绝对值与有理数加减培优练习(含解析)
有理数-数轴-绝对值-加减法练习卷

2016.6有理数、数轴、绝对值、加减法练习卷一•选择题(共15小题)1 •六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20CC. 44C D • - 44C2 . 2的相反数是()A._ 1B.C.-2D.2223. 如图, 数轴上有A,B, G D四个点,其中到原点距离相等的两个点是( )A•■C2-2 -1 0 1 2A.点B与点DB.点A与点C C点A与点D D.点B与点C4. 如图,数轴上有M, N, P, Q四个点,其中点P所表示的数为a,则数 -3a所对应的点可能是()MNPQ—♦ --- ■■乙------ *—>A. MB. N CP D. Q5. a , b在数轴上的位置如图,化简∣a+b∣的结果是()A. - a - bB. a+bC. a - b D . b - a6. 如图,数轴上有四个点MP, N Q若点M, N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()-- «----- • ■ •>M P X QA. 点MB.点NC.点PD.点Q7. | - 2∣=x ,贝U X 的值为( JA. 2B. - 2 C ±. D. ■:&下列说法错误的是()A. 绝对值最小的数是OB. 最小的自然数是1C最大的负整数是-1D绝对值小于2的整数是:1, O, - 19. a、b是有理数,如果Ia - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A只有(1)正确 B.只有(2)正确C. (1) , (2)都正确D. (1), (2)都不正确10. 若|a|=8 , |b|=5 , a+b>0,那么a- b 的值是()A. 3 或13B. 13 或-13C. 3 或-3D.- 3 或1311. 若a≤,则∣a∣+a+2 等于()A. 2a+2 B . 2 C 2 - 2a D. 2a - 212. 下列式子中,正确的是()A. | - 5|= - 5B.- | - 5|=5C.-(- 5)=- 5D.-(- 5)=513. 下列说法正确的是()A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D —个数的绝对值一定比0大14. (2015秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a则a、b、- a、|b|的大小关系正确的是()••A. |b| > a>- a> bB. |b| > b > a>- aC. a > |b| > b>- aD. a>∣b∣>- a> b15. 对于实数a, b,如果a>0, b v 0且∣a∣V ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=—(Ial - |b| )D. a+b=-(∣b∣- ∣a∣)二•解答题(共15小题)16. 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入•下表是某周的生产情况(超产记为正、减产记为负):星期一二四五六日增减+5-2-4+ 13-10+ 16-9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17. 先阅读第(1)小题,仿照其解法再计算第(2)小题:解:原式=I :.:6 3 4 2=' :;: ■'」[¢-1) + (-5) +24+ (-3) ] + E (-⅛ + (--|) 4+(_吉)]O ,=∙l 1Z √s (1)计算:=15+ .-;(2)计算mf;18. 计算:31+ (- 102) + (+39) + (+102) + (- 31)19. 口算:(-13) + (+19)=(-4.7 ) + (- 5.3 )=(-2009) + (+2010)=(+125) + (- 128)=(+0.1 ) + (- 0.01 )=(-1.375 ) + (- 1.125 )=(-0.25 ) + (+ ')=4(-8 J + (- 4 :)=3 2u(-r + (-)=3 4 127(-1.125) + (+ )=g(-15.8 ) + (+3.6 )=(-5 ) +0=620. 已知凶=2003 , ∣y∣=2002 ,且x>0, y V 0,求x+y 的值.21. 计算题(1) 5.6+4.4+ (- 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3) ' + (- :) + - : ^ I : ' I4 3 6 4 3(6) (- 18-) + (+53 J + (- 53.6 ) + (+18 :) + ( - 100)5 5 522. 计算下列各式:(1)(- 1.25 ) + ( +5.25 )(2)(- 7) + (- 2)(3)— + Wl - 8(5)0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6):∣f •-「一」」23. 在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3+5+7」"1+3」',1+3+5^ ',21+3+5+7+9= ' ,按规律计算:(1)1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n- 1)25. 已知:∣m∣=3 , ∣n∣=2 ,且mκ n,求m+n的值.26. 计算题(1) 5.6+ (—0.9 ) +4.4+ (—8.1 ) + (- 0.1 )(2)- 0.5+ (- 3—) + (- 2.75 ) + ( +7—)42(3) 1 '+ (- 1 ')+ + (- 1)+ (- 3 ;)3535(4)+ (- :) +(-')+ (--)+ (- ^)2 3523(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6) (- 1 J + (-6 ) + (- 2.25 ) + '.4 3 327. 已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.28. 若|a|=5 , |b|=3 , (1)求a+b 的值;(2)若∣a+b∣=a+b ,求a- b 的值.29. 已知|a|=2 , |b|=3 , |c|=4 , a>b>c,求a- b - C 的值. 30.若a,b,c 是有理数,|a|=3 ,|b|=10 ,|c|=5 ,且a,b 异号,b,c 同号,求a- b- (- C)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一•选择题(共15小题)1.(2014?南岗区校级一模)六月份某登山队在山顶测得温度为零下32度, 此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20 C C. 44 C D . - 44 C【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12-(- 32)=12+32=44 C.故选C.2. (2016?德州)2的相反数是()A^- - B. C- 2 D. 22 2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是-2,故选:C.3. (2016?亭湖区一模)如图,数轴上有A, B, C, D四个点,其中到原点距离相等的两个点是()AB C D—*-------- ⅛-------- 1—•—I ---------- •->-2 -1 0 1 2A.点B与点DB.点A与点CC.点A与点DD.点B与点C 【分析】根据数轴上表示数a的点与表示数-a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为-2 ,点D表示的数为2, 根据数轴上表示数a的点与表示数-a的点到原点的距离相等,•••点A与点D到原点的距离相等,故选:C.4. (2016?海淀区二模)如图,数轴上有M N P, Q四个点,其中点P所表示的数为a ,则数-3a所对应的点可能是()MNPQOA. MB. N C P D. Q【分析】根据数轴可知-3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:•••点P所表示的数为a,点P在数轴的右边,•••- 3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,•••数-3a所对应的点可能是M故选:A.5. (2016?花都区一模)a, b在数轴上的位置如图,化简∣a+b∣的结果是()A.- a - bB. a+bC. a - b D . b - a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可. 【解答】解:由图形可知,a v 0,b v 0,所以a+b V0,所以∣a+b∣= - a - b.故选:A.6. (2016?石景山区二模)如图,数轴上有四个点M, P,N, Q,若点M N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()--- «---- •_∙→-- >M PΛ' QA.点MB.点NC.点PD.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:•••点M N表示的数互为相反数,•原点为线段MQ的中点,•点Q到原点的距离最大,•点Q表示的数的绝对值最大.故选D.7. (2016?鄂城区一模)I - 2∣=x ,则X的值为()A. 2B. - 2 C ⅛2 D. √j【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:••• | - 2|=2 ,.∙. x=2,故选:A.& (2016春?上海校级月考)下列说法错误的是()A. 绝对值最小的数是0B. 最小的自然数是1C最大的负整数是-1D.绝对值小于2的整数是:1, 0, - 1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B. 最小的自然数是0 ,所以此选项错误;C. 最大的负整数是1 ,所以此选项正确;D. 可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1 , 1, 0,所以绝对值小于2的整数是:-1 , 0, 1,所以此选项正确.故选B.9. (2015秋?苏州期末)a、b是有理数,如果|a - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C (1) , (2)都正确D. (1), (2)都不正确【分析】分两种情况讨论:(1)当a- b≥0时,由|a - b∣=a+b得a- b=a+b, 所以b=0, (2)当 a - b V 0 时,由|a - b∣=a+b 得-(a - b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a - b| ≥0,而a- b有两种可能性.(1)当a- b≥0 时,由|a - b∣=a+b 得a- b=a+b,所以b=0,因为a+b≥,所以a≥);(2)当a- b V 0 时,由|a - b∣=a+b 得-(a- b)=a+b,所以a=0,因为a- b v 0,所以b>0.根据上述分析,知(2)错误.故选A.10. (2 015秋?内江期末)若|a|=8 , ∣b∣=5 , a+b> 0,那么a - b的值是()A. 3 或13 B. 13 或-13 C. 3 或-3 D.- 3 或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∙∙∙∣a∣=8 , ∣b∣=5 ,.∙. a= ±, b=±5, 又T a+b> 0,∙'∙ a=8, b=±5.∙∙∙ a - b=3 或13 .故选A.11. (2015秋?青岛校级期末)若a≤),则∣a∣+a+2等于( )A. 2a+2B. 2C. 2- 2aD. 2a- 2【分析】由a≤)可知IaF - a,然后合并同类项即可.【解答】解:T a ≤),∙IaI= - a. 原式=- a+a+2=2. 故选:B.12. (2015秋?南京校级期末)下列式子中,正确的是( )A. I - 5I=- 5B.- I - 5I=5C.-(- 5) =- 5D.-(- 5)=5【分析】根据绝对值的意义对A、 B 进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、| - 5|=5 ,所以A选项错误;B- | - 5|= - 5,所以B选项错误;C-(- 5) =5,所以C选项错误;D-(- 5) =5,所以D选项正确.故选D.13. ( 2015 秋?高邮市期末)下列说法正确的是( )A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. —个数的绝对值一定比0大【分析】A根据整数的特征,可得最小的正整数是 1 ,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0 ,据此判断即可.D: —个非零数的绝对值比0大,0的绝对值等于0 ,据此判断即可.【解答】解:•••最小的正整数是1,•••选项A正确;•••负数的相反数一定比它本身大,O的相反数等于它本身,•选项B不正确;•••绝对值等于它本身的数是正数或O,•选项C不正确;•一个非零数的绝对值比O大,O的绝对值等于O,•选项D不正确.故选:A.14. (2O15秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a贝U a、b、- a、∣b∣的大小关系正确的是()? A∙ ∣b∣> a>- a> b B. ∣b∣> b > a >-a C. a > ∣b∣> b>- a D. a>∣b∣>- a> b【分析】观察数轴,则a是大于1的数,b是负数,且∣b∣> ∣a∣,再进一步分析判断.【解答】解:• a是大于1的数,b是负数,且∣b∣> ∣a∣,•∣b∣>a>- a>b.故选A.15. (2OO7?天水)对于实数a, b,如果a > O, b v O且∣a∣< ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=-(∣a∣- ∣b∣)D. a+b=-(∣b∣- ∣a∣)【分析】题中给出了a, b的范围,根据正数的绝对值是其本身,负数的绝对值是其相反数,O的绝对值是O”进行分析判断.【解答】解:由已知可知:a, b异号,且正数的绝对值<负数的绝对值.• a+b= -(∣b∣- ∣a∣).故选D.二.解答题(共15小题)16. (2O15秋?民勤县校级期末)某自行车厂计划一周生产自行车14OO辆,平均每天生产2OO辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车 (5 - 2 - 4+13 - 10+16 - 9) +200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16-(- 10) =26 辆;(4)这一周的工资总额是200×7>60+ (5- 2 - 4+13- 10+16- 9) ×( 60+15)=84675 辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13 辆,故该厂星期四生产自行车213辆;(2)根据题意 5 - 2- 4+13 - 10+16 - 9=9,200X7+9=1409 辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216- 190=26 辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×50+9×75=84675元,故该厂工人这一周的工资总额是84675元.17. (2015秋?简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:「.- .■: ■ -6342 4—解:原式=| '' '' ::'-■ '-' II1[¢-1) + (-5) +24+ (-3) ] + [ (-⅛ + (--∣) 4+ (-i)]'∙.∙l,J1Z√s=15+ ; Λj =13 ;;4【分析】 首先分析(1)的运算方法:将带分数分解为一个整数和一个分 数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】 解:原式=(-205) +400+ + (-204) + (- :) + (- 1 )+(-•)=-Y: •18. (2015秋?克拉玛依校级期中)计算: 31+ (- 102) + (+39) + (+102) + (- 31)【分析】先将互为相反数的两数相加,然后再进行计算即可. 【解答】 解:原式=[31+ (- 31) ]+[ (- 102) + ( +102) ]+39=0+0+39 =39.19. (2015秋?南江县校级月考)口算: (-13) + (+19)= (-4.7 ) + (- 5.3 )= (-2009) + (+2010)= (+125) + (- 128)= (+0.1 ) + (- 0.01 )= (-1.375 ) + (- 1.125 )= (-0.25 ) + (+ ;)=(-8 ■) + (- 4 J =3 2「"+(-_:) + (-')=(2)计算 I二仁'4 =(400 - 205- 204 - 1) + (—'-)4 3 Ξ3 4 12(-1.125) + (+ )=S(-15.8 ) + (+3.6 )=(-5 ) +0=6【分析】根据有理数的加法,即可解答.【解答】解:(-13) + (+19) =6;(-4.7 ) + (- 5.3 ) =- 10;(-2009) + (+2010) =1;(+125) + (- 128) =- 3;(+0.1 ) + (- 0.01 ) =0.09 ;(-1.375 ) + (- 1.125 ) =-2.5 ;(-0.25 ) + (+ J =;4 Ξ(-8?+ (- T =-12';⑴+ (- J + (- ') =0;3 4 127 1(-1.125) + (+ )=-;8 4(-15.8 ) + (+3.6 ) =- 12.2 ;(-5—) +0=- 5 .6 620. (2015 秋?德州校级月考)已知∣x∣=2003 , ∣y∣=2002 ,且x>0, y V 0, 求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案. 【解答】解:由∣x∣=2003 , ∣y∣=2002 ,且X > 0, y v 0,得x=2003, y= - 2002.x+y=2003 - 2002=1 .21. (2015秋?盐津县校级月考)计算题(1) 5.6+4.4+ ( - 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3)' + (- ') +'•4 3 64 3(5) (- 9十)+15 I ' - ■ ; ! - :... ! - J'-(6)(- 18 ) + (+53 ') + (- 53.6 ) + (+18 J + (- 100) 5 5 5【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4) (5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1) 5.6+4.4+ (- 8.1 )=10- 8.1=1.9 ;(2)(- 7) + (- 4) + (+9) + (- 5)=-7 —4+9— 5=-16+9=-7 ;(3)^+ (- :) + .-亠■--4 3 6 √3=(5^) +(- 5 - >=10- 6=4;=0- 1+ :(5) 0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6)斤「〔一 - . _: !. ■【分析】(1)根据有理数的加法法则计算,即可解答; (2) 根据有理数的加法法则计算,即可解答; (3) 根据有理数的加法法则计算,即可解答; (4) 利用加法的结合律和交换律,即可解答; (5) 禾U 用加法的结合律和交换律,即可解答. 【解答】解; (1) (- 1.25 ) + (+5.25 ) =5.25 - 1.25 =4; (2) (- 7) + (- 2) =-(7+2) =-7 ; (3)二;+ - - : - 83 2=-3 二+7— - 86 6(5) (- 9 ) +15 I12 4(-3⅛÷(-22.5)÷(-ι⅛ =(-9— - 15一) +[ (15三-3 )- 22.5] 121244=-25+[12.5 - 22.5] =-25- 10 =-35;(6) (- 18 ) + (+53 J + (- 53.6 ) + (+18 ) + (- 100) 5 5 5=(-18 +18 ) + ( +53 '- 53.6 ) + (- 100)5 5 5=0+0- 100 =-100.22. (2015秋?克什克腾旗校级月考)计算下列各式: (1) (- 1.25 ) + ( +5.25 ) (2) (- 7) + (- 2)(3)-Ty - 8=11 '; 6(5) 0.36+ (- 7.4 ) +0.5+0.24+(- 0.6 ) =1.1+ ( - 8)=-6.9 ;(6) .: ! : . . - . _: !.:=8.7 - 3.7=5.23. (2014秋?巩留县校级期中)在右面空格内填上的适当的不相同的整数, 【分析】由于竖线上的所有 3个数之和为0,所以第一排第二个数(即-1 右边的数)等于0+2=2的相反数,是-2;由于横线上的所有 3个数之和 为0,所以第一排第三个数等于- 1 - 2=- 3的相反数,是3;同样,第三 排第一个数等于2+1=3的相反数,是-3;同理,求出第二行的两个数.24. (2014秋?文登市校级期中)观察算式: d O (1+3) ×2 dn c (1+5) ×3 TCUr (IT) X4 1+3= , 1+3+5=, 1+3+5+7= , 2 2 2 (1+9) X 5 1+3+5+7+9= ,…, 按规律计算:(1) 1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n - 1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式 ___ 「:2【解答】 解:(1)由题意得:1+3+5+∙∙+99=「 ’ ' =2500;2 (2) 1+3+5+7+∙∙+ (2n - 1) = '〔' =nl使得横、竖、对角线上的所有【解答】-1-2 3 40 -4 -32 1225. (2014秋?滕州市校级月考)已知:∣m∣=3 , ∣n∣=2 ,且πκ n,求m+n 的值.【分析】利用绝对值求出m n的值,再代入求值.【解答】解:∙∙∙∣m∣=3 , ∣n∣=2 ,∕∙ m=±3, n=⅛2■/ m< n,∕∙ m=- 3, n =翌,.∙. m+n=— 3±2= - 1 或—5.26. (2014秋?长沙校级月考)计算题(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )(2)- 0.5+ (- 3 ') + (- 2.75 ) + (+7 )4 2(3) 1 :+ (- V :) +■+ (- 1) + (- 3 J3 5 3 512 4 1 1(4)+ (- ') + (- ) + (- ) + (-)2 3 5 2 3(5)(- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6)(- 1 ') + (-6—) + (- 2.25 ) + * '.4 3 3【分析】根据有理数的加法,逐一解答即可.【解答】解:(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )=5.6+4.4+ (- 0.9 - 8.1 - 0.1 )=10+ (- 9.1 )=0.9 .(2)- 0.5+ (- 3 ) + (- 2.75 ) + (+7 )4 2=(-0.5 ) + (+7 ) +[ (- 3 ) + (- 2.75 )]2 4=6+ (- 6)=0.(3) 1 '+ (- V :) +■+ (- 1) + (- 3 J3 5 3 5=(1 :+厶)+ (- 1 —1 - 3 ')3 3 5 5=3+ (- 6)=-3.(4)'+ (- :) + (- J + (- ^) + (- ^ )2 3 5 2 3=[+ ( — )]+[ (- :) + (- J +(-一)]2 23 5 3=0+ (- 1 )(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5=[(-0.8) +0.8]+[ (- 0.7 ) + (- 2.1 ) ]+ (1.2+3.5 ) =0+ (- 2.8 ) +4.7=1.9 .(6)(- 1 ;) + (-6 ) + (- 2.25 ) + '4 3 3=(-1 - 2.25 ) +[ (- 6 ) + ']4 3 3=-4+ (- 3)=-7.27. (2015 秋?自贡期末)已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.【分析】根据绝对值的性质求出a、b ,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∙∙∙∣a∣=5 , |b|=3 ,.∙. a= ±, b=±3,■/ |a - b|=b - a,.∙. a= - 5 时,b=3 或-3,.∙. a+b= - 5+3= - 2,或a+b= - 5+ (- 3) = - 8,所以,a+b的值是-2或-8.28.(2013 秋?滨湖区校级期末)若|a|=5 ,|b|=3 ,(1)求a+b 的值;(2)若∣a+b∣=a+b ,求 a - b 的值.【分析】(1)由∣a∣=5 , ∣b∣=3可得,a=±5, b= ±,可分为4种情况求解;(2)由|a+b|=a+b 可得,a=5,b=3 或a=5,b=- 3,代入计算即可. 【解答】解:(1)τ ∣a∣=5 , |b|=3 ,.∙∙ a= ±,b=±3,当a=5,b=3 时,a+b=8;当a=5, b=- 3 时, a+b=2;当a=- 5, b=3 时, a+b=- 2;当a=- 5, b=- 3 时, a+b=- 8.(2)由|a+b|=a+b 可得, a=5, b=3 或a=5, b=- 3.当a=5, b=3 时, a- b=2,当a=5, b=- 3 时, a- b=8.29. 已知∣a∣=2 , ∣b∣=3 , ∣c∣=4 , a>b>c,求a- b - C 的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、C的值,然后代入代数式进行计算即可得解.【解答】解:∙∙∙∣a∣=2 , ∣b∣=3 , ∣c∣=4 ,.∙. a=塑,b=±3 , C= ±,■/ a > b > C ,.∙∙ a=塑,b=- 3 , C= - 4 ,.∙. a - b - C=2 -(- 3)-(- 4)=2+3+4=9 ,或a- b- C=(- 2)-(- 3)-(- 4)=- 2+3+4=5综上所述,a+b - C的值为9或5.30. 若a , b , C 是有理数,∣a∣=3 , Ibl=Io , ∣c∣=5 ,且a , b 异号,b ,C 同号,求a- b-(- C)的值.【分析】根据题意,利用绝对值的代数意义求出 a , b , C的值,即可确定出原式的值.【解答】解:∙∙∙ a , b , C是有理数,|a|=3 , |b|=10 , |c|=5 ,且a , b异号, b , C同号,• ∙a=3, b= —10, C= —5; a= —3, b=10, c=5, 则原式=a- b+C=8 或- 8.。
七年级(上)数学有理数加减法绝对值练习题(附答案)

七年级(上)数学有理数加减法绝对值练习题一.单选题1•计算_7+4的结果是()A. 3 B・-3 C. 11 D・-112•比1小3的数是()A.-lB.-2C.-3D.23•十堰冬季里某一天的气温为-3°C〜2°C,则这一天的温差是()A.fC B・_rc C・5t D YC4•数轴上的点A表示的数是_2,将点人向左移动3个单位,终点表示的数是()A」B・-2 C.5 D・—5二.解答题5•老李上周五以收盘价每股8元买入某公司股票10000股,下表为本周内每日该股票的涨跌情况(单位:7C):星期一三四五股票涨跌-0.1 035 -0.15 -0.4 0.5(2)本周内该股票的最高收盘价岀现在星期几?是多少元?(3)已知老李买进股票时要付成交额1%。
的手续费,卖出时还需要付成交额的1扳的印花税和1%0的手续费•如果老李在星期五收盘前将该股票全部卖出,则他的收益情况如何? 6•若问=4胡=2 ,且“ vb ,求"一/?的值.7.阅读下而的解题过程,并用解题过程中的解题方法解决问题. 示例:计算:代J +卜2习+ 9扌+卜3导.1"4以上解题方法叫做拆项法.请你利用拆项法计算(-2019讣卜2020# + 仁卜吨的值•(1) 43 + (-77)+ 27+ (-43)(2) (-3)+ 40 +(-32) +(-8)(3) ( -72) - (-37) - (-22)-17(4) 23 - (一76) - 36-(一105)9•基础计算(1) (-10) + (+7):(2) (-45) + (-39)⑶(-3)-(-7)(4) 33-(-27)10.岀租车司机小王某天下午营运全是在南北走向的公路上进行的•如果向南记作“+“,向北记作'「 他这天下午行车情况如下:(单位:千米)—2, + 5, — 1,+10, — 3, — 2,—5, + 6请回答:(1) 小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地 多远?(2) 若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除 收起步价外,超过的每千米还需收2元钱.而小王的出租车每千米耗油0.3升,每升汽油6元,不计 汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?11•在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6 + 7| = 6 + 7; |6-7| = 7-6; |7-6| = 7-6; |-6-7| = 6 + 7根据上而的规律,把(1)(2)(3)中的式子写成去掉绝对值符号的形式,并计算第(4)题.(1) |7-21| =:(2) -1 + 0.8 =:212•下表给出了某班6名同学身高情况(单位:cm).姓名 A B C D EF 身髙 165 167 172身高与班级平均身髙的差值-2 +2 -3 +4 (1)完成表中空的部分:⑷丄 1 2016 I _ 1 2016^2 11008 17 18(2) 他们的最髙与最矮相差多少?(3) 他们的平均身高是多少?13. 计算:卜(胡三.填空题石・如图是某市连续5天的天气情况,最大的日温差是 ________ °C.5月25日5月26日,月27日t 月28日5月29日16•数轴上表示-1的点,先向右移动6个单位长度,再向左移动9个单位长度,则此时这个点表示 的数是 _________17. ________________________________________________________ 已知加是4的相反数,«比川的相反数小2,则等于 ___________________________________________ .若卜_1| +卜+ 3| = 0,贝N_y= __________ .19•计算:|-2|-1= ______ .参考答案1. 答案:B解析:2. 答案:B解析:3. 答案:C解析:4. 答案:D解析:5. 答案:(1)涨了 0」元:(2) 星期二,8.25 元:(3) 他的收益为1756元.解析:日朗天气现象大雨中雨15•计算-2-(-4 )的结果是6.答案:一2或一6.解析:7.答案:—聖12解析:8.答案:(1)-50; (2)-3; (3)-30; (4)168:解析:9•答案:(1)-3; (2)-84: (3)4; (4)60.解析:10.答案:(1)小王在下午岀车的出发地的南而,距下午岀车的出发地8千米;(2)盈利,盈利了 46.8元.解析:11•答案:(1)21-7: (2)0.8-!: (3)2_-Z; (4)1.2 17 18 5解析:12.答案:(1)169, 164, 171, 0, +5;⑵ 8 cm :⑶ 168 cm.解析:13.答案:2解析:14.答案:10解析:15.答案:2解析:16.答案:-4解析:17.答案:-6解析:18.答案:4解析:19.答案:1解析:。
X导航辅导中心绝对值、有理数加减乘法培优试题

X 导航辅导中心绝对值、有理数加减乘法培优试题10.71. 若,则x =__,若,,则___,若,,则_____2.若15x -=,1y =,则x y -的值为____,若24x +=,3y =,则x y +的值为____,若4a =,2b =,且a b a b +=+,则a b -的值是____,3.若3x =,2y =,且x y y x -=-,则x y +的值是____,若2a =,13b +=,且a b b a -=-,则a +b 的值是___。
4.若23x -=,21y +=,则x y +的值___.若a a =-,b b -=,则2b a -=___.5. 若ab <0,则a b a b +的值___.若ab ≠0,则a b aba b ab+-的值为_____ 6.若,,则_____,7. 2a-b 的相反数是____,a-b+c 的相反数是____,的相反数是______ 8. 若,则___,若,则_____,若,,则____9.若,,且x>y,则x-y 的值____若,,则___10. 若,.则=____11,计算的结果=____的结果是=___12.设有理数a,b,c 在数轴上的对应点如图所示,下列说法错误的是( )A.B.C.D.13.设有理数a,b 在数轴上的对应点如图所示,下列说法正确的是( )A.B.C.D.14.设有理数a,b 在数轴上的对应点如图所示,下列说法错误的是( )A.B.C.D.15.若,则有理数a 在数轴上的对应点应是在( )A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧 16.若,则必有( )A. B. C., D.,17.若,则必有( )A.B.C.D.18.已知,根据已知条件画出对应的数轴,其中正确的是( )A. B.C. D.19.若,,且,则一定是( )A.正数 B.负数 C.非负数 D.非正数20.,化简的结果为( )A.4 B.-2x+6 C.2x-6 D.-421.若,,则( )A. B. C. D.22.若,则( )A. B. C. D.23.下列说法错误的是( )A.所有的有理数都可以用数轴上的点表示B.正分数和负分数统称分数C.一个有理数不是整数就是分数D.正有理数和负有理数统称有理数24.下列说法正确的是( )A.正数的绝对值是它本身B.互为相反数的两个数一定不相等C.绝对值等于它的相反数的数是负数D.倒数等于它本身的数只有125.下列判断正确的是( )A.-a一定小于0B.一定大于0C.若a+b=0,则D.若,则a=b26.若a<0<c,ab>0,,下列说法错误的是( )A. B. C. D.27.有理数a,b,c在数轴上的对应点如图所示,则化简的结果为( )A.aB.-a-2bC.-3a-2b+2cD.-a-2b+2c28.如果成立,那么( )A.同号B.为一切有理数C.异号D.同号或中至少有一个为029.两个有理数相加,如果和小于每一个加数,那么( )A.这两个加数同为负数B.这两个加数同为正数C.这两个加数中有一个负数,一个正数D.这两个加数中有一个为零一个有理数与它的相反数之积( )A.必是正数 B.必是负数 C.非正数 D.非负数30.如果一个数的绝对值除以这个数本身等于-1,那么这个数是( ) A.正数 B.负数 C.非负数 D.非正数 31.下列说法正确的是( )A.数的相反数的绝对值与的绝对值的相反数相等B.绝对值等于它的相反数的数是负数C.数轴上两点在原点左侧,所对应的的数分别是,且,则D.一个有理数的绝对值的平方等于它的平方的绝对值 32.下列判断正确的是( ) A.一定小于0 B.一定大于0 C.若,则 D.若,则 33.若,则的取值范围是( )A. B.C.D.34.如果,那么一定有( ) A. B.C.中至少有一个为0D.中至多有一个为035.若且,则( ) A.B.C.D.36.下列结论正确的是( ) A.若,则 B.若,则C.若,则D.若,则37.若ab ab -=-,则必有( )A .a <0,b <0B .a <0,b >0C .ab ≥0D .ab ≤0 38.若a >0,b <0,且a b >,则a +b 一定是( )A .正数B .负数C .非负数D .非正数40.计算:111117(113)(2)92844⨯-+⨯- –3-[4-(4-3.5×31)]×[-2+(-3) ]53)8()92()4()52(8⨯-+-⨯---⨯ -(-1) -48245834132⨯⎪⎪⎭⎫⎝⎛+--41.阅读下列材料,再解答所提出的问题:我们知道,|a|的几何意义是指数轴上表示数a 的点与原点的距离,那么|a -b|的几何意义是什么呢?我们不妨先考虑一下a 、b 取特殊值时的情况,比如考虑|5-(-6)|的几何意义,在数轴上分别标出-6和5的点A 、B ,因为A 、B 两点间的距离是11,而|5-(-6)|=11,因此不难看出|5-(-6)|就是在数轴上表示-6和5两点间的距离. 1.⑴|a -b|的几何意义是_________________⑵根据|a -b|的几何意义知|a -b|_________|b -a|(填“>”、“=”、“<”) 如果数轴上数a 和-2的两点之间的距离是3,那么a=____借助数轴观察,当1<x <4时,|x -1|+|4-x|=__⑶说出|x -2|的几何意义,并求当|x -2|=2时的x 值.(4)找出所有符合条件的整数x ,使得|x+5|+|x-3|=8这样的整数是_____。
有理数地绝对值及加减法(详细题型)

有理数地绝对值及加减法(详细题型)三人行教育老师教案——绝对值及有理数加减运算:请同学们认真答题,每一道题都经过精选3绝对值(满分100分)知识要点:1.绝对值的概念:在数轴上表示数a 的点与原点的叫做数a 的绝对值,记作 .2.绝对值的求法:由绝对值的意义可以知道:(1)一个正数的绝对值是;(2)零的绝对值是;(3)一个负数的绝对值是 .即()()()??<=>=0a 0a0a a 3.绝对值的非负性:数轴上表示数a 的点与原点的距离零,所以,任意有理数a 的绝对值总是一个,即4.有理数大小的比较:一个有理数的绝对值越大,在数轴上表示这个数的点就离原点越,所以,两个负数比较大小,绝对值大的;正数都零;负数都;正数一切负数.5.绝对值等于()0>a a 的有理数有两个,它们.(基础知识填空20分,每错一空扣2分)同步练习A组(共40分)一、填空题(每空1分)1.(1)=-2 ;(2)=+7 ;(3)=--323 ;(4)()=--6 . 2. 212- 的绝对值是,绝对值等于5的数是和.3.绝对值最小的数是;绝对值小于2.5的整数是;绝对值小于3的自然数有;绝对值大于3且小于6的负整数有.4.如果a a =,那么a 是,如果a a -=,那么a 是.5.若a ≤0,则=a ;若a ≥0,则=+1a .二、选择题(每题3分)6.下列说法中,正确的是()A. 绝对值相等的数相等 B.不相等两数的绝对值不等C. 任何数的绝对值都是非负数D. 绝对值大的数反而小7. 下列说法中,错误的是()A. 绝对值小于2的数有无穷多个B. 绝对值小于2的整数有无穷多个C. 绝对值大于2的数有无穷多个 (D) 绝对值大于2的整数有无穷多个8.有理数的绝对值一定是()A. 正数 B. 整数 C. 正数或零 D. 非正数9.如果m 是一个有理数,那么下面结论正确的是() A. m -一定是负数 B. m 一定是正数C. m -一定是负数 D. m 不是负数10.如果甲数的绝对值大于乙数,那么()A. 甲数大于乙数B. 甲数小于乙数C. 甲、乙两数符号相反D. 甲、乙两数的大小不能确定11.设1--=a ,1-=b ,c 是1的相反数,则c b a ,,的大小关系是()A. c b a ==B. c b a <<C. c b a <=D. c b a >>三、解答题(每题2分)12.比较下列各数的大小(要有解答过程):(1)85 ,2413--(2)2117 ,76 ,65--- 13.(3分))若一个数a 的绝对值是3,且a 在数轴上的位置如图所示,试求a 的相反数.B组(40分)一、填空题(每题3分) 14.5--的相反数是;4的相反数的绝对值是;的相反数是它本身.15.若2-;②a a ->;③a a <1;④a a>1.其中不正确的有(填序号).16.若11-=-m m ,则m 1;若11->-m m ,则m 1;若4-=x ,则=x ;若21-=-x ,则=x . 17.最小的自然数与绝对值最小的整数的和是.18.若a a -=,则数a 在数轴上对应的点的位置在.二、解答题(5分)19.分别写出a 为何值时,下列各式成立?(1)a a -=;(2)a a -=;(3)1=a a;(4)1-=aa 20.已知3c ,2b ,2===a ,且有理数c b a , ,在数轴上的位置如图所示,计算c b a ++的值.(6分)21.已知5=x ,3=y ,且y x y x -=-,求y x +的值.(6分)C 组22.已知甲数的绝对值是乙数的绝对值的3倍,且在数轴上表示这两个数的点位于原点的两侧,两点之间的距离是8,求这两个数。
绝对值专项培优训

绝对值培优训练一、选择题1.(2分)(2022秋•南通期末)已知a,b为有理数,ab≠0,且.当a,b取不同的值时,M的值等于()A.±5 B.0或±1 C.0或±5 D.±1或±52.(2分)(2022秋•南通期末)有理数a,b在数轴上的位置如图所示,则数a,b,﹣a,﹣b的大小关系为()A.﹣a<﹣b<b<a B.﹣a<b<a<﹣b C.﹣a<b<﹣b<a D.﹣a<﹣b<a<b3.(2分)(2022秋•黔江区期末)下列式子化简不正确的是()A.+(﹣6)=﹣6 B.﹣(﹣0.8)=0.8C.﹣|+0.3|=﹣0.3 D.4.(2分)(2022秋•江都区期末)已知a、b、c的大致位置如图所示:化简|a+c|﹣|a+b|的结果是()A.2a+b+c B.b﹣c C.c﹣b D.2a﹣b﹣c5.(2分)(2022秋•鲤城区校级月考)适合|3a+7|+|3a﹣5|=12的整数a的值有()A.4个B.5个C.7个D.9个6.(2分)(2022秋•城西区期中)若|a﹣2|+|b+3|=0,则(a+b)2016的值是()A.0 B.1 C.﹣1 D.20167.(2分)(2022秋•朝阳区校级期中)式子|x﹣1|+3取最小值时,x等于()A.1 B.2 C.3 D.08.(2分)(2022秋•黄埔区校级期中)设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b| C.c﹣a D.﹣c﹣a9.(2分)(2022秋•宛城区校级月考)若m、n互为相反数,则在①m+n=0;②|m|=|n|;③m2=n2;④m3=n3;⑤mn=﹣n2中,必定成立的有()A.2个B.3个C.4个D.5个10.(2分)(2021秋•锡山区期末)两数a、b在数轴上对应点的位置如图所示,下列判断正确的是()A.a+b>0 B.a+b<0 C.a﹣b<0 D.|a|﹣|b|>0评卷人得分二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•晋江市期末)若abcd≠0,则=.12.(2分)(2021秋•绵竹市期末)代数式|x+1009|+|x+506|+|x﹣1012|的最小值是.13.(2分)(2022秋•黔西南州期中)已知|2x﹣4|+|3y﹣9|=0,则(x﹣y)2022=.14.(2分)(2021秋•呈贡区校级期末)已知实数a,b,c,则化简+++3×结果是.15.(2分)(2022秋•辉县市期中)若|a﹣|+|b+1|=0,则a+b=.16.(2分)(2020秋•饶平县校级期中)当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.17.(2分)(2016秋•龙泉驿区期末)如果x、y都是不为0的有理数,则代数式的最大值是.18.(2分)(2014秋•巴南区期末)已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|=.19.(2分)(2022•南京模拟)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是.20.(2分)(2019秋•秦安县期中)式子|m﹣3|+6的值随着m的变化而变化,当m=时,|m﹣3|+6有最小值,最小值是.评卷人得分三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•南安市月考)把下列各数:2,0,﹣3,,在数轴上表示出来,并按从小到大的顺序用“<”连接起来.22.(6分)(2022秋•西安期末)【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.【探索】(1)若|x﹣2|=5,则x=;(2)利用数轴,找出所有符合条件的整数x,使x所表示的点到2和﹣1所对应的点的距离之和为3.(3)由以上探索猜想,对于任意有理数x,|x﹣2|+|x+3|是否有最小值?如果有,写出最小值;如果没有,说明理由.23.(8分)(2022秋•泗阳县校级月考)有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:a,﹣a,b,﹣b,c,﹣c;(2)化简:|a﹣b|+|a+b|+|b﹣c|.24.(8分)(2022秋•郫都区校级期末)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.25.(8分)(2022秋•渠县校级期末)a、b、c三个数在数轴上位置如图所示,且|a|=|b| (1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.26.(8分)(2022秋•永兴县期末)对于有理数x,y,a,t,若|x﹣a|+|y﹣a|=t,则称x和y关于a的“美好关联数”为t,例如,|2﹣1|+|3﹣1|=3,则2和3关于1的“美好关联数”为3.(1)﹣3和5关于2的“美好关联数”为;(2)若x和2关于3的“美好关联数”为4,求x的值;(3)若x0和x1关于1的“美好关联数”为1,x1和x2关于2的“美好关联数”为1,x2和x3关于3的“美好关联数”为1,…,x40和x41关于41的“美好关联数”为1,….①x0+x1的最小值为;②x1+x2+x3+……+x40的最小值为.27.(8分)(2022秋•江阴市期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.28.(8分)(2022秋•铁东区校级月考)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.。
有理数绝对值加减法混合计算题

有理数绝对值加减法混合计算题摘要:一、有理数概念介绍1.有理数的定义2.有理数的分类二、绝对值的概念1.绝对值的定义2.绝对值的性质三、有理数绝对值加减法混合计算题解题方法1.符号法则2.绝对值分离法3.转化法四、有理数绝对值加减法混合计算题实例解析1.实例题一2.实例题二3.实例题三五、总结与建议1.巩固有理数与绝对值的基本概念2.熟练掌握各类计算技巧3.加强练习,提高解题能力正文:一、有理数概念介绍有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和零。
有理数可以分为整数和分数两类。
二、绝对值的概念绝对值是一个数到原点的距离,用符号“| |”表示。
绝对值具有以下性质:1.任何数的绝对值都是非负数;2.零的绝对值是零;3.互为相反数的两个数的绝对值相等。
三、有理数绝对值加减法混合计算题解题方法1.符号法则:根据有理数的加减法法则,先确定结果的符号,再进行绝对值的计算;2.绝对值分离法:将绝对值符号内的表达式分别计算,最后根据符号法则确定结果;3.转化法:将复杂的有理数绝对值加减法混合计算题转化为简单的有理数加减法题,从而简化计算过程。
四、有理数绝对值加减法混合计算题实例解析1.实例题一:计算|3 - 5| + |-2 - (-4)|解析:首先计算绝对值内的表达式,得到|-2| + |2|,再根据绝对值的性质,得到2 + 2 = 4。
2.实例题二:计算|2x - 3| - |x - 1|解析:根据绝对值的性质,将表达式分为四种情况,分别计算得到结果。
3.实例题三:计算|(3x + 4) - (2x - 1)|解析:首先去掉绝对值符号,得到3x + 4 - 2x + 1,再合并同类项,得到x + 5。
(完整)绝对值练习题、有理数加减法全面练习题

课堂练习一、选择题:1.已知a≠b,a=—5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或—52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( ) (A)—m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或— 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法:〈1>互为相反数的两数的绝对值相等;〈2>一个数的绝对值等于本身,这个数不是负数;〈3>若|m|〉m,则m〈0; <4>若|a|〉|b|,则a〉b,其中正确的有()(A)<1>〈2〉〈3>; (B)<1〉<2<4>; (C)<1><3>〈4〉; (D)〈2〉〈3〉〈4〉5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零;(B)负数或零; (C)一切正数;(D)所有负数6.已知|a|〉a,|b|>b,且|a|>|b|,则()(A)a〉b (B)a<b (C)不能确定 D.a=b7.—103,π,—3。
3的绝对值的大小关系是( )(A)103-〉|π|>|—3。
3|; (B)103-〉|—3。
3|〉|π|;(C)|π|>103->|-3.3|; (D)103->|π|〉|-3.3|8.若|a|〉-a,则( )(A)a>0 (B)a<0 (C)a<—1 (D)1<a 二、填空题:(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________; (2)绝对值为同一个正数的有理数有_______________个; (3)一个数比它的绝对值小10,这个数是________________;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________; (5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________; (6)若a<0,b<0,且|a |>|b |,则a 与b 的大小关系是______________; (7)绝对值不大一3的整数是____________________,其和为_____________; (8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最 小的数是_____; (9)设|x|<3,且x 〉1x,若x 为整数,则x=_________________; (10)若|x|=—x,且x=1x ,则x=_________________。
人教版七年级数学上绝对值和有理数的运算专题训练含答案

专题训练(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小:(1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2, 且0.1<0.2,所以-0.1>-0.2.(2)-45与-56.解:因为|-45|=45=2430,|-56|=56=2530,且2430<2530, 所以-45>-56.2.比较下面各对数的大小:(1)-821与-|-17|;解:-|-17|=-17.因为|-821|=821,|-17|=17=321,且821>17,所以-821<-|-17|.(2)-2 0152 016与-2 0162 017.解:因为|-2 0152 016|=2 0152 016,|-2 0162 017|=2 0162 017,且2 0152 016<2 0162 017, 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|a|=3,|b|=13,且a <0<b ,则a ,b 的值分别为(B )A .3,13B .-3,13C .-3,-13D .3,-134.已知|a|=2,|b|=3,且b<a ,试求a 、b 的值.解:因为|a|=2,所以a =±2. 因为|b|=3,所以b =±3. 因为b<a ,所以a =2,b =-3或a =-2,b =-3.5.已知|x -3|+|y -5|=0,求x +y 的值.解:由|x -3|+|y -5|=0,得 x -3=0,y -5=0, 即x =3,y =5.所以x +y =3+5=8.6.已知|2-m|+|n -3|=0,试求m +2n 的值.解:因为|2-m|+|n -3|=0,且|2-m|≥0,|n -3|≥0, 所以|2-m|=0,|n -3|=0. 所以2-m =0,n -3=0. 所以m =2,n =3.所以m +2n =2+2×3=8.7.已知|a -4|+|b -8|=0,求a +bab的值.解:因为|a -4|+|b -8|=0, 所以|a -4|=0,|b -8|=0. 所以a =4,b =8. 所以a +b ab =1232=38类型3 绝对值在生活中的应用8.某汽车配件厂生产一批零件,从中随机抽取6件进行检验,比标准直径长的毫米数记为正数,比标准直径短的毫米数记为负数,检查记录如下表(单位:毫米):5 -0.1(1)哪3量好?(2)若规定与标准直径误差不超过0.1毫米的为优等品,在0.1毫米~0.3毫米(不含0.1毫米和0.3毫米)范围内的为合格品,不小于0.3毫米的为次品,则这6件产品中分别有几件优等品、合格品和次品?解:(1)因为|+0.5|=0.5,|-0.15|=0.15,|0.1|=0.1,|0|=0,|-0.1|=0.1,|0.2|=0.2,又因为0<0.1<0.15<0.2<0.5,所以第3件、第4件、第5件零件的质量相对来讲好一些. (2)由绝对值可得出:有3件优等品,2件合格品和1件次品.9.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,-5,-10,-8,+9,+12,+4,-6.若蜗牛的爬行速度为每秒12cm ,请问蜗牛一共爬行了多少秒?解:(|+7|+|-5|+|-10|+|-8|+|+9|+|+12|+|+4|+|-6|)÷12=122(秒).答:蜗牛一共爬行了122秒. 10.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km ):+15,-3,+14,-11,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1 L /km ,这天下午汽车共耗油多少L? 解:(1)小李在送最后一位乘客时行车里程最远,是26 km .(2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L )11.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记作负数,检查结果如下表:(2)指出合乎要求的乒乓球中哪个同学做的质量最好,6名同学中,哪个同学做的质量较差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名; (4)用学过的绝对值知识来说明以上问题. 解:(1)张兵、蔡伟.(2)蔡伟做的质量最好,李明做的质量较差. (3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.专题训练(二) 有理数的运算题组1 有理数的加、减、乘、除、乘方运算 1.计算:(1)(-3)+(-9); 解:原式=-12.(2)-4.9+3.7; 解:原式=-1.2.(3)(-13)+34;解:原式=512.(4)0-9;解:原式=-9.(5)(-3)-(-5); 解:原式=2.(6)-712-914;解:原式=-1634.(7)(-12.5)-(-7.5). 解:原式=-5.2.计算:(1)(-3)×5; 解:原式=-15.(2)(-34)×(-89);解:原式=23.(3)(-37)×(-45)×(-712);解:原式=-15.(4)(-4)×(-10)×0.5×0×2 017; 解:原式=0.(5)(-36)÷9; 解:原式=-4.(6)(-1225)÷(-35);解:原式=45.(7)(-12557)÷(-5).解:原式=2517.3.计算:(1)(0.3)2;解:原式=0.09.(2)(-10)3;解:原式=-1 000.(3)-(-2)4; 解:原式=-16.(4)(112)3.解:原式=278.题组2 有理数的混合运算 4.计算:(1)16+(-25)+24-35;解:原式=16+24+[(-25)+(-35)] =40+(-60) =-20.(2)314+(-235)+534-825;解:原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(3)(12-58-14)×(-24);解:原式=12×(-24)-58×(-24)-14×(-24)=-12+15+6=9.(4)719×(112-118+314)×(-214);解:原式=649×(-94)×(32-98+134)=-16×(32-98+134)=-16×32+16×98-16×134=-24+18-52=-58.(5)(-9)×(-11)÷3÷(-3); 解:原式=-99÷3÷3 =-11.(6)(-48)÷8-(-5)×(-6); 解:原式=-6-30 =-36.(7)2-(-4)+8÷(-2)+(-3). 解:原式=2+4+(-4)+(-3) =2+(-3) =-1.5.计算:(1)-12-(-12)3÷4;解:原式=-1-(-18)÷4=-1+18×14=-1+132=-3132.(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2); 解:原式=(-8)+(-3)×(16+2)-9÷(-2) =(-8)+(-3)×18+4.5 =(-8)+(-54)+4.5 =-62+4.5 =-57.5.(3)-32×(-13)2-(-2)3÷(-12)2;解:原式=-9×19-(-8)÷14=-1+32=31.(4)(-2)4÷(-8)-(-12)3×(-22);解:原式=16÷(-8)-(-18)×(-4)=(-2)-12=-212.(5)(-58)×(-4)2-0.25×(-5)×(-4)3;解:原式=(-58)×16-0.25×(-5)×(-64)=-10-80 =-90.(6)-14+(1-0.5)×13×[2-(-3)2].解:原式=-1+0.5×13×(2-9)=-1+0.5×13×(-7)=-1-76=-136.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值与有理数加减培优练习
1.设x 为有理数,若||x x =,则( )
A .x 为正数
B .x 为负数
C .x 为非正数
D .x 为非负数
2.若|| 3.5a -=-,则(a = )
A .3.5
B . 3.5-
C . 3.5±
D .以上都不对 3.已知|1|32x -=,则x = . 4.如图,化简代数式|||1||2|a b a b +--+-的结果是 .
5.若||m n n m -=-,且||4m =,||3n =,则m n += .
6.|2||1|0a b a -+++=,求31ab -的值.
7.已知|22||31||4|0a b c -+-++=,求262a b c -++的值.
8.式子|3|6m -+的值随着m 的变化而变化,当m = 时,|3|6m -+有最小值,最小值
是 .
9.已知(|1||2|)(|2||1|)(|3||1|)36x x y y z z ++--++-++=,求201620172018x y z ++的最大值和最小值
10.当式子|1||3||4||6|x x x x ++-+-++取最小值时,求相应x 的取值范围,并求出最小
值.
11.根据||0x 这条性质,解答下列各题:
(1)当x 取何值时,|2|x -有最小值?这个最小值是多少?
(2)当x 取何值时,3|2|x --有最大值?这个最大值是多少?
12.如图,半径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(结
果保留)π
(1)把圆片沿数轴向左滚动1周,点A 到达数轴上点C 的位置,点C 表示的数是 数
(填“无理”或“有理” ),这个数是 ;
(2)把圆片沿数轴滚动2周,点A 到达数轴上点D 的位置,点D 表示的数是 ;
(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依
次运动情况记录如下:2+,1-,3+,4-,3-.第几次滚动后,A 点距离原点最近?第几次滚动后,A 点距离原点最远?
13.计算.
(1)已知||3a =,||2b =,且||()a b a b +=-+,则a b +的值;
(2)计算24681012201620182020-+-+-+⋯-+-.
14.小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:*()||
a b a b b a
=---.
(1)求(3)*2
-的值;
(2)求(3*4)*(5)
-的值.
15.已知:
11
|1|1
22
-=-,
1111
||
3223
-=-,
1111
||
4334
-=-,⋯照此规律
①
11
||
1110
-=;
②计算:
11111
|1||||| 23243
-+-+-;
③计算:
1111111
|1||||||| 2324320162015
-+-+-+⋯+-.
16.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.规定:向上向右
走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)(A C → , ),(B D → , );
(2)若这只甲虫按最短路径行走的路线为A B C D →→→,请计算该甲虫走过的路程;
(3)若这只甲虫从A 处去甲虫P 处的行走路线依次为(2,2)++,(1,1)+-,(2,3)-+,(1,2)--,
请在图中标出P 的位置.
17.在有理数的范围内,我们定义三个数之间的新运算“#”法则:
||##2
a b c a b c a b c --+++=. 如:|123|(1)23(1)#2#352---+-++-=
= (1)计算:4#(2)#(5)--=
(2)计算:113#(7)#()3
-= (3)在67-,57-,⋯,17
-,0,19,29,⋯,89这15个数中: ①任取三个数作为a 、b 、c 的值,进行“##a b c ”运算,求所有计算结果的最小值是 ; ②若将这十五个数任意分成五组,每组三个数,进行“##a b c ”运算,得到五个不同的结
果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是 .。