距离是多少? (结果精确到0.01cm ,参考数据2 1.414≈,3 1.732)≈ 五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,在平面直角坐标系中,已知点(2,4)A --,直线2x =-与x 轴相交于点B ,连接OA ,抛物线2y x =-从点O 沿OA 方向平移,与直线2x =-交于点P ,顶点M 到点A 时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段PA 最长?并求出此时PA 的长.(3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得OMQ ∆为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.23.(9分)如图1,以边长为4的正方形纸片ABCD 的边AB 为直径作O ,交对角线AC 于点E .(1)图1中,线段AE = ;(2)如图2,在图1的基础上,以点A 为端点作30DAM ∠=︒,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt ADM ∆绕点A 逆时针旋转(如图3),设旋转角为(0150)αα︒<<︒,在旋转过程中AD 与O 交于点F .①当30α=︒时,请求出线段AF 的长;②当60α=︒时,求出线段AF 的长;判断此时DM 与O 的位置关系,并说明理由; ③当α= ︒时,DM 与O 相切.六、解答题(本大题共12分) 24.(12分)阅读理解如图(1),在正多边形123n A A A A ⋯的边23A A 上任取一不与点2A 重合的点2B ,并以线段12A B 为边在线段12A A 的上方作以正多边形123n A B B B ⋯,把正多边形123n A B B B ⋯叫正多边形12n A A A ⋯的准位似图形,点3A 称为准位似中心.特例论证(1)如图(2)已知正三角形123A A A 的准位似图形为正三角形123A B B ,试证明:随着点2B 的运动,331B A A ∠的大小始终不变. 数学思考(2)如图(3)已知正方形1234A A A A 的准位似图形为正方形1234A B B B ,随着点2B 的运动,334B A A ∠的大小始终不变?若不变,请求出334B A A ∠的大小;若改变,请说明理由.归纳猜想(3)在图(1)的情况下:①试猜想334B A A ∠的大小是否会发生改变?若不改变,请用含n 的代数式表示出334B A A ∠的大小(直接写出结果);若改变,请说明理由.①3344455561n n B A A B A A B A A B A A ∠+∠+∠+⋯+∠= (用含n 的代数式表示)2020年江西省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分,每小题只有一个正确的选项) 1.(3分)1不是1-的( ) A .相反数B .绝对值C .平方数D .倒数【解答】解:因为:1是1-的相反数,1是1-的绝对值,1是1-的平方数,但1不是1-的倒数, 故选:D .2.(3分)下列等式一定成立的是( ) A .225a a a += B .22(1)1a a -=- C .936()()a a a -÷-=D .236(2)8a a -=【解答】解:A 、原式22a =,不符合题意;B 、原式221a a =-+,不符合题意;C 、原式936a a a =÷=,符合题意;D 、原式68a =-,不符合题意,故选:C .3.(3分)在反比例函数1ky x-=的图象的任一支上,y 都随x 的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .2【解答】解:在反比例函数1ky x-=的图象的任一支上,y 都随x 的增大而增大,10k ∴-<, 解得:1k >. 故选:D .4.(3分)将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是( )A .B .C .D .【解答】解:从几何体的上面看可得两个同心圆, 故选:D .5.(3分)如图,矩形ABCD 中,3AB =,5BC =,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将PCD ∆沿直线PD 折叠,使点C 落到点C '处;作BPC ∠'的角平分线交AB 于点E .设BP x =,BE y =,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【解答】解:如图,连接DE ,△PC D '是PCD ∆沿PD 折叠得到, CPD C PD ∴∠=∠',PE 平分BPC ∠',BPE C PE ∴∠=∠',1180902EPC DPC ∴∠'+∠'=⨯︒=︒,DPE ∴∆是直角三角形,BP x =,BE y =,3AB =,5BC =,3AE AB BE y ∴=-=-,5CP BC BP x =-=-,在Rt BEP ∆中,22222PE BP BE x y =+=+, 在Rt ADE ∆中,22222(3)5DE AE AD y =+=-+, 在Rt PCD ∆中,22222(5)3PD PC CD x =+=-+, 在Rt PDE ∆中,222DE PE PD =+, 则222222(3)5(5)3y x y x -+=++-+, 整理得,26210y x x -=-, 所以215(05)33y x x x =-+<<,纵观各选项,只有D 选项符合. 故选:D .6.(3分)图中是有相同最小值的两条抛物线,则下列关系中正确的是( )A .k n <B .h m =C .0k n +=D .0h <,0m >【解答】解:两条抛物线具有相同的最小值,k n ∴=,顶点分别位于三和四象限,0h ∴<,0m >, 故选:D .二、填空题(本小题共6小题,每小题3分,共18分) 7.(31882 .【解答】解:原式32222==8.(3分)若关于x ,y 的二元一次方程组23122x y k x y +=-+⎧⎨+=⎩的解满足2x y +>,则k 的取值范围是 1k <- .【解答】解:将方程组中两方程相加可得:3333x y k +=-+, 则1x y k +=-+,2x y +>,12k ∴-+>,解得:1k <-, 故答案为:1k <-.9.(3分)一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 2 . 【解答】解:1,3,2,5,2,a 的众数是a , 2a ∴=,将数据从小到大排列为:1,2,2,2,3,5, 中位数为:2. 故答案为:2.10.(3分)若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k = 1- . 【解答】解:212x x k =,两根互为倒数,21k ∴=,解得1k =或1-;方程有两个实数根,△0>,∴当1k =时,△0<,舍去,故k 的值为1-. 故答案为:1-.11.(3分)如图, 在反比例函数图象中,AOB ∆是等边三角形, 点A 在双曲线的一支上, 将AOB ∆绕点O 顺时针旋转(0180)αα︒<<︒,使点A 仍在双曲线上, 则α= 30︒ .【解答】解:根据反比例函数的轴对称性,A点关于直线y x=对称,∆是等边三角形,OAB∴∠=︒,AOB60∴与直线y xAO=的夹角是15︒,∴=⨯︒=︒时点A落在双曲线上,21530a故答案为:30︒.12.(3分)在Rt ABC∠=︒,6AAB=,点D,E分别是BC,AB上C∆中,90∠=︒,30的动点,将BDE∆沿直线DE翻折,点B的对应点B'恰好落在AC上,若AEB∆'是等腰三角形,那么CB'的值是3,323-,0.【解答】解:90AB=,∠=︒,6CA∠=︒,30BC=,∴∠=︒,360B分三种情况讨论:①如图所示,当点D与点C重合时,60∠=∠=︒,B CB E'∠=︒,A3030AEB '∴∠=︒,A AEB '∴∠=∠,AB EB ''∴=,即AEB ∆'是等腰三角形,此时,3CB BC '==;②如图所示,当AE AB '=时,AEB ∆'是等腰三角形,75AB E '∴∠=︒,由折叠可得,60DB E ABC '∠=∠=︒, 45DB C '∴∠=︒,又90C ∠=︒,DCB '∴∆是等腰直角三角形,设CB x DC '==,则3BD x DB '=-=,Rt DCB '∆中,222(3)x x x +=-,解得1323x =-,2323x =--(舍去), 323CB '∴=-;③如图所示,当点B '与点C 重合时,60B DCE ∠=∠=︒,30EB A A '∴∠=︒=∠,AE B E '∴=,即AEB ∆'是等腰三角形,此时0CB '=,综上所述,当AEB ∆'是等腰三角形时,CB '的值是3,323,0.故答案为:3,323-,0.三、解答题(本大题共6小题,共30分)13.(5分)(1)计算:011(31)2sin30()|2017|2--+︒-+-;(2)如图,在ABC ∆中,已知30ABC ∠=︒,将ABC ∆绕点B 逆时针旋转50︒后得到△11A BC ,若100A ∠=︒,求证:11//AC BC .【解答】(1)解:原式112220172=+⨯-+1122017=+-+ 2017=;(2)证明:在ABC ∆中,30ABC ∠=︒,100A ∠=︒, 18050C A ABC ∴∠=︒-∠-∠=︒.将ABC ∆绕点B 逆时针旋转50︒后得到△11A BC , 150C C ∴∠=∠=︒,150C BC ∠=︒. 11C C BC ∴∠=∠, 11//AC BC ∴.14.(5分)解分式方程:2211339x x x +=+--. 【解答】解:两边都乘以(3)(3)x x +-,得2(3)(3)1x x --+=-,解得10x =,检验:当10x=时,290x-≠∴原方程的解为10x=.15.(5分)某物流公司承接A、B两种货物运输业务,已知3月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A货物运费单价增加了40%,B货物运费单价上涨到40元/吨;该物流公司4月承接的A种货物和B种数量与3月份相同,4月份共收取运费13000元.试求该物流公司月运输A、B两种货物各多少吨?【解答】解:设A种货物运输了x吨,设B种货物运输了y吨,由题意得:704013000 50309500x yx y+=⎧⎨+=⎩,解之得:100150xy=⎧⎨=⎩.答:物流公司月运输A种货物100吨,B种货物150吨.16.(5分)等腰ABC∆中,AB AC=,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据下列条件分别在图1、图2中画一条弦,使这条弦的长度等于弦BD.(保留作图痕迹,不写作法)(1)如图1,90A∠<︒;(2)如图2,90A∠>︒.【解答】解:(1)如图1,DE为所作:(2)如图2,DE为所作:17.(5分)体育中考前,抽样调查了九年级学生的“1 分钟跳绳”成绩,并绘制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图;(2)扇形图中m=84 ;(3)若“ 1 分钟跳绳”成绩大于或等于140 次为优秀,则估计全市九年级5900 名学生中“1 分钟跳绳”成绩为优秀的大约有多少人?【解答】解:(1)由直方图和扇形图可知,A组人数是 6 人,占10%,则总人数:610%60÷=,D组人数为:6061419516----=;(2)143608460m=︒⨯=︒.故答案是:84 ;平均数是:906110141301915016170513060⨯+⨯+⨯+⨯+⨯=;(3)绩为优秀的大约有:1655900206560+⨯=(人).答:估计全市九年级5900 名学生中“ 1 分钟跳绳”成绩为优秀的大约有2065 人.18.(5分)手机微信推出了红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设好总金额以及红包个数后,可以生成不等金额的红包,现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)下列事件中,确定事件是②,①丙抢到金额为1元的红包;②乙抢到金额为4元的红包③甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.求甲抢到红包A,乙抢到红包C 的概率.【解答】解:(1)事件①,③是不确定事件,事件②是确定事件;故答案为:②;(2)由树形图可得出:因为有A,B,C三个红包,且抢到每一个红包的可能性相同,共有6种情况,恰好甲抢到红包A,乙抢到红包C有1种情况,所以概率为16.四、解答题(本大题共3小题,共24分)19.(8分)如图,已知ABC∆内接于O,AB是直径,//OD AC,AD OC=.(1)当30B∠=︒时,请判断四边形OCAD的形状,为什么?(2)当B∠等于多少度时,AD与O相切?请说明理由.【解答】解:(1)四边形OCAD 是菱形. 理由:OA OC =,AD OC =, OA AD ∴=,OAC OCA ∴∠=∠,AOD ADO ∠=∠, //OD AC , OAC AOD ∴∠=∠,OAC OCA AOD ADO ∴∠=∠=∠=∠, AOC OAD ∴∠=∠, //OC AD ∴,∴四边形OCAD 是平行四边形,30B ∠=︒, 60AOC ∴∠=︒, OC OA AC ∴==, AC OC ∴=,∴四边形OCAD 是菱形.(2)AD 与O 相切,90OAD ∴∠=︒, //AD OC , 90AOC ∴∠=︒,1452B AOC ∴∠=∠=︒.20.(8分)如图(1),11A B 和22A B 是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道11A B 上从1A 处出发,到达1B 后,以同样的速度返回1A 处,然后重复上述过程;乙在赛道22A B 上以1.5/m s 的速度从2B 处出发,到达2A 后以相同的速度回到2B 处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边12B B 的距离为()y m ,运动时间为()t s ,甲游动时,()y m 与()t s 的函数图象如图2所示.(1)赛道的长度是 50 m ,甲的速度是 /m s ;当t = s 时,甲、乙两人第一次相遇,当t = s 时,甲、乙两人第二次相遇? (2)第三次相遇时,两人距池边12B B 多少米.【解答】解:(1)由图象,得赛道的长度是:50米, 甲的速度是:50252/m s ÷=. 故答案为:50,2;设经过x 秒时,甲、乙两人第一次相遇,由题意,2 1.550x x +=, 1007x ∴=, 设经过x 秒时,甲、乙两人第二次相遇,由题意,得 2 1.5150x x +=,解得:3007x =; 故答案为:50,2,1007,3007; (2)设经过x s 后两人第三次相遇,则(1.52)250x += 得5007x =, ∴第三次相遇时,两人距池边1B B 2 有50050150277-⨯=m . 21.(8分)如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN 是晾衣架的一个滑槽,点P 在滑槽MN 上、下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为20cm ,且20AB CD CP DM cm ====.(1)当点P 向下滑至点N 处时,测得60DCE ∠=︒时 ①求滑槽MN 的长度;②此时点A 到直线DP 的距离是多少?(2)当点P 向上滑至点M 处时,点A 在相对于(1)的情况下向左移动的距离是多少? (结果精确到0.01cm 2 1.414≈3 1.732)≈【解答】解:(1)①当点P 向下滑至点N 处时,如图1中,作CH DN ⊥于H . 60DCE ∠=︒,180120DCN DCE ∴∠=︒-∠=︒, 20CD CP cm ==,即20CD CN cm ==,1(180)302CDN DCN ∴∠=︒-∠=︒,1102CH CD cm ∴==,2220103()NH DH cm ==-=,22032014.6MN DN DM DH DM cm ∴=-=-=≈. ∴滑槽MN 的长度为14.6cm .②根据题意,点A 到直线DP 的距离是661060CH cm =⨯=.(2)当点P 向上滑至点M 处时,如图2中,CMD ∆是等边三角形, 60CDM ∴∠=︒,作CG DM ⊥于G ,则3sin 6020103()CG CD cm =︒==, 此时点A 到直线DP 的距离是66103603CG =⨯, 6036043.9cm -≈,∴点A 在相对于(1)的情况下向左移动的距离是43.9cm .五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,在平面直角坐标系中,已知点(2,4)A --,直线2x =-与x 轴相交于点B ,连接OA ,抛物线2y x =-从点O 沿OA 方向平移,与直线2x =-交于点P ,顶点M 到点A 时停止移动.(1)线段OA 所在直线的函数解析式是 2y x = ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段PA 最长?并求出此时PA 的长.(3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得OMQ ∆为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.【解答】解:(1)设直线OA 的解析式为y kx =, 把(2,4)--代入得24k -=-,解得2k =, 所以直线OA 的解析式为2y x =; 故答案为2y x =;(2)设M 点的坐标为(,2)m m ,(20)m -<, ∴平移后抛物线解析式为2()2y x m m =--+,当2x =-时,22(2)224y m m m m =--+=---,P ∴点的坐标为2(2,24)m m ----,22224(4)2(1)1PA m m m m m ∴=-----=--=--+ ∴当1m =时,PA 的值最大,PA 的最大值为1;(3)存在,理由如下:当0x =时,22(0)22y m m m m =--+=-+,则2(0,2)Q m m -+,22OQ m m =-,OM =,当OM OQ =,即22m m =-,即2(20m m -=,解得10m =(舍去),22m =-,此时Q点坐标为(0,5-;当OM MQ =,作MH OQ ⊥于H ,如图1,则OH QH =,222(2)m m m m -=---,即220m m +=,解得10m =(舍去),22m =-,此时Q 点坐标为(0,8)-; 当QM QO =,作QF OM ⊥于F ,如图2,则OF MF ==, //OQ AB , QOF BAO ∴∠=∠,Rt OFQ Rt ABO ∴∆∆∽,∴OF OQAB OA =,即224=,整理得2430m m -=,解得10m =(舍去),234m =(舍去),综上所述,满足条件的Q点坐标为(0,5-或(0,8)-.23.(9分)如图1,以边长为4的正方形纸片ABCD 的边AB 为直径作O ,交对角线AC 于点E .(1)图1中,线段AE = 2 ;(2)如图2,在图1的基础上,以点A 为端点作30DAM ∠=︒,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt ADM ∆绕点A 逆时针旋转(如图3),设旋转角为(0150)αα︒<<︒,在旋转过程中AD 与O 交于点F .①当30α=︒时,请求出线段AF 的长;②当60α=︒时,求出线段AF 的长;判断此时DM 与O 的位置关系,并说明理由; ③当α= ︒时,DM 与O 相切.【解答】解:(1)连接BE ,如图1所示: 四边形ABCD 是正方形, 45BAD BAC ∴∠=∠=︒,AB 是O 的直径,90AEB ∴∠=︒,ABE ∴∆是等腰直角三角形,222AE BE AB ∴=== 故答案为:2(2)①连接OA 、OF ,如图3所示: 则2OA OF ==,30α=︒,903060OAF ∴∠=︒-︒=︒, OAF ∴∆是等边三角形, 2AF OA ∴==;②60α=︒,30DAN ∠=︒, 90NAM ∴∠=︒,即AM AN ⊥,AM ∴过点O ,设AM 交O 于G ,连接FG ,过点O 作OH DM ⊥于H ,如图4所示: 90AFG ∴∠=︒,90OHM ∠=︒, 4AG =,3cos 423AF AG DAM ∴=∠==DM 与O 相离,理由如下:在Rt ADM ∆中,483cos30332AD AM ===︒, 8323OM AM OA ∴=-=-,在Rt OHM ∆中,83sin (2)sin 60433OH OM OMH =∠=-⨯︒=-, 432230OH OA -=--=->,OH OA ∴>,DM ∴与O 相离;③当90α=︒时,DM 与O 相切.理由如下: 当90α=︒时,AD AN ⊥,AD 过圆心O ,AD DM ⊥, DM ∴与O 相切;故答案为:90.六、解答题(本大题共12分) 24.(12分)阅读理解如图(1),在正多边形123n A A A A ⋯的边23A A 上任取一不与点2A 重合的点2B ,并以线段12A B 为边在线段12A A 的上方作以正多边形123n A B B B ⋯,把正多边形123n A B B B ⋯叫正多边形12n A A A ⋯的准位似图形,点3A 称为准位似中心.特例论证(1)如图(2)已知正三角形123A A A 的准位似图形为正三角形123A B B ,试证明:随着点2B 的运动,331B A A ∠的大小始终不变. 数学思考(2)如图(3)已知正方形1234A A A A 的准位似图形为正方形1234A B B B ,随着点2B 的运动,334B A A ∠的大小始终不变?若不变,请求出334B A A ∠的大小;若改变,请说明理由.归纳猜想(3)在图(1)的情况下:①试猜想334B A A ∠的大小是否会发生改变?若不改变,请用含n 的代数式表示出334B A A ∠的大小(直接写出结果);若改变,请说明理由. ①3344455561n n B A A B A A B A A B A A ∠+∠+∠+⋯+∠=90(1)(2)n n n︒-- (用含n 的代数式表示)【解答】(1)证明:△123A A A 与△123A B B 是正三角形, 1213A A A A ∴=,1213A B A B =,21321360A A A B A B ∠=∠=︒, 212313A A B A A B ∴∠=∠, ∴△212A A B ≅△313A A B ,331260B A A A ∴∠=∠=︒, 331B A A ∴∠的大小不变;(2)334B A A ∠的大小不变,理由:如图,在边12A A 上取一点D ,使132A D A B =,连接2B D , 四边形1234A A A A 与1234A B B B 是正方形, 1223A B B B ∴=,12312390A B B A A A ∠=∠=︒,32312290A B B A B A ∴∠+∠=︒,21212290A A B A B A ∠+∠=︒, 323212A B B A A B ∴∠=∠, ∴△323A B B ≅△12DA B ,23312B A B A DB ∴∠=∠, 1223A A A A =,132A D A B =, 222A B A D ∴=, 12390A A A ∠=︒,∴△22DA B 是等腰直角三角形,12135A DB ∴∠=︒, 233135B A B ∴∠=︒, 43290A A A ∠=︒, 33445B A A ∴∠=︒,即:334B A A ∠的大小始终不变;(3)①334B A B ∠的大小始终不变,理由:如图1, 在12A A 上取一点D ,使132A D A B =, 连接2B D ,212122180A A B A B A ∠=︒-∠,323122180A B B A B A ∠=︒-∠, 212323A A B A B B ∴∠=∠, 1223A B B B =, ∴△323A B B ≅△12DA B ,23312B A B A DB ∴∠=, 1223A A A A =,132A D A B =, 222A D A B ∴=,1212211180(2)90(2)(180)909022n n A DB A A B n n ︒-︒-∴∠=︒-∠=︒-⨯=︒-3341223490(2)180(2)18090n n B A A A DB B A A n n n︒-︒-︒∴∠=∠-∠=︒--=; ②由①知,3341802B A A ︒∠=, 同①的方法可得,4451802B A A n ︒∠=⨯,5561803B A A n ︒∠=⨯,⋯,1180(2)n n B A A n n︒∠=⨯-,∴①3344455561n n B A A B A A B A A B A A ∠+∠+∠+⋯+∠18018018018090(1)(2)23(2)n n n n n n n n︒︒︒︒︒--=+⨯+⨯+⋯⨯-=, 故答案为90(1)(2)n n n︒--.。
2020年江西省中考一模数学试卷及答案解析

2020年江西省中考一模数学试卷
一.选择题(共6小题,满分18分,每小题3分)
1.若(x﹣1)0=1,则()
A.x≥1B.x≤1C.x≠1D.x≠0
2.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106
3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()
A .
B .
C .
D .
4.下列计算正确的是()
A.(a+b)2=a2+b2B.a2+2a2=3a4
C.x2y ÷=x2(y≠0)D.(﹣2x2)3=﹣8x6
5.矩形具有而平行四边形不一定具有的性质是()
A.对边相等B.对角相等
C.对角线相等D.对角线互相平分
6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.给出下列说法:
①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定
经过点(3,0);④在对称轴左侧,y随x增大而减小.从表可知,下列说法正确的个数有()
A.1个B.2个C.3个D.4个
二.填空题(共8小题,满分24分,每小题3分)
7.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.
第1 页共24 页。
江西2020年中考数学模拟试卷 一(含答案)

(
)
A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限
12.如图,矩形 ABCD 中,AB=6,AD=8,顺次连结各边中点得到四边形 A1B1C1D1,再顺次连结四 边形 A1B1C1D1 各边中点得到四边形 A2B2C2D2…,依此类推,则四边形 A7B7C7D7 的周长为( )
6.如图,在 Rt△ABC 中,∠ABC=90°,BC=3,D 为斜边 AC 的中点,连接 BD,点 F 是 BC 边上的 动点(不与点 B、C 重合),过点 B 作 BE⊥BD 交 DF 延长线交于点 E,连接 CE.
下列结论: ①若 BF=CF,则 CE2+AD2=DE2;
②若∠BDE=∠BAC,AB=4,则 CE= ; ③△ABD 和△CBE 一定相似;
(1)求 a 的取值范围; (2)化简|a-3|+|a+2|; (3)在 a 的取值范围内,m 是最大的整数,n 是最小的整数,求(m+n)m-n 的值; (4)在 a 的取值范围内,当 a 取何整数时,不等 式 2ax+x>2a+1 的解为 x<1.
第 3 页 共 14 页
17.为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B 两个带指针的转盘分别被分成 三个面积相等的扇形,转盘 A 上的数字分别是 1,6,8,转盘 B 上的数字分别是 4,5,7(两 个转盘除表面数字不同外,其他完全相同).每次选择 2 名同学分别拨动 A、B 两个转盘上的指 针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头 恰好停留在分界线上,则重转一次).作为游戏者,你会选择 A、B 中哪个转盘呢?并请说明理 由.
江西省2020年中考数学模拟试题(含答案)

江西省2020年中考数学模拟试题含答案说明1:试卷总分120分,考试时间120分钟;2:请考生将答案写在答题卷上,在此试卷上答题无效。
一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.31-的倒数是( ) A .31 B .31- C .3 D .3-2.据统计去年来国内旅游人数达到9.98亿人次,用科学记数法表示9.98亿为( ) A.699810⨯ B.79.9810⨯ C.89.9810⨯ D. 90.99810⨯ 3.下面立体图形的左视图为( )左视DC B A4.某服装专卖店销售的A款品牌西服去年销售总额为50000元,今年该款西服每件售价比去年便宜400元,若售出的件数相同,则该款西服销售总额将比去年降低20%,求今年该款西服的每件售价.若设今年该款西服的每件售价为x 元,那么可列方程为( ) A .5000050000(120%)400x x ⨯-=+ B .5000050000(120%)400x x ⨯-=+C.5000050000(120%)400x x ⨯-=- D.5000050000(120%)400x x ⨯-=-5.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:①分别以 点A 、D 为圆心,以大于21AD 的长为半径在AD 两侧作弧,交于两点 M 、N ;②连接MN 分别交AB 、AC 于点E 、F ;③连接DE 、DF .若BD =6,AF =4,CD =3,则下列说法中正确的是( )A.DF 平分∠ADC B.AF =3CF C.BE =8 D.DA =DB6.如图,在等边△ABC 中,D 为AC 边上的一点,连接BD ,M 为BD 上一点,且∠AMD =60°,AM 交BC 于E .当M 为BD 中点时,CDAD的值为( ) M ADA.23 B.512- C.32 D.35二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:501530'︒-︒= . 8.一次体检中,某班学生视力情况如下表:视力情况 0.7以下 0.7 0.8 0.9 1.0 1.0以上 人数所占的百分比5﹪8﹪15﹪20﹪40﹪12﹪从表中看出全班视力情况的众数是 . 9.已知不等式组⎩⎨⎧<>ax x 2的解集中共有5个整数,则a 的取值范围为____________.10.如图,在半圆AOB 中,半径OA =2,C 、D 两点在半圆上,若四边形OACD 为菱形,则图中阴影部分的面积是 .11.如图,在边长相同的小正方形网格中,点A、B、C、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan∠APD 的值为 .12.以线段AC 为对角线的凸四边形ABCD (它的四个顶点A 、B 、C 、D 按顺时针方向排列,每个内角均小于180°),已知AB =BC =CD ,∠ABC =100°,∠CAD =30°,则∠BCD 的大小为 . 三、(本大题共5小题,每小题6分,共30分)13. (1)解方程组 2 23 2 x y x y y +=⎧⎨-=-⎩①②;(2)如图,点D 在射线AE 上,AB ∥CD ,∠CDE =140°,求∠A 的度数. 14.已知2(23)230x y -++++=,求22(2)(2)x y x y +--的值.15.如图,AD 是△ABC 的中线,31tan =B ,22cos =C,2=AC .求:(1)BC 的长;(2)sin∠ADC 的值.16.已知矩形ABCD 的顶点A 、D 在圆上, B 、C 两点在圆内,请仅用没有刻度的直尺作图. (1)如图1,已知圆心O ,请作出直线l ⊥AD ; (2)如图2,未知圆心O ,请作出直线l ⊥AD .图1D OBA C图2D BA C17.先阅读下面某校八年级师生的对话内容,再解答问题.(温馨提示:一周只上五天课,另外考试时每半天考一科)小明:“听说下周会进行连续两天的期中考试.”刘老师:“是的,要考语文、数学、英语、物理共四科,但具体星期几不清楚.” 小宇:“我估计是星期四、星期五.” (1)求小宇猜对的概率;(2)若考试已定在星期四、星期五进行,但各科考试顺序没定,请用恰当的方法求同一天考语文、数学的概率. 四、(本大题共3小题,每小题8分,共24分)18.某校为了了解初中各年级学生每天的平均睡眠时间(单位:h ,精确到1 h ),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a 的值为_______,所抽查的学生人数为______;(2)求出平均睡眠时间为8小时的人数,并补全条形图;(3)求出这部分学生的平均睡眠时间的平均数;(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.19.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道(通道面积不超过总面积的51),其余部分铺上草皮.(1)如图1,若设计两条通道,一条横向,一条纵向,4块草坪为全等的长方形,每块草坪的两边之比为3:4,并且纵向通道的宽度是横向通道宽度的2倍,问横向通道的宽是多少?(2)如图2,为设计得更美观,其中草坪①②③④为全等的正方形,草坪⑤⑥为全等的长方形(两边长BN:BM=2:3),通道宽度都相等,问:此时通道的宽度又是多少呢?20.如图,菱形OABC的边OC在x轴正半轴上,点B的坐标为(8,4).(1)请求出菱形的边长;(2)若反比例函数kyx=经过菱形对角线的交点D,且与边BC交于点E,请求出点E的坐标.五、(本大题共2小题,每小题9分,共18分)21.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.22.如图,抛物线)0(2:211>+=aaxaxyC与x轴交于点A,顶点为点P.xyDECAOBECDOBA F(1)直接写出抛物线1C 的对称轴是_______,用含a 的代数式表示顶点P 的坐标_______; (2)把抛物线1C 绕点M (m ,0)旋转︒180得到抛物线2C (其中m >0),抛物线2C 与x 轴右侧的交点为点B ,顶点为点Q . ①当m =1时,求线段AB 的长;②在①的条件下,是否存在△ABP 为等腰三角形,若存在请求出a 的值,若不存在,请说明理由;③当四边形APBQ 为矩形时,请求出m 与a 之间的数量关系,并直接写出当a =3时矩形APBQ 的面积.六、(本大题共12分)23.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B=∠E=30°. (1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置关系是 ;②设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是 .(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中1S 与2S 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高DM 和AN ,请你证明小明的猜想. (3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE ∥AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使DCF BDE S S =△△,请求出相应的BF 的长.A (D )B (E )图1 DEAB图2NMCBD图3ADC图4xy C 2C 1BQA O M P参考答案一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1-6 D C C A CB【解析】∵∠AMD =60°,∴∠BDC =60°+∠EAC =60°+∠ABD , ∴∠EAC =∠ABD ,∴可证△ACE ≌△BAD (ASA ),∴AD=CE ; 如图,作DN ∥BC 交AE 于点N ,∵M 为BD 中点,可证DN=BE , 设AC=1,AD=x ,则有11x xx-=,解得152x -=(负值已舍去), CD=15351-+--=,351551CD AD --+-==.二、填空题(本大题共6小题,每小题3分,共18分) 7.34°30′ 8.1.0 9.7<a ≤8 10.2π23-.2 12.60°或140°【解析】如图,根据角度及等腰三角形的性质可得AC =2CF =CE , 得到Rt △BCE ≌Rt △D 1CF ,100BCF ∠=︒,140D CF ∠=︒,160BCD ∠=︒;120ACD ∠=︒,220BCD ∠=︒(舍去),3140BCD ∠=︒.三、(本大题共5小题,每小题6分,共30分) 13.(1)解:由①得:2x y =-+③把③代入②得:()2232y y y -+-=- 解得:1y =,………………2分把1y =代入③得1x =,∴方程组的解为:11x y =⎧⎨=⎩………………3分 (2)解:,140180CDE CDE ADC ∠=∠+∠=o o Q ,40ADC ∴∠=o ,………………1分//AB CD Q ,40A ADC ∴∠=∠=o …………………………3分14.解:∵2(23)230x y -++++=∴23x =-23y =--,……………………2分FE D 3D 1D 2B ACNM A D又∵22(2)(2)x y x y +-- 22224444x xy y x xy y =++-+-8xy =,……………………………………4分把23x =-,23y =--,代入得原式8(23)(23)8=⨯-⨯--=-……………………6分15.解:(1)如图,作AE ⊥BC , ∴CE =AC •cos C =1,∴AE =CE =1,31tan =B , ∴BE =3AE =3,∴BC =4;…………………………3分(2)∵AD 是△ABC 的中线,∴DE =1, ∴∠ADC =45°,∴22sin =∠ADC .……………………6分 16.解(答案不唯一):(1)如图1,直线l 为所求;……………………2分 (2)如图2,直线l 为所求.…………………………6分l图1DOBA Cl图2DBA C17.解:(1)连续两天考试则共有以下4种可能性:周一周二,周二周三,周三周四,周四周五,在周四周五两天考试的可能性只有1种,故P (猜对)1.4=………………2分 周四 语、数 语、物 语、英 数、物 数、英 物、英 周五物、英数、英数、物语、英语、物语、数共有6种等可能性,其中同一天考语文、数学的有两种,……………………4分 ∴P (恰好同一天考语文、数学)21.63==………………6分 方法二:依题意可画树状图如下:语数英物语数英物物英数语周四下午物理英语数学语文周四上午共有12种等可能性,其中周四考语数的有4种,……………………4分∴P(恰好同一天考语文、数学)41.123==………………6分四、(本大题共3小题,每小题8分,共24分)18.解:(1)45% ,60人;………………2分(2)平均睡眠时间为8小时的人数为60×30%=18人,补全图例如下……4分(3)这部分学生的平均睡眠时间的平均数为7.2小时;…………6分(4)∵抽取的60名学生中,睡眠时间在8小时以下的有12+27=39人,∴1200名学生中睡眠不足的有6039×1200=780人.……………………8分19.解:(1)设横向通道的宽度为x m,则13182:3:422x x--=或13182:4:322x x--=……………………3分解得:1=x或 6.6x=(此时通道面积过大,舍去)所以纵向通道的宽度为1 m.……………………5分(2)设通道宽度为y m,BN=2a m,则⎩⎨⎧=++=+++1333182332yaayaaa,解得⎩⎨⎧==12ya所以此时通道的宽度为1 m.…………………………8分20.解:(1)如图,BM⊥x轴于点M,∵点B的坐标为(8,4),OC=BC,∴CM=8-BC,在Rt△BCM中,222BC CM BM=+,即222(8)4BC BC=-+,解得:BC=5,即菱形的边长为5;………………3分(2)∵D是OB的中点,xyMDECAOB∴点D 的坐标为:(4,2), ∵点D 在反比例函数ky x=上, ∴k =xy =4×2=8,8y x=, 又∵OC =5, ∴C (5,0), ∴可求直线BC 为42033y x =-,…………5分 令420833x x-=,解得126,1x x ==-(舍去) 当6x =时,8463y ==,∴点E 的坐标为:(6,43).……………………8分五、(本大题共2小题,每小题9分,共18分)21.解:(1)由三角形的内角和为180度可知:∠E+∠A +∠ABC =180°,∠F+∠A +∠ADC =180°, ∵∠E=∠F ,∴∠ADC =∠ABC ;………………2分 (2)由(1)可得∠ADC =∠ABC , 而四边形ABCD 为⊙O 的内接四边形,故∠ADC+∠ABC=180°,即∠ADC =∠ABC=90°, ∴∠A =48°;………………5分(3)如图,连结EF ,根据圆内接四边形的性质 得∠ECD =∠A ,再根据三角形外角性质得∠ECD =∠CEF +∠CFE ,则∠A =∠CEF +∠CFE ,………………7分 然后根据三角形内角和定理有∠A +∠CEF +∠CFE +∠AEB +∠AFD =180°,即2∠A +α+β=180°,再解方程即可得:902A αβ+∠=︒-.………9分22.解:(1)直线x =—1,(—1,—a );……………………2分 (2)①依题意得MA =MB ,当1y =0时,21-=x ,02=x , ∴AO =2,AM =2+m ,∴AB =2MA =2m +4=6;…………3分 ②作PH ⊥AO ,∴H (-1,0),AH =1,BH =2m +3=5,2221)(1a a AP +=-+=,同理225a BP +=当AB =AP 时,2261=+a ,解得:35=a (负值已舍去);当AB =BP 时,22625=+a ,解得:11=a (负值已舍去); 当AP =BP 时,22251a a +=+,不成立,即当a 取35或11时,△ABP 为等腰三角形;………………6分 ③∵点A 与点B ,点P 与点Q 均关于M 点成中心对称,E CDOBAF故四边形APBQ 为平行四边形,当90APB ∠=︒时,四边形APBQ 为矩形,………………7分 此时△APH ∽△PBH ,BHHPHP AH =, 即321+=m a a ,322+=m a ,23212-=a m , 当a=3时,3233212=-⨯=m ,S=a m )42(+=30……………………9分六、(本大题共12分)23.解:(1)DE AC ①∥;…………1分12S S =②.………………3分(2)证明:90DCE ACB ∠=∠=Q °,180DCM ACE ∴∠+∠=°. 又180ACN ACE ∠+∠=Q °,ACN DCM ∴∠=∠. 又90CNA CMD ∠=∠=Q °,AC CD =, ANC DMC ∴△≌△.AN DM ∴=.…………5分 又CE CB =Q ,12S S ∴=. …………7分 (3)如图,延长CD 交AB 于点P ,则有∠ABD =30°,PD =2,由BD =CD =4可得∠BCD =30°, ∴∠BPD =90°,BP 224223-= 同理可求DE =BE 43343BDE S =△,………………9分 当DCF BDE S S =△△时,14342DCF S PF =⨯⨯=△23PF =∴2323BF =,即BF 433833分A F 2F 1P D。
2020届初三中考数学一诊联考试卷含参考答案 (江西)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球2.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是().A.100元,100元B.100元,200元C.200元,100元D.200元,200元3.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°4.小张早晨去学校共用时15分,他跑了一段,走了一段,他跑步的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2900米,设他跑步的时间为x分,根据题意,可列出的方程是()A.250x+80(15﹣x)=2900 B.80x+250(15﹣x)=2900C.80x+250x=2900 D.250x+80(15+x)=29005.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.B.C.6D.6.如图,在一张长方形纸条上画一条截线AB,将纸条沿截线AB折叠,则△ABC一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形7.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.8.在△ABC中,点D、E分别在边AB和AC上,且DE∥BC,若AD:DB=1:1,则S△ADE:S四边形DBCE的值为()A.1:1B.1:2C.1:3D.1:49.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为( )A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90C .10x ﹣5(20﹣x)>90D .10x ﹣5(20﹣x)<9010.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有( )A .12个B .10个C .8个D .6个二、填空题(共4题,每题4分,共16分)11.在平面直角坐标系中,将二次函数y =﹣x 2+x +6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,将这个新函数的图象记为G (如图所示).当直线y =m 与图象G 有4个交点时,则m 的取值范围是_____.12.如图,在平行四边形ABCD 中,P 是AD 边上的一个点,连接PB ,PC ,M ,N 分别是PB ,PC 的中点;已知S ▱ABCD =16,则S △PMN =_____.13.某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要x 天,则根据题意,可列方程为__________.14.已知一个口袋中装有六个完全相同的小球,小球上分别标有﹣3,﹣2,﹣1,0,1,2六个数,搅均后一次从中摸出一个小球,将小球上的数用a 表示,则摸出小球上的a 值恰好使函数y =ax 的图象经过二、四象限,且使方程3311--=--x a x x ,有实数解的概率是_____. 三、解答题(共6题,总分54分)15.已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BCD =28°.(I )如图①,求∠ABD 的大小;(Ⅱ)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OCD 的大小.16.某校附近有一条笔直的公路l ,该路段车辆限速40千米/小时,数学实践活动小组设计了如下活动:在l 上确定A ,B 两点,并在AB 路段进行区间测速.在l 外取一点P ,作PC ⊥l ,垂足为点C .测得PC =30米,∠APC =71°,∠BPC =35°.上午9时测得一汽车从点A 到点B 用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)17.已知四边形ABCD 是正方形,AC 、BD 相交于点O ,过点A 作BAC ∠的平分线分别交BD 、BC 于点E 、F .(1)如图1,求证:2CF EO =;(2)如图2,连接CE ,在不添加其他字母和辅助线的条件下,直接写出图中所有的等腰三角形(等腰直角三角形除外).18.(1)求不等式组2151132523(2)x x x x -+⎧-≤⎪⎨⎪-<+⎩的整数解;(2)化简2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭ 19.为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如表:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西2020年中考数学模拟试卷一一、填空题1.计算:(﹣m3)2÷m4= .2.在△ABC中,AB=9,AC=12,BC=15,则△ABC的中线AD= .3.对于一个锐角三角形,甲测得边长分别是5cm,6cm,11cm,乙测得三个内角分别为33°,49°,78°,丙测得三个内角分别为33°,59°,88°,其中只有一个人测得结果是正确的,此人是.4.已知一元二次方程x2﹣4x﹣3=0的两根为m、n,则m2n+mn2= .5.“十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x元,男装部购买了原价为y元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为.6.如图,在Rt△ABC中,∠ABC=90°,BC=3,D为斜边AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B作BE⊥BD交DF延长线交于点E,连接CE.下列结论:①若BF=CF,则CE2+AD2=DE2;②若∠BDE=∠BAC,AB=4,则CE=;③△ABD和△CBE一定相似;④若∠A=30°,∠BCE=90°,则DE=.其中正确的是.(填写所有正确结论的序号)二、选择题7.﹣2的绝对值是()A.2B.﹣2C.0.5D.-0.58.下列各式计算结果是分式的是( ).A. B. C. D.9.在下列的四个几何体中,同一几何体的主视图与俯视图相同的是()10.2019年淮安市“周恩来读书节”活动主题是“阅读,遇见更美好的自己”.为了解同学们课外阅读情况,王老师对某学习小组10名同学5月份的读书量进行了统计,结果如下(单位:本):5,5,3,6,3,6,6,5,4,5,则这组数据的众数是( )A.3 B.4 C.5 D.611.若反比例函数kyx=的图象经过点(3)m m,,其中0m≠,则此反比例函数图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限12.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形A1B1C1D1,再顺次连结四边形A1B1C1D1各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为( )A.14B.10C.5D.2.5三、计算题13.计算:四、作图题14.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP= .五、解答题15.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°。
(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?16.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a-3|+|a+2|;(3)在a的取值范围内,m是最大的整数,n是最小的整数,求(m+n)m-n的值;(4)在a的取值范围内,当a取何整数时,不等式2ax+x>2a+1的解为x<1.17.为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择A、B中哪个转盘呢?并请说明理由.18.我市民营经济持续发展,城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工月平均收入随机抽样调查,将抽样的数据按“2 000元以内”、“2 000元~4 000元”、“4 000元~6 000元”和“6 000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有____________人,在扇形统计图中x的值为____________,表示“月平均收入在2 000元以内”的部分所对应扇形的圆心角的度数是____________;(2)将不完整的条形统计图补充完整,并估计我市城镇民营企业20万员工中,每月的收入在“2 000元~4 000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4 872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?19.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.20.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)21.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个(1(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?六、综合题22.如图,在平面直角坐标系xOy中,点A(-3,0),点B在x轴上,直线y=-2x+a经过点B与y轴交于点C(0,6),直线AD与直线y=-2x+a相交于点D(-1,n).(1)求直线AD的解析式;(2)点M是直线y=-2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S 与m之间的关系式.23.如图,已知正方形ABCD,E为形内一点,Rt△ABE,∠BAE=ɑ,(00<ɑ<450).将△ABE沿AE折叠,得到△AEF,延长AF与边CD交于G点,已知正方形ABCD的边长为4.(1)如图1,若ɑ=300,求CG的长度;(2)如图2,若G点为CD中点,求AE长度;(3)如图3,当F点落在AC上,求AE的长度.24.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.参考答案1.答案为:m2.2.答案为:7.5.3.答案为:丙4.答案为:﹣12.5.答案为:.6.答案为:①②④.解析:①∵∠ABC=90°,D为斜边AC的中点,∴AD=BD=CD,∵AF=CF,∴BF=CF,∴DE⊥BC,∴BE=CE,∵∵BE⊥BD,∴BD2+BE2=DE2,∴CE2+AD2=DE2,故①正确;②∵AB=4,BC=3,∴AC=,∴,∵∠A=∠BDE,∠ABC=∠DBE=90°,∴△ABC∽△DBE,∴,即.∴BE=,∵AD=BD,∴∠A=∠ABD,∵∠A=∠BDE,∠BDC=∠A+∠ABD,∴∠A=∠CDE,∴DE∥AB,∴DE⊥BC,∵BD=CD,∴DE垂直平分BC,∴BE=CE,∴CE=,故②正确;③∵∠ABC=∠DBE=90°,∴∠ABD=∠CBE,∵,但随着F点运动,BE的长度会改变,而BC=3,∴或不一定等于,∴△ABD和△CBE不一定相似,故③错误;④∵∠A=30°,BC=3,∴∠A=∠ABD=∠CBE=30°,AC=2BC=6,∴BD=,∵BC=3,∠BCE=90°,∴BE=,∵∴,故④正确;7.答案为:A;8.A.9.D.10.答案为:B.11.B.12.D13.答案为:14.解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.15.(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠AD C=90°,∠ADF∶∠FD C=3∶2,∴∠FDC=36°,∵DF ⊥AC ,∴∠DCO=90°﹣36°=54°,∵四边形ABCD 是矩形,∴OC=OD ,∴∠ODC=54°, ∴∠BDF=∠ODC ﹣∠FDC=18°. 16.解:17.解:列表如下:从表中可以发现:A 盘数字大于B 盘数字的结果共有5种.∴P(A 数较大)=95,P(B 数较大)=94.∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.18.解:(1)500 14 21.6°;(2)图略.估计我市城镇民营企业20万员工中,每月的收入在“2 000元~4 000元”的约:20×60%=12(万人).(3)用平均数反映月收入情况不合理.理由如下:从统计的数据来看,月收入在2 000元~4 000元的员工占60%,而在4 000元~6 000元的员工仅占20%,6 000元以上的员工占14%,因此,少数员工的月收入将平均数抬高到了4 872元.因此,用平均数反映月收入情况不太合理.19.(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.20.解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,∵DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(30+30)米,∴AN=AH+EF=(40+30)米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=20+30≈71米,答:条幅的长度是71米.21.解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x(元)之间存在一次函数关系,不妨设y=kx+b,则(280,300),(279,302)满足函数关系式,得解得,产销量y(个)与销售单价x (元)之间的函数关系式为y=﹣2x+860.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,将Q=60,y=160代入得到m=9600,此时Q=.(3)当Q=30时,y=320,由(1)可知y=﹣2x+860,所以x=270,即销售单价为270元,由于=,∴成本占销售价的.(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,400≥﹣2x+860,解得x≥230,即销售单价最低为230元.22.解:23.解:(1);(2);(3).24.解:。