高二数学统计测试题(完整资料)
2020秋新人教版高中数学必修二第九章统计考试测试卷(含答案解析)

第九章统计测试卷(时间:120分钟分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.学生甲参加基本能力测试,其成绩为270分,若其成绩为第90百分位数,则下列说法中错误的是()A.学生乙的成绩为270分,所以学生乙的成绩为第90百分位数B.学生丙的成绩为第90百分位数,所以学生丙的成绩一定是270分C.学生丁的成绩为271分,所以学生丁的成绩可能也是第90百分位数D.小明的成绩为280分,所以小明成绩的百分位数比第90百分位数大答案:C2.某工厂生产甲、乙、丙三种型号的产品,产品的数量之比为3∶5∶7,现用分层随机抽样的方法抽出样本量为n的样本,若样本中甲种产品有18件,则样本量n等于()A.54B.90C.45D.126答案:B3.某社团有60人,下表为此社团的年龄频数分布表,则此社团第60百分位数为()年龄/岁36 38 39 43 46 48 50 55 58 60 62 65频数 4 5 7 5 5 2 1 10 7 8 3 3A.50B.49C.55D.58答案:C4.如果数据x1,x2,…,x n的平均数是x,方差是s2,那么3x1+2,3x2+2,…, 3x n+2的平均数和方差分别是()A.x和s2B.3x和9s2C.3x+2和9s2D.3x+2和12s2+4答案:C5.某商业集团想了解集团旗下五个超市的销售情况,通知五个超市把最近一周每天的销售额统计上报,要求既能反映一周内每天销售额的多少,又能反映一周内每天销售额的变化情况和趋势,则最好选用的统计图表为()A.频率分布直方图B.折线统计图C.扇形统计图D.统计表答案:B6.为了解某校高二年级1 000名学生的体能情况,随机抽查部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成的频率分布直方图如图所示,根据统计图的数据,下列结论错误的是()A.该校高二年级学生1分钟仰卧起坐的次数超过30的人数约为200B.该校高二年级学生1分钟仰卧起坐的次数少于20的人数约为20C.该校高二年级学生1分钟仰卧起坐的次数的中位数约为26.25次D.该校高二年级学生1分钟仰卧起坐的次数的众数约为27.5次答案:B7.从某项综合能力测试中抽取100人的成绩,统计后得下表,则这100人成绩的标准差为()分数 5 4 3 2 1人数20 10 30 30 10A.2B.2√105C.3 D.85答案:B8.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.两组工人完成生产任务的工作时间(单位:min)为:第一种生产方式:68,72,76,77,79,82,83,83,84,85,86,87,87,88,89,90, 90,91,91,92第二种生产方式:65,65,66,68,69,70,71,72,72,73,74,75,76,76,78,81, 84,84,85,90则下列结论中,表述不正确的是()A.第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80 minB.第二种生产方式比第一种生产方式的效率更高C.这40名工人完成任务所需时间的中位数为80 minD.无论哪种生产方式的工人完成生产任务平均所需要的时间都是80 min答案:D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某报就该措施对2 400人进行了问卷调查,并根据调查结果制成扇形统计图如图所示,则下列结论正确的是()A.“不支持”部分所占的比例大约是112B.“一般”部分包含的人数估计是800C.若扇形统计图中圆的半径为2,则“非常支持”部分扇形的面积是76πD.“支持”部分包含的人数估计是1 100答案:ACD10.甲、乙两名同学本学期某科目六次考试成绩的统计图如图所示,两组数据的平均数分别为x甲,x乙,则下列说法正确的是()A.每次考试甲的成绩都比乙的成绩高B.甲的成绩比乙的成绩稳定C.x甲大于x乙D.甲的成绩的极差大于乙的成绩的极差答案:BC11.某学校为了调查学生一周在生活方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60]元的学生有60人,下列说法正确的是()A.样本中支出在区间[50,60]上的频率为0.03B.样本中支出不少于40元的学生有132人C.n的值为200D.若该校有学生2 000人,则一定有600人的支出在50到60元答案:BC12.某赛季甲、乙两名篮球运动员各6场比赛的得分情况如上表,则下列说法正确的是()场次 1 2 3 4 5 6甲的得分31 16 24 34 18 9乙的得分23 21 32 11 35 10A.甲运动员得分的极差小于乙运动员得分的极差B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员得分的平均值大于乙运动员得分的平均值D.甲运动员的成绩比乙运动员的成绩稳定答案:BD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某校高一年级学生有850人,高二年级学生有950人,高三年级学生有1 400人,现采用分层随机抽样抽取样本量为64的一个样本,那么在高三年级应抽取的人数为28.14.甲、乙两位射击爱好者在某次射击比赛中各射靶5次,命中的环数分别如下,甲:7,8,7,4,9;乙:9,5,7,8,6,则射击更稳定的爱好者成绩的方差为2.15.(本题第一空2分,第二空3分)为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:kg)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到的频率分布直方图如图所示,则a=0.04.现采用分层随机抽样的方法,从第3,4,5组中随机抽取6名学生,则第3,4,5组抽取的学生人数依次为3,2,1.16.某城市为了了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制成折线图如图所示.根据该折线图,下列结论正确的是②③④(填序号).①月接待游客量逐月增加;②年接待游客量逐年增加;③各年的月接待游客量高峰期大致在7,8月份;④各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳.四、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算过程)17.(10分)根据某单位职工的月收入情况画出的样本频率分布直方图如图所示,已知图中第一组的频数为4 000,请根据该图提供的信息,解答下列问题.(1)为了分析职工的收入与年龄、学历等方面的关系,必须从样本中按月收入用分层随机抽样方法抽出100人作进一步分析,则从月收入在区间[3 000,4 000)上的这组中应抽取多少人?(2)试估计样本数据的中位数与平均数.解:(1)由题意知,月收入在区间[2 000,3 000)上的频率为0.000 4×1 000=0.4.因为月收入在区间[2 000,3 000)上的有4 000人,所以样本量n=4000=10 000.0.4因为月收入在区间[3 000,4 000)上的频率为0.000 2×1 000=0.2,所以月收入在区间[3 000,4 000)上的人数为0.2×10 000=2 000.因为从10 000人中用分层随机抽样的方法抽出100人,所以月收入在区间[3 000,4 000)上的这组中应抽取100×2 000÷10 000=20(人).(2)因为月收入在区间[2 000,4 000)上的频率为0.4+0.2=0.6>0.5,=3 000+500=3 500.所以样本数据的中位数为3 000+0.5-0.40.0002由频率分布直方图可知,月收入在区间[6 000,7 000)上的频率为1-(0.000 4+0.000 2+0.000 15+0.000 125+0.000 05)×1 000=0.075.故样本数据的平均数为2 500×0.4+3 500×0.2+4 500×0.15+5 500×0.125+6 500×0.075+7 500×0.05=3 925.18.(10分)某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74乙班:90 76 86 81 84 87 86 82 85 83(1)求两个样本的平均数;(2)求两个样本的方差和标准差;(3)试分析比较两个班的学习情况.解:(1)x 甲=110×(82+84+85+89+79+80+91+89+79+74)=83. 2, x 乙=110×(90+76+86+81+84+87+86+82+85+83)=84. (2)s 甲2=110×[(82-83. 2)2+(84-83. 2)2+(85-83. 2)2+(89-83. 2)2+(79- 83. 2)2+(80-83. 2)2+(91-83. 2)2+(89-83. 2)2+(79-83. 2)2+(74-83. 2)2]=26. 36,s 乙2=110 [(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+ (86-84)2+(82-84)2+(85-84)2+(83-84)2]=13. 2,则s 甲=√26.36≈5. 13,s 乙=√13.2≈3. 63.(3)因为x 甲<x 乙,所以甲班比乙班平均水平低.因为s 甲>s 乙,所以甲班没有乙班稳定.所以乙班的总体学习情况比甲班好.19.(10分)一次数学知识竞赛中,两组学生成绩如下表:50 60 70 80 90 100人数 2 5 10 13 14 6 乙组 4 4 16 2 12 12已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.解:(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数角度看,甲组成绩好些.(2)s 甲2=12+5+10+13+14+6×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13× (80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172. s 乙2=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256. 因为s 甲2<s 乙2,所以甲组成绩较乙组成绩稳定. (3)甲、乙两组成绩的中位数、平均数都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有 26人,从这一角度看,甲组成绩总体较好.(4)从成绩统计表看,甲组成绩大于或等于90分的人数为20人,乙组成绩大于或等于90分的人数为24人,所以乙组成绩在高分阶段的人数多,同时,乙组得满分的比甲组得满分的多6人,从这一角度看,乙组成绩较好.20.(10分)从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分组:第一组[155,160),第二组[160,165),…,第八组[190,195],按上述分组方法得到的频率分布直方图的一部分如图所示,已知第一组与第八组人数相同,第六组的人数为4.(1)请补全频率分布直方图,并求出第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180 cm 以上(含180 cm)的人数;(3)估计身高的第95百分位数.解:(1)第六组的频率为450=0.08,则0.085=0.016.由频率分布直方图的性质,可得第七组的频率为1-0.08-5×(0.008×2+0.016+0.04×2+0.06)=0.06.则0.065=0.012.补全频率分布直方图如图所示.(2)身高在第一组[155,160)的频率为0.008×5=0.04,身高在第二组[160,165)的频率为0.016×5=0.08,身高在第三组[165,170)的频率为0.04×5=0.2,身高在第四组[170,175)的频率为0.04×5=0.2,由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5,设这所学校的800名男生的身高的中位数为m,则170<m<175.由0.04+0.08+0.2+(m-170)×0.04=0.5,得m=174.5,所以估计这所学校的800名男生的身高的中位数为174.5 cm.由以上过程得后三组频率为1-0.52-0.06×5=0.18,所以身高在180 cm以上(含180 cm)的人数为0.18×800=144.(3)由题图可知,身高低于185 cm的所占比例为5×(0.008+0.016+0.04+0.04+0.06)+0.08=0.90=90%;身高在190 cm以下的所占比例为0.90+0.06=0.96.所以第95百分位数一定位于区间[185,190)上,≈189.2,185+5×0.95-0.900.96-0.90即估计身高的第95百分位数为189.2 cm.。
高二数学统计试题

高二数学统计试题1.某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求出物理成绩低于50分的学生人数;(Ⅱ)估计这次考试物理学科及格率(60分及以上为及格)(Ⅲ)从物理成绩不及格的学生中选两人,求他们成绩至少有一个不低于50分的概率.【答案】(1)6;(2)% ;(3).【解析】1)解决频率分布直方图的问题,关键在于找出图中数据之间的关系,这些数据中,比较明显的有组距、,间接的有频率,小长方形的面积,合理使用这些数据,再结合两个等量关系:小长方形的面积等于频率,小长方形的面积之和等于1,因此频率之和为1;(2)最高矩形的底边的中点的横坐标即是众数,中位数左边和右边的小长方形的面积和相等的;(3)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举.试题解析:(Ⅰ)因为各组的频率和等于1,故低于50分的频率为:所以低于50分的人数为(人)(Ⅱ)依题意,成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),频率和为所以,抽样学生成绩的合格率是%于是,可以估计这次考试物理学科及格率约为%(Ⅲ)“成绩低于50分”及“[50,60)”的人数分别是6,9.所以从成绩不及格的学生中选两人,他们成绩至少有一个不低于50分的概率为:【考点】频率分布直方图的认识以及随机事件的概率.2.某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:(Ⅰ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;附:K2=,其中n=a+b+c+d【答案】(Ⅰ)有97.5%的把握认为这两个班在这次测试中成绩的差异与实施课题实验有关;【解析】解题思路:(Ⅰ)补充完整列联表,利用公式求值,结合临界值表进行判断.规律总结:独立性检验的基本思想.试题解析:(Ⅰ)由题意求得:,,有97.5%的把握认为这两个班在这次测试中成绩的差异与实施课题实验有关【考点】1.独立性检验的基本思想;2.频率分布直方图.3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为k=6.635,而p(K≥6.635)=0.010,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误D.以上三种说法都不正确。
人教版高中数学必修第二册 第九章 统计 单元测试卷 (含答案)

人教版高中数学必修第二册第九章统计单元测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.抽签法B.按性别分层随机抽样C.按学段分层随机抽样D.随机数法2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下表:身高[100,110)[110,120)[120,130)[130,140)[140,150]频数535302010由此表估计这100名学生身高的中位数为(结果保留4位有效数字)()A.119.3B.119.7C.123.3D.126.73.高二(1)班某宿舍有7人,他们的身高(单位:cm)分别为170,168,172,172,175,176,180,则这7个数据的第60百分位数为()A.168B.175C.172D.1764.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于()A.mhB.C.D.m+h5.2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静、韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程、金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到如图C4-1所示的频率分布直方图,由于不慎将部分数据丢失,但知道后5组频数之和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()图C4-1A.64B.54C.48D.277.某商场一年中各月份的收入、支出情况的统计如图C4-2所示,则下列说法中正确的是()图C4-2A.支出最高值与支出最低值的比是8∶1B.4至6月份收入的平均数为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同8.为了研究一种新药的疗效,选100名患者随机分成两组,每组50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成图C4-3,其中“*”表示服药者,“+”表示未服药者.则下列说法中,错误的是()图C4-3A.服药组的指标x的平均数和方差比未服药组的都小B.未服药组的指标y的平均数和方差比服药组的都大C.以统计的频率作为概率,估计患者服药一段时间后指标x低于100的概率为0.94D.这种疾病的患者的生理指标y基本都大于1.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了如图C4-4所示的折线图,根据该折线图,下列结论正确的是()图C4-4A.月跑步里程逐月增加B.月跑步里程的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳10.某学校为了调查学生在一周生活方面的支出(单位:元)情况,抽取了一个容量为n的样本,将样本数据按[20,30),[30,40),[40,50),[50,60]分组后所得频率分布直方图如图C4-5所示,其中支出在[50,60]内的学生有60人,则下列说法正确的是()图C4-5A.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数有132C.n的值为200D.若该校有2000名学生,则一定有600人支出在[50,60]内11.统计某校n名学生某次数学同步练习的成绩(单位:分,满分150分),根据成绩依次分成六组[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到频率分布直方图如图C4-6所示,若不低于140分的人数为110,则下列说法正确的是()图C4-6A.m=0.031B.n=800C.100分以下的人数为60D.成绩在区间[120,140)内的人数超过50%12.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某社会调查中心联合问卷网,对2400人进行问卷调查,并根据调查结果得到如图C4-7所示的扇形图,则下列结论正确的是()图C4-7A.“不支持”部分所占的比例是10%B.“一般”部分对应的人数是800C.扇形图中如果圆的半径为2,则“非常支持”部分对应扇形的面积是65πD.“支持”部分对应的人数是1080请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一组数据按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=.14.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图C4-8所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.图C4-815.国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是17,20,16,18,19,则这五位同学答对题数的方差是.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图C4-9所示).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用比例分配的分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.图C4-9四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)将一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,已知这组数据的中位数为5,求这组数据的平均数与方差.18.(12分)某车站在春运期间为了了解旅客的购票情况,随机调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min).下面是对所得数据进行统计分析后得到的频率分布表和频率分布直方图.频率分组频数[5,10)100.10[10,15)10②[15,20)①0.50[20,25]300.30合计1001.00解答下列问题:(1)在表中填写出缺失的数据并补全频率分布直方图(如图C4-10所示);(2)估计旅客购票用时的平均数.图C4-1019.(12分)某班主任利用周末时间对该班2019年最后一次月考的语文作文分数进行了统计,发现分数都位于20~55之间,现将分数情况按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]分成七组后,作出频率分布直方图如图C4-11所示,已知m=2n.(1)求频率分布直方图中m,n的值;(2)求该班这次月考语文作文分数的平均数和中位数.(每组数据用该组区间的中点值作为代表)图C4-1120.(12分)已知甲、乙两人在相同条件下各射靶10次,每次射击的命中环数如图C4-12所示.(1)求甲、乙两人射击命中环数的平均数和方差;(2)请根据甲、乙两人射击命中环数的平均数和方差,分析谁的射击水平高.图C4-1221.(12分)某地区100位居民的人均月用水量(单位:t)的分组及各组的频数分别为[0,0.5],4;(0.5,1],8;(1,1.5],15;(1.5,2],22;(2,2.5],25;(2.5,3],14;(3,3.5],6;(3.5,4],4;( 4,4.5],2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数.(3)当地政府制定了人均月用水量不超过3t的标准,若超过3t则加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?22.(12分)我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100户家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图C4-13所示的频率分布直方图.(1)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(2)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).图C4-13参考答案与解析1.C[解析]由题意得,最合理的抽样方法是按学段分层随机抽样,故选C.2.C[解析]设中位数为t,则有5100+35100+30100× -12010=0.5,解得t≈123.3.故选C.3.B[解析]将这7人的身高从小到大排序,可得168,170,172,172,175,176,180.∵7×60%=4.2,∴第5个数据为所求的第60百分位数,即这7个数据的第60百分位数为175.故选B.,所以h= | - |,则|a-b|= ,故选C.4.C[解析]在频率分布直方图中小长方形的高等于频率组距5.A[解析]根据题意可知,不变的数字特征是中位数.故选A.6.B[解析]前两组的频数为100×(0.05+0.11)=16.因为后五组的频数之和为62,所以前三组的频数之和为38,所以第三组的频数为38-16=22.又最大频率为0.32,故第四组的频数为0.32×100=32.所以a=22+32=54.故选B.7.D[解析]由图可知,支出最高值为60万元,支出最低值为10万元,其比是6∶1,故A错误;4至6月份的平均收入为13×(50+30+40)=40(万元),故B错误;利润最高的月份为3月份和10月份,故C 错误;由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确.故选D.8.B[解析]服药组的指标x的取值相对集中,方差较小,且服药组的指标x的平均数小于未服药组的指标x的平均数,故选项A中说法正确;未服药组的指标y的取值相对集中,方差较小,故选项B 中说法错误;服药组的指标x值有3个大于100,所以估计患者服药一段时间后指标x低于100的概率为0.94,故选项C中说法正确;未服药组的指标y值只有1个数据比1.5小,则这种疾病的患者的生理指标y基本都大于1.5,故选项D中说法正确.故选B.9.BCD[解析]2月跑步里程比1月的小,故A错误;月跑步里程9月最大,故B正确;月跑步里程从小到大对应的月份依次为2月、7月、3月、4月、1月、8月、5月、6月、11月、10月、9月,故月跑步里程的中位数为8月份对应的里程,故C正确;1月至5月的月跑步里程相对于6月至11月,波动性更小,变化比较平稳,故D正确.故选BCD.10.BC[解析]由频率分布直方图得,样本中支出在[50,60]内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.3×60+60=132,故B正确;n=600.3=200,故C正确;在D中,若该校有2000名学生,则大约有600人支出在[50,60]内,故D错误.故选BC.11.AC[解析]由图可知10×(m+0.020+0.016+0.016+0.011+0.006)=1,解得m=0.031,故A正确;因为不低于140分的频率为0.011×10=0.11,所以n=1100.11=1000,故B错误;因为100分以下的频率为0.006×10=0.06,所以100分以下的人数为1000×0.06=60,故C正确;对选项D,成绩在区间[120,140)内的频率为0.031×10+0.016×10=0.47<0.5,人数不超过50%,故D错误.故选AC.12.ACD[解析]“不支持”部分所占的比例是1-45%-30%-15%=10%,A正确;“一般”部分对应的人数是2400×15%=360,B不正确;“非常支持”部分对应扇形的面积是π×22×30%=65π,C正确;“支持”部分对应的人数为2400×45%=1080,D正确.故选ACD.13.15[解析]由中位数的定义知 +172=16,∴x=15.14.25[解析]∵该校通过手机收看“空中课堂”的学生人数所占的百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25.15.2[解析]这五位同学答对题数的平均数 =17+20+16+18+195=18,则方差s2=15×[(17-18)2+(20-18)2+(16-18)2+(18-18)2+(19-18)2]=2.16.0.0303[解析]因为10×(0.035+0.020+0.010+0.005+a)=1,所以a=0.030.身高在[120,130),[130,140),[140,150]三组内的学生人数为100×(0.030+0.020+0.010)×10=60,其中身高在[140,150]内的学生中人数为100×0.010×10=10,所以从身高在[140,150]内的学生中选取的人数应为1060×18=3.17.解:因为数据-1,0,4,x,7,14的中位数为5,所以4+ 2=5,解得x=6.设这组数据的平均数为 ,方差为s2,则 =16×(-1+0+4+6+7+14)=5,s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18.解:(1)表中缺失的数据分别为①50,②0.10.补全后的频率分布直方图如图所示.(2)估计旅客购票用时的平均数为7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.30=17.5(min).19.解:(1)由频率分布直方图,得=2 ,(0.01+0.03+0.06+ +0.03+ +0.01)×5=1,解得 =0.04, =0.02.(2)该班这次月考语文作文分数的平均数为22.5×0.05+27.5×0.15+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.25.因为(0.01+0.03+0.06)×5=0.5,所以该班这次月考语文作文分数的中位数为35.20.解:(1)由折线图可知甲射击10次命中的环数分别为9,5,7,8,7,6,8,6,7,7.乙射击10次命中的环数分别为2,4,6,8,7,7,8,9,9,10.则x 甲=110×(9+5+7+8+7+6+8+6+7+7)=7(环).x 乙=110×(2+4+6+8+7+7+8+9+9+10)=7(环),甲2=110×[(9-7)2+(5-7)2+(7-7)2×4+(6-7)2×2+(8-7)2×2]=1.2,乙2=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.(2)因为x 甲=x 乙, 甲2< 乙2,所以甲的射击稳定性比乙好,故甲的射击水平高.21.解:(1)作出频数分布表,如下.分组频数频率[0,0.5]40.04(0.5,1]80.08(1,1.5]150.15(1.5,2]220.22(2,2.5]250.25(2.5,3]140.14(3,3.5]60.06(3.5,4]40.04(4,4.5]20.02合计1001.00(2)由频率分布表画出频率分布直方图,如图所示.由频率分布直方图得这组数据的平均数=0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.∵人均月用水量在[0,2]内的频率为0.04+0.08+0.15+0.22=0.49,在(2,2.5]内的频率为0.25,∴中位数为2+0.5−0.490.25×0.5=2.02.众数为2+2.52=2.25.(3)月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量不超过3t,因此政府的解释是正确的.22.解:(1)因为0.06×2×1+0.11×2×3+0.18×2×5+0.09×2×7+0.06×2×9=4.92.因此全市家庭月均用水量平均数的估计值为4.92t.(2)频率分布直方图中,用水量低于2t的频率为0.06×2=0.12.用水量低于4t的频率为0.06×2+0.11×2=0.34.故全市家庭月均用水量的25%分位数的估计值为2+0.25−0.120.11≈3.18(t).。
高二数学必修5与必修3(统计)试题(一)

高二数学必修5与必修3(统计)试题(一)满分:120分 时间:90分钟班级: 姓名: 得分:一.选择题(本大题共10小题,每小题5分,共50分。
答案填入答题框内)1、线性回归方程ˆy=bx +a 必过点 A 、(0,0) B 、(x ,0) C 、(0,y ) D 、(x ,y ) 2、ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为A .21B .23 C.1 D.33、在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为A .99B .49C .102D . 101 4、已知0x >,函数4y x x=+的最小值是 A .5 B .4 C .8 D .6 5、在等比数列中,112a =,12q =,132n a =,则项数n 为 A. 3B. 4C. 5D. 66、不等式20(0)ax bx c a ++<≠的解集为R ,那么A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>7、设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为A . 5 B. 3 C. 7 D. -88、在抽查某产品尺寸的过程中,将其尺寸分成若干组,[a,b ]是其中一组,抽查出的个体数在该组上的频率为m ,该组上的直方图的高是h ,则b -a 等于A 、hmB 、h m C 、 mh D 、 与m ,h 无关 9、在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于2A.3 2B.-3 1C.-3 1D.-410、已知甲、乙两名同学在五次数学测验中的得分如下,则甲、乙两名同学数学学习成绩甲:85,91,90,89,95。
乙:95,80,98,82,95。
A 、甲比乙稳定B 、甲、乙稳定程度相同C 、乙比甲稳定D 、无法确定二、填空题(本题共5小题,每小题5分,共25分) 11、在ABC ∆中,045,B c b ===那么A =_____________; 12、已知等差数列{}n a 的前三项为32,1,1++-a a a ,则此数列的通项公式为________ . 13、不等式21131x x ->+的解集是 . 14、已知数列{}n a 的前n 项和2n S n n =+,那么它的通项公式为________15、从2005个编号中抽取20个号码作为样本,若采用系统抽样的方法,则抽样的间隔为 ___ ____三、解答题 (本大题共4个小题,共45分;解答应写出文字说明、证明过程或演算步骤) 16、(12分)在生产过程中测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表: (1)完成频率分布表,并在给定的坐标系中画出频率分布直方图和频率分布折线图;(2)统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的众数,平均值,中位数.(要求:结果精确到0.01)纤度17、(10分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆybx a =+; (2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考:最小二乘法求线性回归方程系数公式 x b y a xn xy x n yx b ni ini i i -=-⋅-=∑∑==,1221.(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)18、(10分)如图,货轮在海上以35n mile/h 的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为︒152的方向航行.为了确定船位,在B 点处观测到灯塔A 的方位角为︒122.半小时后,货轮到达C 点处,观测到灯塔A 的方位角为︒32.求此时货轮与灯塔之间的距离。
高二数学2-3统计综合检测3

x、y 之间的相关关系,并求得回归直线方程,分
别得到以下四个结论:
①y 与 x 负相关且 y^= 2.347x-6.423;② y 与 x 负相关且 y^=- 3.476x+ 5.648;
③y 与 x 正相关且 y^= 5.437x+8.493;④ y 与 x 正相关且 y^=- 4.326x- 4.578. 其中一定不正确的结论的序号是 ( )
1x之间的回归曲线方程是 (
)
A . y^=1x+ 1
B . y^= 2x+ 3 C.^y= 2x+ 1 D.y^ = x-1
[答案 ] A [解析 ] 把 x=1, 12, 13,14代入四个选项,逐一验证可得
y^ =1x+ 1.
4.给出下列五个命题: ①将 A、 B、 C 三种个体按 3 1 2 的比例分层抽样调查,如果抽取的 本容量为 30;
A . 95%
k
3.841
B. 99% C. 99.5%
6.635 7.879 D. 99.9%
10.828
[答案 ] C [解析 ] 由公式得 K2=50× 20× 15- 5× 10 2
25× 25× 30× 20 ≈ 8.333>7.879 ,
故有 1- 0.005=99.5%的把握认为疾病 A 与性别有关.
A .变量 x 与 y 正相关, u 与 v 正相关 B .变量 x 与 y 正相关, u 与 v 负相关 C.变量 x 与 y 负相关, u 与 v 正相关 D.变量 x 与 y 负相关, u 与 v 负相关
[答案 ] C [解析 ] 本题主要考查了变量的相关知识. 用散点图可以判断变量 x 与 y 负相关, u 与 v 正相关.
∴ a^= 4,∴回归直线方程为 y^= 2x+ 4.
高二数学统计练习与答案

高二数学周练7一、选择题(40分)1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体 B.个体 C.样本 D.样本容量2.一学校高中部有学生2 000人,其中高一学生800人,高二学生600人,高三学生600人.现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三各年级被抽取的学生人数分别为( )A.15,10,25B.20,15,15C.10,10,30D.10,20,203.一个容量为10的样本数据,分组后,组距与频数如下:[1,2),1;[2,3),1;[3,4),2;[4,5),3;[5,6),1;[6,7),2.则样本在区间[1,5)上的频率是( ) A.0.70 B.0.25C.0.50D.0.204.观察新生婴儿的体重表,其频率分布直方图如图2-1所示,则新生婴儿体重在[2 700,3 000)的频率为( )A.0.001B.0.1C.0.2D.0.35A.37.0%C.0分D。
4分6.某校为了了解课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用图2-1表示,根据条形图可得到这50名学生这一天平均每人的课外阅读时间为()A.0.6h B.0.9h C.1.0h D.1.5h7.已知某两个变量z、y之间存在着线性相关关系,其回归线性方程是多y^=2-1.5x,则估计x=o.2时,y的值大约是 ( )A,1.7 B-5:C.2.3 D.无法确定)A. 6=-+ D. 378y xy x=-+ y x=+ B. 42y x=+ C. 260二、填空题(30分)9.若总体中含有1 650个个体,现在要采用系统抽样法,从中抽取一个容量为35的样本,分段时应从总体中随机剔除_______个个体,编号后应均分为_______段,每段有_______个个体.10.已知样本数据25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28.在列频率分布表时,如果取组距为2,那么应分成_______组,24.5~26.5这一组的频率是_______.11.若施化肥量x与水稻产量y的回归直线方程为y=5x+250,当施化肥量为80 kg 时,预计的水稻产量为____________.12.下列抽样:①标号为1—15的15个球中,任意选出3个作样本,按从小到大排序,随机选起点l,以后l+5,l+10(超过15则从1再数起)号入样;②厂里生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔5分钟抽一件产品进行检验;③某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的人数为止;④影院调查观众的某一指标,通知每排(每排人数相等)座号为12的观众留下来座谈.上述抽样中是系统抽样的是___________.(请把符合条件的序号填到横线上)13.数据x1,x2, …,x8的平均数为6,标准差为2,则数据2x1-6,2x2-6, …,2x8-6的平均数为___________,方差为_________.14.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如下图,若130—140分数段的人数为90人,则90—100分数段的人数为__________________.三、解答题15.(本小题满分12分)对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他试判断选谁参加该项重大比赛更合适..16.(本题12分)在2007全运会上两名射击运动员甲、乙在比赛中打出如下成绩:甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩;17. (本小题满分14分)某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(Ⅰ)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?18.(本小题满分14分)向量.)(),1),4(sin(),1,cos 22(b a x f x b x a ⋅=+=-=函数π(1). 的值;求)3(πf (2).求函数)(x f 的单调递增区间.19、(本小题满分14分)(3)预测当广告费支出7(百万元)时的销售额。
高二数学统计试题

高二数学统计试题1.已知变量之间具有线性相关关系,其散点图如图所示,则其回归方程可能为()A.B.C.D.【答案】B【解析】根据散点图的带状分布特点判断回归方程的斜率和截距.解:因为散点图由左上方向右下方成带状分布,故线性回归方程斜率为负数,排除A,C.由于散点图的带状区域经过y轴的正半轴,故线性回归方程的截距为正数,排除D.故选:B.【考点】线性回归方程.2.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查发现,y与x具有相关关系,回归方程为=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为()A.83%B.72%C.67%D.66%【答案】A【解析】由题意可知,当居民人均消费水平为千元时,则,解答,即职工人均工资水平为千元,所以人均消费额占人均工资收入的百分比为,故选A.【考点】回归直线方程.3.下列两个量之间的关系是相关关系的为()A.匀速直线运动的物体时间与位移的关系B.学生的成绩和体重C.路上酒后驾驶的人数和交通事故发生的多少D.水的体积和重量【答案】C【解析】略4.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取了70人,则为()A.100B.150C.200D.250【答案】A【解析】根据已知可得:,故选择A【考点】分层抽样5.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
【答案】(1)乙班的平均身高较高;(2)57.2;(3).【解析】(1)由茎叶图,获得所有身高数据,计算平均值可得;(2)由方差公式计算方差;(3)由茎叶图知乙班这名同学中身高不低于的同学有人,可以把5人编号后,随便抽取2名同学这个事件含有的基本事件可以用列举法列举出来(共10个),其中含有身高176cm基本事件有4个,由概率公式计算可得.试题解析:(1)由茎叶图知:设样本中甲班位同学身高为,乙班位同学身高为,则.2分.4分∵,据此可以判断乙班同学的平均身高较高.设甲班的样本方差为,由(1)知.则, 8分由茎叶图可知:乙班这名同学中身高不低于的同学有人,身高分别为、、、、.这名同学分别用字母、、、、表示.则记“随机抽取两名身高不低于的同学”为事件,则包含的基本事件有:、、、、、、、、、共个基本事件. 10分记“身高为的同学被抽中”为事件,则包含的基本事件为:、、、共个基本事件.由古典概型的概率计算公式可得:. 12分【考点】茎叶图,均值,方差,古典概型.6.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08B.07C.02D.01【答案】D【解析】选取的数据依次为08,02,14,07,01,所以选出来的第5个个体的编号为01【考点】随机数表7.(2013·湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论的序号是( )A.①②B.②③C.③④D.①④【答案】D【解析】由题意得①与负相关且,此结论错误,由线性回归方程知,此两变量的关系是正相关;②与负相关且,此结论正确,线性回归方程符合负相关的特征;③与负相关且,此结论正确,线性回归方程符合正相关的特征;④与负相关且,此结论不正确,线性回归方程符合负相关的特征,综上判断知,①④是一定不正确的,故选D.【考点】线性回归方程.【方法点晴】本题主要考线性回归方程的应用,其中解答中涉及到线性回归直线方程的概念、回归直线方程中回归系数的含义等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,试题比较简单,属于基础题,正确理解线性回归直线方程的回归系数的含义,也就是一次项系数的符号与正相关还是负相关的对应是解答的关键.8.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754 如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为_____.【答案】25%【解析】四次射击中恰有三次击中目标有,故所求概率.【考点】随机数模拟概率的近似值.【方法点晴】本题主要考查随机数模拟概率的近似值,属于较易题型.解决先确定样本空间的总体个数,再从中选取符合事件范围的基本事件个数,如:恰有三次击中目标,就必须寻找四位数中要有三个数字是.抽签法中的随机数表法有所不同的是:重号可以重复计算(切记!).然后代入公式即可求出正解.9.甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,,分别表示甲乙两名运动员这项测试成绩的标准差,则有()A.B.C.D.【答案】C【解析】对于甲运动员,,;对于乙运动员,,,故答案为C.【考点】由茎叶图求平均数和标准差.10.为了解名学生对学校教改试验的意见,打算从中抽取一个容量为的样本,考虑采用系统抽样,则分段的间隔为_______;【答案】【解析】抽样间隔为,故填.【考点】系统抽样.。
(易错题)高中数学必修第二册第四单元《统计》检测(包含答案解析)

一、选择题1.甲、乙两名同学8次数学测验成绩如茎叶图所示,12,x x 分别表示甲、乙两名同学8次数学测验成绩的平均数,12,s s 分别表示甲、乙两名同学8次数学测验成绩的标准差,则有A .12x x >,12s s <B .12x x =,12s s <C .12x x =,12s s =D .12x x <,12s s >2.某高中一年级两个数学兴趣小组平行对抗赛,满分100分,每组20人参加,成绩统计如图:根据统计结果,比较甲、乙两小组的平均成绩及方差大小( )A .x x <甲乙,22S S >甲乙 B .x x >甲乙,22S S <甲乙 C .x x <甲乙,22S S <甲乙D .x x >甲乙,22S S >甲乙3.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下: 甲地:总体平均数为3,中位数为4; 乙地:总体平均数为1,总体方差大于0; 丙地:总体平均数为2,总体方差为3; 丁地:中位数为2,众数为3;则甲、乙、两、丁四地中,一定没有发生大规模群体感染的是( ) A .甲地B .乙地C .丙地D .丁地4.已知一组数据的频率分布直方图如图所示,则众数、中位数、平均数是A .63、64、66B .65、65、67C .65、64、66D .64、65、645.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为A.B.C.D.6.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为()A.280 B.320 C.400 D.1000A B C D E F G. 7.某个产品有若干零部件构成,加工时需要经过7道工序,分别记为,,,,,,其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序Y必须要在工序X完成后才能开工,则称X为Y的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:工序A B C D E F G加工时间3422215紧前工序无C无C,A B D,A B现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是()(假定每道工序只能安排在一台机器上,且不能间断.)A.11个小时B.10个小时C.9个小时D.8个小时8.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是()年之间出生,80前指1979年及以前注:90后指1990年及以后出生,80后指19801989出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后一定比80前多D.互联网行业中从事技术岗位的人数90后一定比80后多9.某体校甲、乙两个运动队各有6名编号为1,2,3,4,5,6的队员进行实弹射击比赛,每人射击1次,击中的环数如表:学生 1号 2号 3号 4号 5号 6号 甲队 6 7 7 8 7 7 乙队676797则以上两组数据的方差中较小的一个为2s (= ) A .16B .13C .12D .1第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案10.统计某校n 名学生的某次数学同步练习成绩(满分150分),根据成绩分数分成六组:[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[]140,150,绘制频率分布直方图如图所示,若已知不低于140分的人数为110,则n 的值是( )A .800B .900C .1200D .100011.我国古代数学名著《九章算术》中有如下问题“今有北乡八千七百五十八,西乡七千二百三十六,南乡八千三百五十六,凡三乡,发役三百七十八人,欲以算数多少出之,何各几何?”意思是:北乡有8758人,西乡有7236人,南乡有8356人,现要按人数多少从三乡共征集378人,问从各乡征集多少人?在上述问题中,需从西乡征集的人数是 ( ) A .102B .112C .130D .13612.设样本数据1210,,,x x x 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =,则1210,,,y y y 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +13.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为0m ,平均值为x ,则( )A.e m=0m=x B.e m=0m<xC.e m<0m<x D.0m<e m<x二、解答题14.某高级中学今年高一年级招收“国际班”学生720人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这720人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:第一批次第二批次第三批次女m n72男180132k已知在这720名学生中随机抽取1名,抽到第一批次、第二批次中女学生的概率分别是0.25,0.15.m n k的值;(1)求,,(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取6名同学问卷调查,则三个批次被选取的人数分别是多少?(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.15.全国中小学生的体质健康调研最新数据表明我国小学生近视眼发病率为22.78%,初中生为55.22%,高中生为70.34%.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视.除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图:(1)写出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.16.某微商对某种产品每天的销售量(x件)进行为期一个月的数据统计分析,并得出了该月销售量的直方图(一个月按30天计算)如图所示.假设用直方图中所得的频率来估计相应的事件发生的概率.(1)求频率分布直方图中的a的值;(2)求日销量的平均值(同一组中的数据用该组区间的中点值作代表);(3)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.17.为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:序号()i分组(分数)组中值()i G频数(人数)频率()i F60,7065①0.121[)70,807520②2[)80,9085③0.243[)90,10095④⑤4[]合计501(1)填充频率分布表中的空格;(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.18.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.项目员工A B C D E F 子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金 × × ○ × × × 赡养老人○○×××○(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 19.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中4a b =.(I )求,a b 的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从[)50,60,[)60,70中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[)50,60的概率.20.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q 镇2009~2018年梅雨季节的降雨量(单位:mm )的频率分布直方图,试用样本频率估计总体概率,解答下列问题:()1“梅实初黄暮雨深”.请用样本平均数估计Q 镇明年梅雨季节的降雨量;()2“江南梅雨无限愁”.Q 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(kg /亩)与降雨量的发生频数(年)如22⨯列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小? (完善列联表,并说明理由). 亩产量\降雨量 [)200,400[)[]100,200400,500⋃合计<6002600≥1合计10()20P K k ≥ 0.50 0.40 0.25 0.15 0.10 0k0.4550.7081.3232.0722.703(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)21.随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.对服务好评 对服务不满意 合计 对商品好评8040120(1) 是否有99.9%的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)22.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.23.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 24.语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如下:(Ⅰ)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. (附参考公式)若2(,)XN μσ,则()0.68P X μσμσ-<≤+=,(22)0.96P X μσμσ-<≤+=.25.青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.分组频数频率[50,60)20.0480.16[60,70)10[70,80)[80,90)140.28[90,100]合计1.00(1)填写答题卡上频率分布表中的空格,并补全频率分布直方图;(2)试估计该年段成绩在[70,90)段的有多少人?(3)请你估算该年段的平均分.26.某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m、n、t的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据茎叶图中的数据,计算出甲、乙同学测试成绩的平均数与方差、标准差,即可得出结论 【详解】由茎叶图可知,甲的成绩分别为:78,79,84,85,85,86,91,92. 乙的成绩分别为:77,78,83,85,85,87,92,93. ∴11(7879848585869192)858x =+++++++=,22222211171[(7885)(7985)00(8685)(9185)(9285)]88s =-+-+++-+-+-=;21(7778838585879293)858x =+++++++=,22222221230[(7785)(7885)00(8785)(9285)(9385)]88s =-+-+++-+-+-=∴12x x =,12s s < 故选B. 【点睛】本题考查了茎叶图、平均数与方差的应用问题,是基础题.众数即出现次数最多的数据,中位数即最中间的数据,平均数即将所有数据加到一起,除以数据个数,方差是用来体现数据的离散程度的.2.A解析:A 【分析】由茎叶图可得甲乙两个小组中的20个数据,利用平均数公式求解x 甲与x 乙并比较大小,再由茎叶图的集中程度比较2S 甲与2S 乙的大小,则答案可求.【详解】由茎叶图可得甲小组中的20个数据分别为:45,49,51,58,61,63,71,73,76,76,77,77,77,80,82,83,86,86,90,93.x 甲=120(45+49+51+58+61+63+71+73+76+76+77+77+77+80+82+83+86+86+90+93)=72.7.由茎叶图可得乙小组中的20个数据分别为: 53,63,66,71,72,74,75,75,75,77,78,78,78,79,81,84,85,86,93,94.x 乙=120(53+63+66+71+72+74+75+75+75+77+78+78+78+79+81+84+85+86+93+94)=76.85. 则x x <甲乙,再由茎叶图可知,甲小组的数据比较分散,乙小组的数据集中在茎7上,相对集中,故22S S >甲乙.故选:A . 【点睛】本题考查茎叶图,考查学生读取图表的能力及运算能力,考查平均数与方差的求解,是基础题.3.C解析:C 【分析】平均数与中位数,不能限制极端值的出现,因而可能会出现超过7人的情况;方差体现的是数据的离散情况,不知道方差的具体值,不能判断是否出现超过7人的情况;众数是出现次数多的数据,不能限制极端值的大小. 【详解】对于甲地, 总体平均数为3,中位数为4.平均数与中位数,不能限制极端值的出现,因而可能会出现超过7人的情况,所以甲地不符合要求;对于乙地, 总体平均数为1,总体方差大于0.没有给出方差具体的大小,如果方差很大,有可能出现超过7人的情况,所以乙地不符合要求;对于丁地:中位数为2,众数为3. 中位数与众数不能限制极端值的大小,因而可能出现超过7人的情况,所以丁地不符合要求; 对于丙地,根据方差公式()()()2222123110s x x x x x x ⎡⎤=-+-+-+⋅⋅⋅⎢⎥⎣⎦.若出现大于7的数值m ,则()()()22222312 3.610s m x x x x ⎡⎤=-+-+-+⋅⋅⋅>⎢⎥⎣⎦,与总体方差为3矛盾,因而不会出现超过7人的情况出现. 综上可知,丙地符合要求. 故选:C 【点睛】本题考查了平均数、众数、中位数与方差表示数据的特征,对数据整体进行估算,属于中档题. 4.B解析:B【分析】①在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;②中位数是所有小长方形的面积和相等的分界线;③平均数是各小长方形底边中点的横坐标与对应频率的积的和.【详解】解:由频率直方图可知,众数=60+70=652;由100.03+50.04=0.5⨯⨯,所以面积相等的分界线为65,即中位数为65;平均数=550.3+650.4+750.15+850.1+950.05=67⨯⨯⨯⨯⨯.故选B.【点睛】本题主要考查频率直方图的众数、中位数、平均数,需理解并牢记公式.5.B解析:B【解析】【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计
1、 某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他
们中抽取一个容量为36的样本,最适合抽取样本的方法是( ) A .简单随机抽样 B .系统抽样
C .分层抽样
D .先从老年人中剔除一人,然后分层抽样 2、下列说法中,正确的是( )
(1)数据4、6、6、7、9、4的众数是4。
(2)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势。
(3)平均数是频率分布直方图的“重心”。
(4)频率分布直方图中各小长方形的面积等于相应各组的频数。
A .(1)(2)(3) B.(2)(3) C.(2)(4) D.(1)(3)(4)
3、某地区共有10万户居民,该地区城市住户与农村住户之比为4:6,根据分层抽样方法,调查了该地区1000户居民冰箱拥有情况,调查结果如表所示,那么可以估计该地区农村住户
A .1.6万户
B .4.4万户
C .1.76万户
D .0.24万户 4、下列正确的个数是( )
(1) 在频率分布直方图中,中位数左边和右边的直方图的面积相等。
(2) 如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变。
(3)一个样本的方差是_s 2
=1/20[(x 1一3)2
+-(X 2—3) 2
+…+( X n 一3) 2
],则这组数据等总和等于60.
(4) 数据123,,,...,n a a a a 的方差为2
σ,则数据1232,2,2,...,2n a a a a 的方差为24σ
A . 4 B. 3 C .2 D . 1 5、 为了解某校高三学生的视力情况,
随机地抽查了该校200名高三学生
的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最多一组学生数为a ,视力在4.6到5.0
之间的频率为b ,则a , b 的值分别为( ) A .0.27, 78 B .54 , 0.78
C .27, 0.78
D .54, 78
6、在调查高一年级1500名学生的身高的过程中,抽取了一个样本并将其分组画成频率颁直方图,[160cm ,165cm]组的小矩形的高为a ,[165cm ,170cm]组小矩形的高为b,试估计该高一年集学生身高在[160cm ,170cm]范围内的人数
7、从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,试估计鱼池中共有鱼的条数为
8、一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出200人作进一步调查,则在[1500,3000](元)月收入段应抽出 人. 9、用随机数表法从100名学生(男生25人)中抽取20人进行评教,某男生被抽取的机率是
10、进行系统抽样时,若确定分段间隔为k ,在第1段用简单随机抽样确定第一个个体编号为
l ,则第n 个个体编号为 11、已知右图所示的一组数据:
y 与x 之间的线性回归方程ˆy
a bx =+必过定点
(精确到小数后面两位)。
(横坐标为X 平均数,纵坐标为Y 平均数)
12、 对某电子元件进行寿命追踪调查,情况如下.
(1)列出频率分布表;(2)画出频率分布直方图及频率分布折线图; (3)估计元件寿命在100~400 h 以内的在总体中占的比例; (4)从频率分布直方图可以看出电子元件寿命的众数是多少
13、甲、乙两台机床在相同的技术条件下,同时生产一种零件,现在从中抽测10个,它们的尺寸分别如下(单位:mm ).
甲机床:10.2 10.1 10 9.8 9.9 10.3 9.7 10 9.9 10.1; 乙机床:10.3 10.4 9.6 9.9 10.1 10.9 8.9 9.7 10.2 10. (1)用茎叶图表示甲,乙台机床尺寸;
(2)分别计算上面两个样本的平均数和方差.如图纸规定零件的尺寸为10 mm ,从计算的结果来看哪台机床加工这种零件较合适?(要求写出公式,并利用公式笔算)
14、已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料: 设y 对x 呈线性相关关系,试求:
(1)线性回归方程a bx y +=)
的回归系数b a ,; (2)估计使用年限为10年时,维修费用是多少?
(线性回归方程a bx y +=)中的系数b a ,可以用公式⎪⎪⎪⎩⎪⎪⎪
⎨⎧
-=--=∑∑==x
b y a x n x y x n y x b n i i i i i 21
21
)。