种群相互竞争模型
种间相互作用包括竞争、捕食、互利共生等,是构成生物群

2.Tilman等(1981)研究了两种淡水硅藻:星杆藻 (Asterionella formosa)和针杆藻(Synedraulna)的 竞争。
3.勇地雀和仙人掌地雀 加拉帕哥斯群岛 生态位转换
4.藤壶和小藤壶 分布是由竞争和环境忍 受力共同作用
高斯假说:在一个稳定的环境内,两个以上受 资源限制的、但具有相同资源利用方式的种, 不能长期共存在一起,也即完全的竞争者不能 共存
(2) 也有许多实例表明捕食者和食草动物对于 其猎物种群密度没有多大影响。
▪ 为了控制荆豆(Ulex europaeus)的危害,新西兰曾 引进一种梨象(Apion ulicis),其结果是,虽然梨象 成了当地数量最多的一种昆虫,每年消耗95%的荆 豆种子,但对植物数量本身没有什么影响。
▪ 榛鸡(Bonasia umbellus)是一种有产业价值鸡类, 其数量波动很大。但捕打其捕食性天敌的结果,只能 使营巢期的雏鸟存活率提高,但对秋季成鸟的种群密 度没有影响。
(二)竞争类型及其一般特征
竞争可以分为: 资源利用性竞争(exploitation competition) 相互干涉性竞争(interference competition) ▪ 资源利用性竞争: 两种生物之间没有直接干涉,只有
因资源总量减少而产生的对竞争对手的存活、生殖和生长 的间接影响。
▪ 相互干涉性竞争也很常见,例如杂拟谷盗和赤拟谷盗
Tilman模型
(四)生态位
生态位是指物种在生物群落或生态系统中的地位和 角色。 超体积生态位
▪ 基础生态位: 某物种能生存的最大 空间
▪ 实际生态位: 当在群落中有竞争对 手存在时,其实际栖息的空间要 小得多
资源利用曲线
生物在某一生态位维度上的分布,如以图表示,常呈正态曲线。 这种曲线可以称为资源利用曲线,它表示物种具有的喜好位置 (如喜食昆虫的大小)及其散布在喜好位置周围的变异度。
种群竞争模型研究

物种混居,必然会出现以食物、空间等资源为核心的种间关系。从理论上讲, 任何物种对其他物种的影响只可能有三种形式,即有利、有害、或无利无害的中 间态。因此,全部的种间关系只是这三种作用形式的可能组合。最常见的关系为 种间竞争、捕食和寄生。当环境中同时存在着两个种群,且两个种群存在着竞争
时可建立方程进行讨论,得到两种不同种群之间竞争的结果。研究种群竞争的关 系有很多应用,现举例如下:
假如人口数真能保持每 34.6 年增加一倍,那么人口数将以几何级数的方式 增长(如图 1)
例如,到 2515 年,人口约达 2×1014 人,即使海洋全部变成陆地,每人也 只有 9.3 平方英尺的活动范围,而到 2665 年,人口约达 4×1015 人,只好一个 人站在另一人的肩上排成二层了。故马尔萨斯模型是不完善的。
r
人口统计数据与 Malthus 模型计算数据对比:
年
1625
人口(亿) 5
表 2.2.1 世界人 口数量统计数据
1830 1930 1960 1974
10
20
30
40
1987 50
1999 60
年
1908
人口(亿) 3.0
表 2.2.2 中国人口数量统计数据
1933
1953 1964 1982
4.7
关键词:种群 竞争 数学模型 环境条件
1.2 英文摘要 Biological populations have different biomass at different growth
stages, and the changes of biomass over time are restricted by various complex factors. The competition between the biological populations is often reflected in the competition between the limited space resources and other living conditions, and the change of environmental conditions has an effect on the real growth rate of the biological population. In this paper, we give the mathematical model of the competition of biological populations, and then apply it in ecology, and then predict the competition outcome of the biological species. The relationship between the species is important for food and living space. Darwin wrote in the book "natural selection and the origin of the species": "because of the similarities in the habits and qualities especially in terms of structure, so if they are in a state of mutual competition, they are more intense than those of different biological species." In this paper, we give a mathematical model of population competition, and apply it to some aspects of ecology, and then predict the results of biological competition.
种间竞争模型

种间竞争模型概念种间竞争模型是描述群体内成员们互相竞争冲突,而不关注单个成员本身的内部群体模型。
它侧重于investigating种群中的某种竞争作用。
模型背景种间竞争模型的重要背景是正如科学家约瑟夫科尔劳克所指出的,植物的物种组成受限于个体成长环境中各种竞争,如氮摩尔定理在实证植物组成中的应用。
竞争的概念这启发研究者们思考种间竞争模型和它的竞争重要性。
种间竞争可分为有害竞争和无害竞争,有害竞争表明有某一物种成长会影响另一物种的生长,而无害竞争则是某物种增长时,影响其他物种生长的能力有限,两种竞争都可以改变群体结构。
竞争的结果种间竞争的结果可以是相互抵抗或相对平衡,有害竞争的结果往往是一种物种占优势,同时另一物种会面临消失,而无害竞争则可以形成一种轮回现象,每个物种都会持续在一定水平附近反复循环。
实证研究种间竞争模型已经在多个实证研究当中被应用,很多研究表明种间竞争参与者,不限于植物,对群体动态和多样性具有重要影响。
营养限制学习实验表明种间竞争会增强植物的营养效应和限制,同时也能增强植物在固氮料素和总碳水化合物累积方面的能力。
另外,也有研究表明,种间竞争能影响植物的立足力,而影响植物的立足力又会改变植物群落的多样性和数量。
结论总之,种间竞争模型是用于描述群体内其他成员展现出的竞争行为,及其结果。
它可能会影响人们最关心的生态系统,从而影响群体动态和多样性,还可能影响植物耐受性,生物多样性和群落结构。
因此,种间竞争模型可以帮助我们控制自然环境中的营养平衡,促进生物多样性平衡,抑制病原植物的发展,并防止种间竞争中的突变。
实例 动物种群的相互竞争与相互依存的模型

实例2动物种群的相互竞争与相互依存的模型在生物的种群关系中,一种生物以另一种生物为食的现象,称为捕食.一般说来,由于捕食关系,当捕食动物数量增长时,被捕食动物数量就逐渐下降,捕食动物由于食物来源短缺,数量也随之下降,而被捕食动物数量却随之上升.这样周而复始,捕食动物与被捕食动物的数量随时间变化形成周期性的震荡.田鼠及其天敌的田间种群消长动态规律也是如此.实验调查数据表明:无论是田鼠还是其天敌的数量都呈周期性的变化,天鼠与天敌的作用系统随时间序列推移,田鼠密度逐渐增加,其天敌随之增加,但时间上落后一步.由于天敌密度增加,则田鼠密度降低,而田鼠密度的降低,则其天敌密度亦减少,如此往复循环,从而形成一定的周期.试用数学模型来概括这一现象,并总结出其数量变化的近似公式.一问题分析及模型的建立设)(t x 和)(t y 分别表示t 时刻田鼠与其天敌的数量,如果单独生活,田鼠的增长速度正比于当时的数量,即x dtdx λ=而田鼠的天敌由于没有被捕食对象,其数量减少的速率正比于当时的数量,即y dtdy μ-=现在田鼠与其天敌生活一起,田鼠一部分遭到其天敌的消灭,于是以一定的速率α减少,减少的数量正比于天敌的数量,因此有x y dtdx )(αλ-=类似地,田鼠的天敌有了食物,数量减少的速率μ减少β,减少的量正比于田鼠的数量,因此有y x dtdy )(βμ--=上述公式,最后两个方程联合起来称为Volterra-Lot 方程,这里μλβα,,,均为正数,初始条件为0)0(,)0(y y x x ==现在通过实验调查所得到的数据如表,此数据为每隔两个月田间调查一次,得到的田鼠及其天敌种群数量的记录,数量的单位经过处理.试建立合理的数学模型.表田鼠种群数量记录29.733.132.569.1134.2236.0269.6162.269.639.834.020.722.037.657.6124.6225.0272.7195.794.541.925.710.922.533.548.292.5183.3268.5230.6115.5表田鼠天敌种群数量记录1.6 1.3 1.1 1.2 1.1 1.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.91.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3二模型的求解Volterra-Lotok 方程的解析解即y x ,的显示解难求出,因此公式的参数方程不宜直接用Matlab 函数来拟合解,可用如下的方法来求其近似解.Volterra-Lotok 可转化为⎩⎨⎧+-=-=dtx y d dt y x d )(ln )(ln βμαλ在区间],[1i i t t -上积分,得ii i i i S t t x x 111)(ln ln αλ--=---ii i i i S t t y y 211)(ln ln βμ+--=---这里,⎰-=ii t t i ydt S 11,⎰-=ii t t i xdt S 22,m i ,,1 =于是得到方程组⎩⎨⎧==222111B P A B P A 这里⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-im m m S t t S t t S t t A 1121211011 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-m m mS t t S t t S t t A 212212012 ⎪⎪⎭⎫ ⎝⎛=αλ1P ⎪⎪⎭⎫ ⎝⎛-=βμ2P Tm m x x x x B ln ,,(ln 1011-= T m m y y y y B )ln ,,(ln 101-= 因此方程组参数的最小二乘解为111111)(B A A A P T T -=22122)(B A A A P T T -=由于)(t x 和)(t y 均为未知,因此21,S S i 用数值积分方法的梯形公式解)(21111--+-≈=⎰-i i i i t t i y y t t ydt S i i )(1121--+-==⎰-i i i i t t x x t t xdt S i i这样就可求得参数的近似值.模型参数求解的程序为clear all,clcX=[29.733.132.569.1134.2236.0269.6162.269.639.8...34.020.722.037.657.6124.6225.0272.7195.794.541.925.7...10.922.533.548.292.5183.3268.5230.6115.5];Y=[1.6 1.3 1.1 1.2 1.11.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.9...1.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3];N=[X;Y];T=[0:2:60];for i=1:30A(i,1)=T(i+1)-T(i);A(i,[23])=((T(i+1)-T(i))/2)*[-(N(1,i+1)+N(1,i)),-(N(2,i+1)+N(2,i))];B(i,[12])=[log(N(1,i+1)/N(1,i)),log(N(2,i+1)/N(2,i))];end;A1=A(:,[13]);P1=inv((A1'*A1))*A1'*B(:,1)A2=A(:,[12]);P2=inv((A2'*A2))*A2'*B(:,2)上述结果代入Volterra-Lotok方程,用MATLAB函数ode45求方程在时间[0,60]的数值解.作图可看到田鼠及其天敌数量的周期震荡.求方程Volterra-Lotok的数值解的程序为定义函数vlok为[vlok.m]function dydt=vlok(T,Y)dydt=[(0.8765-0.5468*Y(2))*Y(1);(-0.1037+0.0010*Y(1))*Y(2)];clear all,clcX=[29.733.132.569.1134.2236.0269.6162.269.639.8...34.020.722.037.657.6124.6225.0272.7195.794.541.925.7...10.922.533.548.292.5183.3268.5230.6115.5];Y=[1.6 1.3 1.1 1.2 1.11.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.9...1.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3];N=[X,Y];T=[0:2:60];[t,Y]=ode45(@vlok,[0:0.5:60],[29.71.6]);plot(t,Y(:,1)/100,'k');hold on;plot(t,Y(:,2),'-.k');title('田鼠及其天敌的Volterra-Lotok模型拟合曲线');xlabel('时间');ylabel('数量(只/每百)');gtext('田鼠');gtext('天敌');legend('田鼠','天敌');legend('田鼠','天敌');图田鼠及其天敌的模拟曲线实线和虚线分别为田鼠和天敌的实际值,田鼠的数量为y坐标乘以100.。
几类生物竞争模型的解

几类生物竞争模型的解全文共四篇示例,供读者参考第一篇示例:生物竞争是生态系统中普遍存在的现象,不同生物种群之间为了获取有限的资源或生存空间而展开斗争的过程。
生物竞争模型是对这种竞争过程进行数学建模和研究的方法,通过模型可以更好地理解和预测种群之间的相互作用及演化规律。
在生物学研究中,主要有几类生物竞争模型,包括物种竞争模型、资源竞争模型、捕食者-猎物模型等。
一、物种竞争模型:物种竞争模型用于描述不同种群之间的竞争关系,其中最著名的模型之一是Lotka-Volterra竞争模型。
该模型是由意大利数学家阿尔弗雷多·洛特卡和美国生物学家维托尔·沃尔泰拉于20世纪初提出的,它基于如下假设:1)只有两个物种竞争;2)竞争对个体出生和死亡的速率有影响。
Lotka-Volterra竞争模型可以用以下微分方程表示:\begin{cases}\frac{dx}{dt} = ax - bx^2 - cxy \\\frac{dy}{dt} = -fy + exy\end{cases}x和y分别表示两个竞争物种的种群数量,a、b、c、d为相关参数。
该模型可以描述两个种群在共享资源时的竞争关系,通过数值计算可以得到不同种群数量随时间的演化规律。
资源竞争模型用于研究不同种群对有限资源的竞争过程,其中最典型的模型是Rosenzweig-MacArthur资源竞争模型。
该模型基于几个基本假设:1)资源是有限的;2)种群的增长受到资源的限制;3)不同种群对资源的利用有差异。
Rosenzweig-MacArthur资源竞争模型可以用以下微分方程表示:三、捕食者-猎物模型:捕食者-猎物模型用于描述捕食者和猎物之间的相互作用,其中最著名的模型是Lotka-Volterra捕食者-猎物模型。
该模型基于捕食者和猎物种群数量之间的相互依赖关系,可以用以下微分方程表示:x表示猎物种群数量,y表示捕食者种群数量,a、b、c、d为相关参数。
两种群间的相互竞争

两种群间的相互竞争摘要本文针对两种群间的竞争问题作了详细的论述,主体分为两部分,第一部分主要通过理论分析的方法来阐述模型,第二部分主要利用MATLAB通过数值分析的方法从另一个角度来阐述模型,两个部分相辅相成,从不同的角度对同一个模型进行分析,并在最后得到一致的结果。
另外本文在第一部分主要以理论的方式对模型进行数学上的描述,在第二部分主要以生物间的角度对模型进行描述,与此同时对第一部分作一个总结。
关键词:稳定性平面动力系统增广相空间轨线一、问题提出两种群竞争模型很好的描述了种群间的各种关系,而如果从发展的眼光来看待问题,我们不禁对两种群在未来很长一段时间内的状态产生兴趣,换句话说,我们要研究的是在无穷远的将来,两个种群的数量变化关系,这对我们进一步研究生物学的各种问题是有意义的。
二、基本假设假设1: 有甲乙两个种群,它们独自生存时的数量变化服从Logistic 规律。
假设2: 两种群一起生存时,乙种群对甲种群增长的阻滞作用与乙种群的数量成正比,甲种群对乙种群增长的阻滞作用与甲种群的数量也成正比。
三、问题分析根据“假设1”,我们容易得到方程组如下1122()(1)()(1)dx t x r x dt n dy t y r y dtn ⎧=-⎪⎪⎨⎪=-⎪⎩ (1) 其中()x t ,()y t 分别为甲乙两种群随时间变化的数量;1r ,2r 为它们的固有增长率;1n 和2n 为环境允许条件下,甲乙两种群的最大数量。
再由“假设2”,对方程组(1)变形,我们得到方程组如下11122212()(1)()(1)dx t x y r x s dt n n dy t x y r y s dt n n ⎧=--⎪⎪⎨⎪=--⎪⎩(2) 其中1s 的含义是,对于供养甲种群的资源而言,单位数量乙(相对于2n )的消耗为单位数量甲(相对于1n )消耗的1s 倍;2s 的含义是,对于供养乙种群的资源而言,单位数量甲(相对于1n )的消耗为单位数量乙(相对于2n )消耗的2s 倍。
种群增长和竞争的数学模型

种群增长和竞争的数学模型摘 要:本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的Volterra 模型,最后介绍了多种群的Gause-Lotka-Volterra 和三种群的RPS 博弈模型,对其做了比较和分析,得出了一些有益的启示。
为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。
本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的V olterra 模型,最后介绍了三种群的Gause-Lotka-V olterra 和RPS 博弈模型。
一般生态系统的分析可以通过一些简单模型的复合来研究,根据生态系统的特征建立相应的模型。
种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。
1.1 马尔萨斯(Malthus )模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r 基本上是一常数,(r =b -d , b 为出生率,d 为死亡率),既: 1dN r N dt = 或 dNrN dt= (1)其解为0()0()r t t N t N e -=(2)其中N 0=N (t 0)为初始时刻t 0时的种群数。
马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。
令种群数量翻一番所需的时间为T ,则有: 002rT N N e =(3)ln 2T r=(4)人口统计数据与Malthus 模型计算数据对比:表1 世界人口数量统计数据表2 中国人口数量统计数据比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6亿(即3.06×1010),人口增长率约为2%,人口数大约每35年增加一倍。
查1700年至1961年共260年的人口实际数量,发现两者几乎完全一致,且按马氏模型计算,人口数量每34.6年增加一倍,两者也几乎相同。
Lotka-Volterra模型

N1、N2:分别为两个物种的种群数量
K1、K2:分别为两个物种的环境容纳量 r1、r2 :分别为两个物种的种群增长率
依逻辑斯蒂模型有如下关系: dN1 / dt = r1 N1(1 - N1 / K1) 其中:N/K可以理解为已经利用的空间(称为“已利用空间 项”),则(1-N/K)可以理解为尚未利用的空间(称为“未 利用空间项”) 当两个物种竞争或者利用同一空间时,“已利用空间项”还 应该加上N2种群对空间的占用。则: dN1 / dt = r1 N1(1 - N1 / K1 - αN2 / K1) ——(1) 其中,α:物种2对物种1的竞争系数,即每个N2个体所占用 的空间相当于α个N1个体所占用空间。 则有,β:物种1对物种2的竞争系数,即每个N1个体所占用 的空间相当于β个N2个体所占用空间。则另有: dN2 / dt = r2 N2(1 - N2 / K2 - βN1 / K2) ——(2)
何为平衡呢,就是N1和N2种群的数量都不发生变化,即: 1/dt = r1 N1(1 - N1/K1 - αN2/K1)= 0 ———(1) 2/dt = r2 N2(1 - N2/K2 - βN1/K2)= 0 ———(2) 满足两个方程时,两种种群平衡,则显然焦点既是平衡点。 那么,对于结果1和结果2,两个种群的平衡线没有焦点, 则不可能达到平衡,总是有一方最终被完全排挤掉。 结果3虽然存在一个平衡点,但是很不稳定,只要自然条 件的微小波动造成偏离平衡点,那么其中占优的一方就会 最终取得生存竞争的胜利。 结果4是一个稳定的平衡,无论N1和N2种群数量的组合 (N1,N2)落在直角坐标系内哪一区域,最终都将使得N1 种群和N2种群的数量趋向平衡点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学实验设计
课题:
两种群相互竞争模型如下:
()1(11)12()2(12)12x y x t r x s n n x y y t r y s n n ⎧
=--⎪⎪⎨
⎪=--⎪⎩
其中x (t ),y(t)分别是甲乙两种群`的数量,r1,r2为它们的固有增长率,n1,n2为它们的最大容量。
s1的含义是,对于供养甲的资源而言,单位数量乙(相对n2)的消耗量为单位数量甲(相对n1)消耗的s1倍,对于s2也可做相应的解释。
分析:
这里用x (t)表示甲种群在时刻t 的数量,即一定区域内的数量。
y(t)表示乙种群在时刻t 的数量。
假设甲种群独立生活时的增长率(固有增长率)为r1,则x (t)/ x=r1,而种群乙的存在会使甲的增长率减小,且甲种群数量的增长也会抑制本身数量的增长,即存在种间竞争。
这里,我们设增长率的一部分减少量和种群乙的数量与最大容纳量的比值成正比,与s1(s1表示最大容纳量乙消耗的供养甲的资源是最大容纳量甲消耗该资源的s1倍)成正比。
另一部分的减少量和种群甲的数量与甲的最大容纳量的比值成正比。
则我们可以得到如下模型:
x(t)=r1*x*(1-x/n1-s1*y/n2)
同样,我们可以得到乙种群在t时刻的数量表达式:y(t)=r2*y*(1-s2*x/n1-y/n2)
如果给定甲、乙种群的初始值,我们就可以知道甲、乙种群数量随时间的演变过程。
对于上述的模型,我们先设定好参数以后,就可以用所学的龙格库塔方法及MATLAB 软件求其数值解;
问题一:
设r1=r2=1,n1=n1=100,s1=0.5,s2=2, 初值x0=y0=10,计算x(t),y(t),画出它们的图形及相图(x,y),说明时间t充分大以后x(t),y(t)的变化趋势(人民今天看到的已经是自然界长期演变的结局)。
编写如下M文件:
function xdot=jingzhong(t,x)
r1=1;r2=1;n1=100;n2=100;s1=0.5;s2=2; xdot=diag([r1*(1-x(1)/n1-s1*x(2)/n2),r 2*(1-s2*x(1)/n1-x(2)/n2)])*x;
然后运行以下程序:
ts=0:0.1:10;
x0=[10,10];
[t,x]=ode45(@jingzhong,ts,x0);
[t,x]
plot(t,x),grid,
gtext('\fontsize{12}x(t)'),gtext('\fontsize {12}y(t)'),
pause,plot(x(:,1),x(:,2)),grid, xlabel('x'),ylabel('y')
得到10年间甲、乙两种群数量变化的图象为:
1
2
3
4
5
6
7
8
9
10
0102030405060708090100x(t)
y(t)
相图为:
10
20304050
60708090100
05
10
1520
25
x
y
结论:当t 充分大时,x 和y 的数量悬殊变大,最终是一方灭绝,一方繁荣。
如上述模型中,甲种群繁荣下去,乙种群很快灭绝。
问题二:
改变r1,r2,n1,n2,x0,y0,但s1,s2不变,(或保持s1<1,s2>1),计算并分析所得结果;若s1=1.5(>1),s2=0.7(<1)再分析结果,由此你的得到什么结论,请用各参数生态学上的含义作出解释。
分析:当s1,s2不变(或保持s1<1,s2>1)时
1
2
3
4
5
6
7
8
9
10
05101520253035404550x(t)
y(t)
当s1=1.5(>1),s2=0.7(<1)时
1
2
3
4
5
6
7
8
9
10
0102030405060708090100x(t)
y(t)
当s1,s2不变(或保持s1<1,s2>1)时总有甲种
群繁荣,乙种群灭绝。
而当s1=1.5(>1),s2=0.7(<1)时,有乙种群繁荣,甲种群灭绝。
因此我们得到:在两个种群的相互竞争中s1,s2是两个关键指标.从上面对它们的解释可知,s1 >l ,s2<1表示在消耗供养甲的资源中,乙的消耗多于甲,因而对甲增长的阻滞作用乙大于甲,即乙的竞争力强于甲. 问题三:
实验当s1=0.8(<1),s2=0.7(<1)时会有什么样的结果:当s1=1.5(>1),s2=1.7(>1)时又会有什么样的结果。
能解释这些结果吗?
分析:当s1=0.8(<1),s2=0.7(<1)时有如图:
012345678910
10
20
30
40
50
60
70
x(t)
y(t)
即甲、乙竞争激烈程度加剧,没有一方有明显优势;
当s1=1.5(>1),s2=1.7(>1)时又会有如图:
012345678910
10
20
30
40
50
60
70
80
x(t)
y(t)
说明当s1、s2都大于1时,竞争中有一方具有绝对优势。
本题中为甲有绝对优势;。