长沙理工大学大学物理A上题库教学内容
长沙理工大学物理热学题库及答案

一、选择题:(每题3分)1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3 n1,则混合气体的压强p为(A) 3 p1. (B) 4 p1.(C) 5 p1. (D) 6 p1.[]2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为:(A) pV / m. (B) pV / (kT).(C) pV/ (RT). (D) pV/ (mT).[]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为:(A) (1/16) kg. (B) 0.8 kg.(C) 1.6 kg. (D) 3.2kg.[]4、在标准状态下,任何理想气体在1 m3中含有的分子数都等于(A) 6.02×1023. (B)6.02×1021.(C) 2.69×1025. (D)2.69×1023.(玻尔兹曼常量k= 1.38×1023J·K1) []5、一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高. (B) 将降低.(C) 不变. (D)升高还是降低,不能确定.[]6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是:(A) p1> p2. (B) p1< p2.(C) p1=p2. (D)不确定的.[]7、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.[]8、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ]9、温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ ]10、1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(A) RT 23. (B)kT 23. (C)RT 25. (D)kT 25. [ ] (式中R 为普适气体常量,k 为玻尔兹曼常量)11、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量,分别有如下关系:(A) n 不同,(E K /V )不同,不同.(B) n 不同,(E K /V )不同,相同.(C) n 相同,(E K /V )相同,不同.(D) n 相同,(E K /V )相同,相同. [ ]12、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B .(B) 为(E / V )A >(E / V )B .(C) 为(E / V )A =(E / V )B .(D) 不能确定. [ ]13、两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量(A) 12 J . (B) 10 J(C) 6 J . (D) 5J . [ ]14、压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为:(A)25pV . (B) 23pV . (C) pV . (D) 21pV . [ ]15、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量) (A) pV Mm 23. (B) pV M M mol 23. (C)npV 23. (D)pV N M M A 23mol . [ ]16、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等. [ ]17、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ). (B) 21(N 1+N 2) (23kT +25kT ). (C) N 123kT +N 225kT . (D) N 125kT + N 223kT . [ ]18、设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为 (A) 1 . (B) 1/2 .(C) 1/3 . (D)1/4 . [ ]19、设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为(A) p v v v ==2/12)( (B) 2/12)(v v v <=p (C) 2/12)(v v v <<p (D)2/12)(v v v >>p [ ]20、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ ]21、 两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等.(B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ ]22、假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的(A) 4倍. (B) 2倍. (C) 2倍. (D) 21倍. [ ]23、 麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示(A) 0v 为最概然速率. (B) 0v 为平均速率. (C) 0v 为方均根速率. (D) 速率大于和小于0v 的分子数各占一半. [ ]24、速率分布函数f (v )的物理意义为:(A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比.(C) 具有速率v 的分子数.(D) 速率分布在v 附近的单位速率间隔中的分子数. [ ]25、若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N .(C) N ,m . (D) N ,T .(E) N ,m ,T . [ ]26、气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大一倍.(B) Z 和λ都减为原来的一半.f (v )0(C) Z 增大一倍而λ减为原来的一半. (D) Z 减为原来的一半而λ增大一倍. [ ]27、一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B)Z 减小而λ增大.(C) Z 增大而λ减小. (D)Z 不变而λ增大. [ ]28、一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大. (B) Z 和λ都减小. (C) Z 增大而λ减小. (D) Z 减小而λ增大. [ ]29、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小,但λ不变. (B) Z 不变,但λ减小.(C) Z 和λ都减小. (D) Z 和λ都不变. [ ]30、 一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 增大,λ不变. (B) Z 不变,λ增大.(C) Z 和λ都增大. (D) Z 和λ都不变. [ ]31、 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ. (D) v =40v ,Z =20Z ,λ=0λ. [ ]32、在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . [ ]33、一定量的某种理想气体若体积保持不变,则其平均自由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升高,λ减少而Z 增大.(B) 温度升高,λ增大而Z 减少.(C) 温度升高,λ和Z 均增大.(D) 温度升高,λ保持不变而Z 增大.[ ]34、一容器贮有某种理想气体,其分子平均自由程为0λ,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为 (A) 02λ. (B) 0λ. (C) 2/0λ. (D) 0λ/ 2. [ ]35、图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么: (A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.(B) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为正.(C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.(D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.36、 关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).V 图(a) V图(b) V 图(c)(C)(2)、(4).(D)(1)、(4).[] 37、如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A) 是平衡过程,它能用p─V图上的一条曲线表示.(B) 不是平衡过程,但它能用p─V图上的一条曲线表示.(C) 不是平衡过程,它不能用p─V图上的一条曲线表示.(D) 是平衡过程,但它不能用p─V图上的一条曲线表示.[]38、在下列各种说法(1) 平衡过程就是无摩擦力作用的过程.(2) 平衡过程一定是可逆过程.(3) 平衡过程是无限多个连续变化的平衡态的连接.(4) 平衡过程在p-V图上可用一连续曲线表示.中,哪些是正确的?(A) (1)、(2). (B) (3)、(4).(C) (2)、(3)、(4). (D) (1)、(2)、(3)、(4).[]39、设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.(3) 一滴墨水在水杯中缓慢弥散开.(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).[]40、在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的.(3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的.中,哪些是正确的?(A) (1)、(4).(B) (2)、(3).(C) (1)、(2)、(3)、(4).(D) (1)、(3).[]41、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态(A) 一定都是平衡态.(B) 不一定都是平衡态.(C) 前者一定是平衡态,后者一定不是平衡态.(D) 后者一定是平衡态,前者一定不是平衡态. [ ]42、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程(A) 一定都是平衡过程.(B) 不一定是平衡过程.(C) 前者是平衡过程,后者不是平衡过程.(D) 后者是平衡过程,前者不是平衡过程. [ ]43、如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D绝热过程,其中吸热量最多的过程(A) 是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
长沙理工大学大学物理计算题题库

1.题目:电荷q均匀分布在长为2l的细杆上,求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点).答案:解:设坐标原点位于杆中心O点,x轴沿杆的方向,如图所示.细杆的电荷线密度λ=q / (2l),在x处取电荷元d q = λd x=q d x / (2l),它在P点产生的电势为4分整个杆上电荷在P点产生的电势4分2 题目:圆形平行板电容器,从q= 0开始充电,试画出充电过程中,极板间某点P处电场强度的方向和磁场强度的方向.答案:解:见图.,2分;,2分3题目:氢原子可以看成电子在平面内绕核作匀速圆周运动的带电系统.已知电子电荷为e,质量为m e,圆周运动的速率为v,求圆心处的磁感强度的值B.答案:解:由有2分2分2分2分45 题目:一平面线圈由半径为0.2 m的1/4圆弧和相互垂直的二直线组成,通以电流2 A,把它放在磁感强度为0.5 T的均匀磁场中,求:(1) 线圈平面与磁场垂直时(如图),圆弧段所受的磁力.(2) 线圈平面与磁场成60°角时,线圈所受的磁力矩.答案:解:(1) 圆弧所受的磁力:在均匀磁场中通电圆弧所受的磁力与通有相同电流的直线所受的磁力相等,故有F AC = N 3分方向:与AC直线垂直,与OC夹角45°,如图. 1分(2) 磁力矩:线圈的磁矩为本小问中设线圈平面与成60°角,则与成30°角,有力矩M =1.57×10-2 N·m 3分方向:力矩将驱使线圈法线转向与平行. 1分6 题目:两根导线沿半径方向接到一半径R =9.00 cm的导电圆环上.如图.圆弧ADB是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m,圆弧ACB是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m.两种导线截面积相同,圆弧ACB的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB上的电流I2=2.00A,求圆心O点处磁感强度B的大小.(真空磁导率μ0 =4π×10-7 T·m/A)答案:解:设弧ADB = L1,弧ACB = L2,两段弧上电流在圆心处产生的磁感强度分别为3分、方向相反.圆心处总磁感强度值为2分两段导线的电阻分别为1分因并联2分又∴=1.60×10-8 T 2分7题目:如图所示,一长为10 cm的均匀带正电细杆,其电荷为1.5×10-8C,试求在杆的延长线上距杆的端点 5 cm处的P点的电场强度.(=9×109 N·m2/C2 )答案:解:设P点在杆的右边,选取杆的左端为坐标原点O,x轴沿杆的方向,如图,并设杆的长度为L.P点离杆的端点距离为d.在x处取一电荷元d q=(q/L)d x,它在P点产生场强3分P点处的总场强为3分代入题目所给数据,得E=1.8×104 N/m 1分的方向沿x轴正向. 1分11题目:半径分别为 1.0 cm与 2.0 cm的两个球形导体,各带电荷 1.0×10-8C,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.()答案:解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r1和r2,导线连接后的电荷分别为q1和q2,而q1 + q1 = 2q,则两球电势分别是,2分两球相连后电势相等,,则有2分由此得到 C 1分C 1分两球电势V 2分113题目:如图所示,两个点电荷+q和-3q,相距为d. 试求:(1) 在它们的连线上电场强度的点与电荷为+q的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U=0的点与电荷为+q的点电荷相距多远?答案:解:设点电荷q所在处为坐标原点O,x轴沿两点电荷的连线.(1) 设的点的坐标为,则2分可得解出距q左边 2分另有一解不符合题意,舍去.(2) 设坐标x处U=0,则2分得d-4x = 0, x = d/4 距q右边 2分14题目:一段半径为a的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q,如图所示.试以a,q,θ0表示出圆心O处的电场强度.答案:解:取坐标xOy如图,由对称性可知: 2分2分4分15题目:有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.答案:解:选坐标原点在带电平面所在处,x轴垂直于平面.由高斯定理可得场强分布为E=±σ / (2ε0) 2分(式中“+”对x>0区域,“-”对x<0区域) . 平面外任意点x处电势:在x≤0区域3分在x≥0区域3分16题目:如图所示,载有电流I1和I2的长直导线ab和cd相互平行,相距为3r,今有载有电流I3的导线MN = r,水平放置,且其两端MN分别与I1、I2的距离都是r,ab、cd和MN共面,求导线MN所受的磁力大小和方向.答案:解:载流导线MN上任一点处的磁感强度大小为:3分MN上电流元Id x所受磁力:2分33分若,则的方向向下,,则的方向向上 2分17题目:在真空中一长为l=10 cm的细杆上均匀分布着电荷,其电荷线密度λ= 1.0×10-5C/m.在杆的延长线上,距杆的一端距离d=10 cm的一点上,有一点电荷q0= 2.0×10-5C,如图所示.试求该点电荷所受的电场力.(真空介电常量ε0=8.85×10-12 C2·N-1·m-2 )答案:解:选杆的左端为坐标原点,x轴沿杆的方向.在x处取一电荷元λd x,它在点电荷所在处产生场强为:3分整个杆上电荷在该点的场强为:2分点电荷q0所受的电场力为:=0.90 N 沿x轴负向 3分18题目:AA'和CC'为两个正交地放置的圆形线圈,其圆心相重合.AA'线圈半径为20.0 cm,共10匝,通有电流10.0 A;而CC'线圈的半径为10.0 cm,共20匝,通有电流 5.0 A.求两线圈公共中心O点的磁感强度的大小和方向.(μ0 =4π×10-7 N·A-2)答案:解:AA'线圈在O点所产生的磁感强度(方向垂直AA'平面) 3分CC'线圈在O点所产生的磁感强度(方向垂直CC'平面) 3分O点的合磁感强度T 2分B的方向在和AA'、CC'都垂直的平面内,和CC'平面的夹角2分19题目:两个点电荷分别为q1=+2×10-7 C和q2=-2×10-7 C,相距0.3 m.求距q1为0.4 m、距q2为0.5 m处P点的电场强度. (=9.00×109 Nm2 /C2) 答案:解:如图所示,P点场强为:建坐标系Oxy,则在x、y轴方向的分量为2分2分可得E Px= 0.432×104 N·C-1,E Py= 0.549×104 N·C-1合场强大小= 0.699×104 N·C-1 2分方向:与x轴正向夹角= 51.8° 2分22题目:一边长a =10 cm的正方形铜线圈,放在均匀外磁场中,竖直向上,且B = 9.40×10-3 T,线圈中电流为I =10 A.(1) 今使线圈平面保持竖直,问线圈所受的磁力矩为多少?(2) 假若线圈能以某一条水平边为固定轴自由摆动,问线圈平衡时,线圈平面与竖直面夹角为多少?(已知铜线横截面积S= 2.00 mm2,铜的密度ρ= 8.90 g/cm3)答案:解:(1) ,方向垂直于线圈平面.= 9.40×10-4 N·m 2分(2) 设线圈绕AD边转动,并且线圈稳定时,线圈平面与竖直平面夹角为θ ,则磁场对线圈的力矩为2分重力矩:2分2分于是θ = 15°24题目:电荷以相同的面密度σ 分布在半径为r1=10 cm和r2=20 cm的两个同心球面上.设无限远处电势为零,球心处的电势为U0=300 V.(1) 求电荷面密度σ.(2) 若要使球心处的电势也为零,外球面上应放掉多少电荷?[ε0=8.85×10-12 C2 /(N·m2)]答案:解:(1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,即3分=8.85×10-9 C / m2 2分(2) 设外球面上放电后电荷面密度为,则应有= 0即2分外球面上应变成带负电,共应放掉电荷=6.67×10-9 C 3分26题目:一半径R= 1.0 cm的无限长1/4圆柱形金属薄片,沿轴向通有电流I= 10.0 A的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P的磁感强度.答案:解:取d l段,其中电流为2分在P点2分选坐标如图,2分2分1.8×10-4 T方向,α =225°,α为与x轴正向的夹角. 2分28题目:图所示为两条穿过y轴且垂直于x-y平面的平行长直导线的正视图,两条导线皆通有电流I,但方向相反,它们到x轴的距离皆为a.(1) 推导出x轴上P点处的磁感强度的表达式.(2) 求P点在x轴上何处时,该点的B取得最大值.答案:解:(1) 利用安培环路定理可求得1导线在P点产生的磁感强度的大小为:2分2导线在P点产生的磁感强度的大小为:2分、的方向如图所示.P点总场, 3分(2) 当,时,B(x)最大.由此可得:x = 0处,B有最大值. 3分29题目:一根同轴线由半径为R1的长导线和套在它外面的内半径为R2、外半径为R3的同轴导体圆筒组成.中间充满磁导率为 的各向同性均匀非铁磁绝缘材料,如图.传导电流I沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B的分布.答案:解:由安培环路定理:0< r <R1区域:,3分R< r <R2区域:1,3分R< r <R3区域:23分r >R区域:H = 0,B = 0 3分330题目:图中所示,A、B为真空中两个平行的“无限大”均匀带电平面,A面上电荷面密度σA=-17.7×10-8 C·m-2,B面的电荷面密度σB=35.4 ×10-8 C·m-2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12C2·N-1·m-2)答案:解:两带电平面各自产生的场强分别为:方向如图示 1分方向如图示 1分由叠加原理两面间电场强度为=3×104 N/C 方向沿x轴负方向 2分两面外左侧=1×104 N/C 方向沿x轴负方向 2分两面外右侧= 1×104 N/C 方向沿x轴正方向 2分31题目:电荷线密度为 的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB的半径为R,试求圆心O点的场强.答案:解:以O点作坐标原点,建立坐标如图所示.半无限长直线A∞在O点产生的场强,2分半无限长直线B∞在O点产生的场强,2分半圆弧线段在O点产生的场强,2分由场强叠加原理,O点合场强为2分32题目:在真空中有两根相互平行的无限长直导线L1和L2,相距10 cm,通有方向相反的电流,I1=20 A,I2=10 A,试求与两根导线在同一平面内且在导线L2两侧并与导线L2的距离均为 5.0 cm的两点的磁感强度的大小.(μ0 =4π×10-7 H·m-1)答案:解:(1) L1中电流在两导线间的a点所产生的磁感强度T 2分L2中电流在a点所产生的磁感强度T 1分由于、的方向相同,所以a点的合磁感强度的大小T 2分(2) L中电流在两导线外侧b点所产生的磁感强度T 2分L2中电流在b点所产生的磁感强度T 1分由于和和的方向相反,所以b点的合磁感强度的大小T 2分33题目:一无限长圆柱形铜导体(磁导率μ0),半径为R,通有均匀分布的电流I.今取一矩形平面S (长为1 m,宽为2 R),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.答案:解:由安培环路定律,圆柱体内部与中心轴线相距为r处的磁感强度的大小为3分因而,穿过导体内画斜线部分平面的磁通Φ1为3分圆形导体外与中心轴线相距r处的磁感强度大小为2分因而,穿过导体外画斜线部分平面的磁通Φ2为3分穿过整个矩形平面的磁通量1分35题目:如图所示,一根长为L的金属细杆ab绕竖直轴O1O2以角速度ω在水平面内旋转.O1O2在离细杆a端L/5处.若已知地磁场在竖直方向的分量为.求ab两端间的电势差.答案:解:间的动生电动势:4分b点电势高于O点.间的动生电动势:4分a点电势高于O点.∴2分36题目:已知均匀磁场,其磁感强度B = 2.0 Wb·m-2,方向沿x轴正向,如图所示.试求:(1) 通过图中abOc面的磁通量;(2) 通过图中bedO面的磁通量;(3) 通过图中acde面的磁通量.答案:解:匀强磁场对平面的磁通量为:设各面向外的法线方向为正(1) Wb 2分(2) 1分(3) Wb 2分39题目:用两根彼此平行的半无限长直导线L1、L2把半径为R的均匀导体圆环联到电源上,如图所示.已知直导线中的电流为I.求圆环中心O点的磁感强度.答案:解:设L1中电流在O点产生的磁感强度为B1,由于L1与O点在一条直线上,由毕奥-萨伐定律可求出 2分设L2中电流在O点产生的磁感强度为B2,L2为半无限长直电流,它在O处产生的场是无限长直电流的一半,由安培环路定律和叠加原理有方向垂直图面向外. 3分以下求圆环中电流在O点产生的磁感强度.电流由L1经a点分两路流入圆环,一路由a点经1/4圆弧流至b,称此回路为L3.另一路由a点经3/4圆弧流至b,称此段回路为L4.由于圆环为均匀导体,若L2的电路电阻为R,则L4的电阻必为3R.因此电流在L3、L4上的分配情况为L3中电流为3 I/4,L4中电流为I/ 4.L3、L4中电流在O点产生的磁感强度的大小相等,方向相反,总值为0.即故O点的磁感强度:方向垂直图面向外. 3分40题目:一无限长竖直导线上通有稳定电流I,电流方向向上.导线旁有一与导线共面、长度为L的金属棒,绕其一端O在该平面内顺时针匀速转动,如图所示.转动角速度为ω,O点到导线的垂直距离为r0 (r0 >L).试求金属棒转到与水平面成θ角时,棒内感应电动势的大小和方向.答案:解:棒上线元d l中的动生电动势为:3分金属棒中总的感生电动势为1分4分方向由O指向另一端. 2分41题目:在两根平行放置相距2a的无限长直导线之间,有一与其共面的矩形线圈,线圈边长分别为l和2b,且l边与长直导线平行.两根长直导线中通有等值同向稳恒电流I,线圈以恒定速度垂直直导线向右运动(如图所示) .求:线圈运动到两导线的中心位置(即线圈的中心线与两根导线距离均为a )时,线圈中的感应电动势.答案:解:取顺时针方向回路正向.2分2分2分∴2分43题目:载有电流I的平面闭合回路由半径为R1及R2 (R1 > R2 )的两个同心半圆弧和两个直导线段组成.已知两个直导线段在半圆弧中心O点产生的磁感强度均为零.若闭合回路在O点产生的总的磁感强度B大于半径为R2的半圆弧在O 点产生的磁感强度B2,(1) 画出载流回路的形状;(2) 求出O点的总磁感强度B.答案:解:(1) 可知. 2分故闭合回路形状如图所示. 3分(2) , 2分1分题目:实验表明,在靠近地面处有相当强的电场,电场强度垂直于地面向下,大小约为100 N/C;在离地面1.5 km高的地方,也是垂直于地面向下的,大小约为25 N/C.(1) 假设地面上各处都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量=8.85×10-12 C2·N-1·m-2)答案:解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S平行地面)上下底面处的场强分别为E1和E2,则通过高斯面的电场强度通量为:·=E2∆S-E1∆S=(E2-E1) ∆S 2分高斯面S包围的电荷∑q i=h∆Sρ 1分由高斯定理(E2-E1) ∆S=h∆Sρ /ε0 1分∴=4.43×10-13 C/m3 2分(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 1分由高斯定理·=-E∆S= 1分∴σ=-ε0 E=-8.9×10-10 C/m3 2分45题目:如图所示,真空中一矩形线圈宽和长分别为2a和b,通有电流I2,可绕其中心对称轴OO'转动.与轴平行且相距为d+a处有一固定不动的长直电流I1,开始时矩形线圈与长直电流在同一平面内,求:(1) 在图示位置时,I1产生的磁场通过线圈平面的磁通量;(2) 线圈与直线电流间的互感系数.(3) 保持I1、I2不变,使线圈绕轴OO'转过90°外力要做多少功?答案:解:(1) 按题意是指图示位置时的Φ.4分(2) 2分(3) 2分47题目:两相互平行无限长的直导线载有大小相等方向相反的电流,长度为b 的金属杆CD与两导线共面且垂直,相对位置如图.CD杆以速度平行直线电流运动,求CD杆中的感应电动势,并判断C、D两端哪端电势较高?答案:解:建立坐标(如图)则:,2分,方向⊙ 1分2分2分感应电动势方向为C→D,D端电势较高. 1分48题目:两根平行无限长直导线相距为d,载有大小相等方向相反的电流I,电流变化率d I /d t = >0.一个边长为d的正方形线圈位于导线平面内与一根导线相距d,如图所示.求线圈中的感应电动势E,并说明线圈中的感应电流是顺时针还是逆时针方向.答案:解:(1) 载流为I的无限长直导线在与其相距为r处产生的磁感强度为:2分以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:与线圈相距较近的导线对线圈的磁通量为:总磁通量4分感应电动势为:2分由E >0和回路正方向为顺时针,所以E的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向. 2分49题目:如图所示,一内半径为a、外半径为b的金属球壳,带有电荷Q,在球壳空腔内距离球心r处有一点电荷q.设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷.(2) 球心O点处,由球壳内表面上电荷产生的电势.(3) 球心O点处的总电势.答案:解:(1) 由静电感应,金属球壳的内表面上感生电荷-q,外表面上电荷q+Q 2分(2) 球壳内表面上任一电荷元离O点的距离都是a,由这些电荷在O点产生的电势为2分(3) 分布在球壳内外表面上的电荷和点电荷q在O点产生的电势代数和为2分2分50题目:假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元d q从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?答案:解:(1) 令无限远处电势为零,则带电荷为q的导体球,其电势为将d q从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能3分(2) 带电球体的电荷从零增加到Q的过程中,外力作功为2分51题目:无限长直导线折成V形,顶角为 ,置于xy平面内,一个角边与x轴重合,如图.当导线中有电流I时,求y轴上一点P(0,a)处的磁感强度大小.答案:解:如图所示,将V形导线的两根半无限长导线分别标为1和2.则导线1中电流在P点的磁感强度为方向垂直纸面向内. 3分导线2中电流在P点的磁感强度为方向垂直纸面向外. 3分P点的总磁感强度为的方向垂直纸面向外. 2分52题目:假定地球的磁场是由地球中心的载流小环产生的,已知地极附近磁感强度B为 6.27×10-5 T,地球半径为R =6.37×106 m.μ0 =4π×10-7 H/m.试用毕奥-萨伐尔定律求该电流环的磁矩大小.答案:解:毕奥─萨伐尔定律:2分如图示,, (a为电流环的半径).∵r >> a∴3分小电流环的磁矩∴ 2分在极地附近z≈R,并可以认为磁感强度的轴向分量B z就是极地的磁感强度B,因而有:≈8.10×1022 A·m2 3分54题目:如图所示,在x-y平面内有与y轴平行、位于x=a / 2和x=-a / 2处的两条“无限长”平行的均匀带电细线,电荷线密度分别为+λ和-λ.求z 轴上任一点的电场强度.答案:解:过z轴上任一点(0 , 0 , z)分别以两条带电细线为轴作单位长度的圆柱形高斯面,如图所示. 2分按高斯定理求出两带电直线分别在该处产生的场强大小为场强方向如图所示. 3分按场强叠加原理,该处合场强的大小为2分方向如图所示. 3分或用矢量表示。
大学电气信息专业《大学物理(上册)》期末考试试卷A卷 附答案

大学电气信息专业《大学物理(上册)》期末考试试卷A卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
2、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.3、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________4、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
5、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
6、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变_____;转动惯量变_____。
7、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
电动力学A-长沙理工大学教务处

课程教学大纲“数学物理方法”课程教学大纲大纲执笔人:程芳大纲审核人:李亚捷课程编号:0701000485英文名称:Methods of Mathematical Physics学分:4总学时:64。
其中,讲授 64 学时适用专业: 物理学专业本科生、电子信息科学与技术专业本科生先修课程:高等数学、大学物理学或普通物理学一、课程性质与教学目的课程性质是指课程适用于物理学专业以及信息科学与技术专业,属于专业基础课。
二、基本要求该课程是物理学专业及信息科学与技术专业本科生的必修基础课。
它是进一步学习本科阶段量子力学,电动力学,信号与系统,电磁场与电磁波等课程以及研究生课程所必备的数学工具,也是从事理论研究的重要基础。
通过本课程的学习,不仅要教给学生必要的数学工具,更重要的是培养学生运用数学工具处理物理问题的能力。
三、重点与难点重点和难点:复幂级数展开,路径积分,积分变换,特殊函数,线性数学物理方程的定解方法。
四、教学方法教学方式:课堂讲授,包括适当次数的习题(讨论)课。
六、实验、上机与实训教学条件及内容(无)七、作业要求让学生做习题可以使学生深入地掌握物理学的基本概念和基本规律,提高他们应用物理如识分析解决问题的能力,平均每周习题数为4-5 题。
要求学生按时完成作业,不抄袭。
作业要求做在装订成册的作业本上,书写要规范、整洁。
作业用钢笔或圆珠笔书写,字迹要清晰。
保证作业的质量和数量。
八、考核方式与要求1.知识考核占总成绩的70%,主要采用期末书面考试的方式评定。
期末考试可采用闭卷考试。
2.能力考核占总成绩的30%,其中根据作业、质疑、课堂讨论等能力、素质评定占30%。
九、教材与主要参考书1.推荐教材:[1] 梁昆淼.《数学物理方法》(第四版)[M].高等教育出版社,20102.主要参考书:[1] 郭敦仁.《数学物理方法》(第二版)[M].高等教育出版社,1991[2] 姚端正等.《数学物理方法》[M].武汉大学出版社,1997[3] 郭玉翠.《数学物理方法简明教程》(第一版)[M].北京邮电大学出版社,2002“大学物理A(上)”课程教学大纲大纲执笔人:黄祖洪大纲审核人:李亚捷课程编号:0702000045英文名称:College physics A(1)学分:3总学时:48学时。
湖南理工学院大学物理期末考试试卷(含答案)

湖南理工学院《大学物理(下)》期末考试(A 卷)一、选择题(共27分) 1. (本题3分)距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T .(已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C)正比于B ,反比于v . (D) 反比于B ,反比于v .[ ] 3. (本题3分)有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小.(B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ] 4. (本题3分)如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ]5. (本题3分)如图,长度为l 的直导线ab 在均匀磁场B中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数c a bd NMB(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21. [ ]7. (本题3分)在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹.(B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹.(D) 无干涉条纹. [ ]8. (本题3分)在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A) 宽度变小. (B) 宽度变大. (C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大. [ ] 9. (本题3分)若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm . (C) 1.0×10-2 mm . (D) 1.0×10-3 mm . [ ] 10. (本题3分)下述说法中,正确的是 (A) 本征半导体是电子与空穴两种载流子同时参予导电,而杂质半导体(n 型或p 型)只有一种载流子(电子或空穴)参予导电,所以本征半导体导电性能比杂质半导体好.(B) n 型半导体的导电性能优于p 型半导体,因为n 型半导体是负电子导电,p 型半导体是正离子导电.(C) n 型半导体中杂质原子所形成的局部能级靠近空带(导带)的底部,使局部能级中多余的电子容易被激发跃迁到空带中去,大大提高了半导体导电性能. (D) p 型半导体的导电机构完全决定于满带中空穴的运动. [ ] 二、填空题(共27分) 11 (本题3分)一根无限长直导线通有电流I ,在P 点处被弯成了一个半径为R 的圆,且P 点处无交叉和接触,则圆心O 处的磁感强度 大小为_______________________________________,方向为 ______________________________. 12. (本题3分)图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表______________________________的B ~H 关系曲线.b 代表______________________________的B ~H 关系曲线.c 代表______________________________的B ~H 关系曲线. 13. (本题3分)一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I =3 A 时,环中磁 场能量密度w =_____________ .(μ 0 =4π×10-7 N/A 2) 14. (本题3分)一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 ________________________.15. (本题4分)如图,在双缝干涉实验中,若把一厚度为e 、折射率 为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________. 16. (本题3分)(4611)某一波长的X 光经物质散射后,其散射光中包含波长________和波长 __________的两种成分,其中___________的散射成分称为康普顿散射.S答案:一、选择题(共27分) 1. (本题3分)B 2. (本题3分) B 3. (本题3分)B 4. (本题3分)D 5. (本题3分)D 6. (本题3分)D 7. (本题3分)B 8. (本题3分)A 9. (本题3分)D10. (本题3分)C二、填空题(共27分) 11 (本题3分))11(20π-R I μ 2分垂直纸面向里. 1分 12. (本题3分)铁磁质 1分 顺磁质 1分 抗磁质 1分13. (本题3分)22.6 J ·m -3 3分14. (本题3分)t E R d /d 20πε 3分 15. (本题4分)上 2分 (n -1)e 2分 16. (本题3分)不变 1分 变长 1分 波长变长 1分 When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft lookYour eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true,But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。
长沙理工大学大学物理练习册力学答案

以 A为研究对象
B
N
f1
f2
N1
A y
A
f 2
B
mg
f1
N Mg
x
N1
回上页 下一页
回首页
A
x y
f1 f1 mg cos
解方程
f 2 N sin f1cos 0 N1 Mg N cos f1sin 0
f 2 mg sin cos mg cos2 A对地面的摩擦力 f 2
回首页 回上页 下一页
力学 练习四
一、选择题
1. (A) 2. (D) 3. (C)
二、填空题 4. 0.003•s 0.6•N s 2•g
5. 6.
4.7•N s 与速度方向相反
(1 2)m gy0 1 mv0 2
回首页
回上页
下一页
三、计算题
7. 如图,用传送带 A输送煤粉,料斗口在 A上方高h 0.5m 处,煤粉自料斗口自由落在 A上。设料斗口连续卸煤的流 量为 qm 40kg / s, A以v 2.0m / s 的水平速度匀速向右移 动。求装煤的过程中,煤粉对 A的作用力的大小和方向。 (不计相对传送带静止的煤粉质重)
dv 4t dv 4tdt dt v t dv 4tdt 2t 2 v 0 0 dx dx vdt 2t 2 dt v dt
x
x0
dx 2t 2 dt
0
t
2 3 2 3 ( x t x0 t 10••SI ) 3 3
回首页
或根据动能定理
1 1 2 M r 0 ( ml ml 2 ) 2 2 3
长沙理工大学课程设计

长沙理工大学 课程设计一、课程目标知识目标:1. 让学生掌握《大学物理》中关于电磁学的基础知识,理解电磁感应的原理,掌握法拉第电磁感应定律,并能够运用相关公式进行简单问题的计算。
2. 使学生了解电磁波的基本特性,掌握电磁波的传播方程,并能够分析实际电磁波传播的实例。
技能目标:1. 培养学生运用物理公式解决实际问题的能力,特别是在电磁学领域的计算和分析能力。
2. 培养学生通过实验观察电磁现象,提高实验操作技能和实验数据分析能力。
情感态度价值观目标:1. 培养学生对物理学科的兴趣和热情,增强学生探索科学奥秘的欲望。
2. 培养学生严谨的科学态度,养成合作、讨论、探究的学习习惯,提高学生的团队协作能力。
3. 引导学生认识到物理学在现代社会中的重要作用,激发学生为国家和民族的发展贡献自己的力量。
针对长沙理工大学学生特点和教学要求,本课程目标具体、可衡量,旨在使学生通过本章节的学习,能够掌握电磁学基础知识,提高分析和解决问题的能力,同时培养他们热爱科学、追求真理的精神。
后续的教学设计和评估将围绕这些具体学习成果展开,确保课程目标的实现。
本章节依据课程目标,选取《大学物理》中以下内容进行教学:1. 电磁感应基本概念与原理- 法拉第电磁感应定律- 楞次定律- 电磁感应现象在生活中的应用实例2. 电磁波的基本特性与传播- 电磁波的产生与分类- 电磁波的传播方程- 电磁波在介质中的传播特性3. 相关实验与实际应用- 电磁感应实验操作与分析- 电磁波传播实验观察与数据分析- 电磁波在现代通信技术中的应用教学大纲安排如下:第一周:电磁感应基本概念与原理,法拉第电磁感应定律,楞次定律;第二周:电磁感应现象在生活中的应用实例,电磁波的基本特性与传播;第三周:电磁波的传播方程,电磁波在介质中的传播特性;第四周:相关实验与实际应用,实验操作与分析。
本教学内容紧密关联课本,确保科学性和系统性,同时注重理论与实践相结合,以提高学生对电磁学知识的理解和应用能力。
复习-大学物理A(上)

复 习电磁学部分一 静电场方程1、静电场的环路定理0=⋅⎰L l d E 它表明在静电场中,电场强度E的环流恒等于零。
2、电介质中的高斯定理 ∑⎰=⋅q S d D S即:在静电场中通过任意闭合曲面的电位移通量,等于该闭合曲面所包围的自由电荷的代数和。
3、电介质的性能方程 E E D rεεε==0 电介质的相对介电常数e r χε+=1电介质的绝对介电常数)1(00e r χεεεε+== 真空的绝对介电常数0ε,22120/1085.8m N C ⋅⨯=-ε4、把真空看作电介质的特例,0εε=, 则∑⎰=⋅q S d E S)(0ε 即:d ε∑⎰=⋅=Φ内qS E se这就是真空中的高斯定理。
在真空中的静电场中,通过任一闭合曲面S 的电通量e Φ,等于该曲面所包围电荷的代数和∑内q 除以ε0,而与闭合曲面外的电荷无关。
【说明】:①闭合曲面S 称为高斯面,由自己选定。
②∑内q 是高斯面内所包围电荷的代数和。
即通过S 的电通量e Φ仅与高斯面内电荷有关,而与面外电荷无关。
③电场强度是指高斯面上任一点的场强,由高斯面内外电荷共同产生。
④利用Gauss 定理求静电场的分布,关键是分析带电体的对称性,寻找E 相等的点,构建合适之高斯面.5、电通量 ⎰⋅=ΦSe S d E(非闭合曲面)⎰⋅=ΦSe S d E(闭合曲面)规定:面元S d 的法线的正方向指向闭合曲面的外侧。
6、电场强度 0q FE =即电场中任一点的电场强度等于单位正电荷在该点所受的电场力。
7、库仑定律 0221041r r q q πε=规定:为受力电荷所受的静电力,0r 是由施力电荷指向受力电荷的单位矢量。
即:真空中两个静止的点电荷之间相互作用力(静电力)的大小与这两个点电荷所带电量1q 和2q 的乘积成正比,与它们之间的距离r 的平方成反比。
作用力的方向沿着两个点电荷的连线,同号电荷相互排斥,异号电荷相互吸引。
【注意】:①1q ,2q 为代数量,可正可负。