简单多面体外接球问题总结
立体几何高考专题--外接球的几种常见求法

立体几何高考专题--外接球的几种常见求法高三微专题:外接球在立体几何中,外接球问题是一个重点和难点。
其实质是确定球心O的位置和使用勾股定理求解外接球半径(其中底面外接圆半径r可根据正弦定理求得)。
一、由球的定义确定球心在空间中,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心。
简单多面体外接球问题是立体几何中的重点和难点。
二、球体公式球的表面积公式为S=4R²,球体积公式为V=4/3R³。
三、球体几个结论:1)长方体、正方体外接球直径等于体对角线长。
2)侧棱相等,顶点在底面投影为底面外接圆圆心。
3)直径所对的球周角为90°(大圆的圆周角)。
4)正三棱锥对棱互相垂直。
四、外接球几个常见模型1.长方体(正方体)模型例1:长方体的长、宽、高分别为3、2、1,其顶点都在球O的球面上,则球O的表面积为14。
练1:体积为8的正方体的顶点都在同一球面上,则该球的表面积为12。
2.正棱锥(圆锥)模型对于侧棱相等,底面为正多边形的正棱锥,其外接球的球心位置位于顶点与底面外心连线线段(或延长线)上。
半径公式为R²=(h-R)²+r²(其中R为外接球半径,r为底面外接圆半径,h为棱锥的高,r可根据正弦定理a=2rsinA求得)。
例2:已知各顶点都在同一个球面上的正四棱锥高为h,体积为V,则这个球的表面积为____。
正四棱锥的高为h,体积为V,易知底面面积为,底面边长为。
正四棱锥的外接球的球心在它的高上,记为,得,在中。
由勾股定理,所以球的表面积为。
练2:正三棱锥S-ABC中,底面ABC是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于。
解析:ABC外接圆的半径为,三棱锥S-ABC的直径为2R=,外接球半径R=,外接球体积V=4/3R³=。
对于侧棱与底面垂直的直棱柱和圆柱,其外接球的球心位置在上下底面外心连线中点处。
两招搞定简单多面体外接球问题

■ 舒飞跃
此类 近年来, 高考题中常常出现简单多面体外接球问题, 问题能有效考查学生的空间想象能力, 它自然受到命题者的青 睐. 简单多面体外接球问题实质上是解决球的半径和确定球心 的位置问题, 解决这一问题从两个方面入手可以有效解决球心 与球半径, 下面笔者就这一问题谈一谈自已的想法, 供参考. 一、 深入理解球的定义, 转化为常见结论, 准确定位球心 在空间中, 如果一个定点与一个简单多面体的所有顶点的 距离都相等, 那么这个定点就是该简单多面体外接球的球心 . 由上面的性质, 可以得到下列简单多面体外接球的球心的 如下结论. 结论 1 : n 棱锥有外接球的球心在过底面多边形外接圆的 圆心且垂直 于 底 面 的 直 线 上, 具体的位置通过计算后准确 找到. 结论 2 :n 棱台有外接球的球心是在上 、 下底面多边形的外 接圆的圆心的连线的直线上, 具体位置可通过计算准确找到 . 结论 3 :n 直棱柱有外接球的球心是在上 、 下底面多边形的 外接圆的圆心的连线的中点 . ( 特别地, 正方体与长方体的外接球的球心是其体对角线 中点. ) 例1 一个几何体的三视 图如图 1 所示, 其中正视图是 一个正三角形, 则这个几何体 的外接球的表面积为 . 解:由三视图作出原几何 体是三棱锥 A - BCD, 如图 2 所 示, 平面 ABD ⊥ 平面 BCD, 取 BD 的 中 点 为 O1 ,连 结 AO1 , CO1 , 因 △ABD 边长为 4 的正三 角形, △BCD 是等腰直角三角 2, ∠BCD = 90 ° , 形, 且 BC = CD = 2 槡 有 AO1 ⊥ 平面 BCD, 则球心 O 在线段 AO1 上, 连结 BO. 设外接球的半径为 R,
x = cosθ 4 - sinθ 4 -y , , 则k = 令 的最大值, 整理得:kx - y + 3 - cosθ 3 -x y = sinθ 4 - 3k = 0. y) 在直线 kx - y + 4 - 3 k = 0 上, 因此点 M( x, 同时又在单
专题--多面体的外接球问题

一. 多面体外接球的相关定义
定义1:若一个多面体的各顶点都在一个球的球面 上,则称这个多面体是这个球的内接多面体,这个 球是这个多面体的外接球。
定义2:如果空间中一个定点到一个多面体的所有顶 点的距离都相等,那么这个定点就是该多面体外接
球的球心。 公式3:球体的体积与表面积
4 V球 R 3 3
A 1B 1C 1, ∠B AC =∠A 1B 1C 1 = 90° , A C = A B =A 1A = B 1C 1 = 2,则多面体 A B C - A 1B 1C 1 的外接球的表面积为
(
C
) A. 2π B. 4π C. 6π
D. 8π
4. (2018 ?南岗区三模)三棱锥P - ABC中,底面 ABC满足BA BC,ABC
5.侧棱长都相等的棱锥
题型:侧棱长都相等的棱锥的外接球问题. P
l
A
方法一:利用定义找球心, 其外接球的球心在它的高 所在直线上
h
O
l C 方法二:
D
B
2
h 2R
M
6.折叠模型
题型: 1.两个全等三角形或等腰三角形拼在一起的三棱锥外接球; 2.一个直角三角形与一个等边三角形或等腰三角形拼在一 起的三棱锥外接球等; 3.菱形沿着对角线折叠形式的三棱锥外接球
方法:如图,分别过多边形外 心做平面垂线,垂线交点即为 外接球球心.
三. 例题分析
1. (2018 江西宜春模拟 )一个几何体的三视图如图所 示,则该几何体的外接球的表面积为( B ) A .36π 9 C. π 2 B .8π 27 D. π 8
2.(2017年江西五校调研)如图(1),五边形 PABC D 是由一个正方形与一个等腰三角形拼接而成,其中
多面体的外接球问题

3
32
3
O
2
AH
AB2 BH 2
a2
3 3
a
6a 3
又 O在AH上,且OA=OB=R
在RtBCD中,BH 2 OH 2 OB 2
3 3
a 2
6 3
a
R 2
R2
R 6 a. 4
三 .“ 补 ” 形 法 找 球 心 、 求 半 径
多面体的外接球问题
陆中华 2019.7.6
课堂导引
一.多面体的外接球的球心在哪里? 二.常见“规则”多面体外接球的球心与半径 三.“补”形法找球心、求半径 四.求“不规则”多面体的半径
一.空间几何体外接球的球心在哪里? 1.外接球的定义
正多面体各顶点同在一球面上,这个球 叫做正多面体的外接球。
如左图,球O为四面体D-ABC的外接球, 则
所以,外接球的球心O在过底面外 接圆圆心G的垂线(即高PG)上。
分析:
四棱锥A-MNCB体积最大,
则面AMN 面MNCB.
三角形AMN为等边三角形,
G1
O
其外接圆的圆心G1为中线
AE的三等分点.
G2
E
G2 且易得,等腰梯形 MNCB外
接圆的圆心G2为BC的中点.
分别作垂线,得交点为四棱 锥的外接球的球心O.
中心处,长方体的体对角线为其外接球 的直径。
设长方体的长宽高分别为a,b,c,则
O
2R a2 b2 c2 .
2.正方体 设正方体的棱长为a,则
2R a2 a2 a2 3a.
3.直棱柱
O h/2 R
简单多面体的外接球

B1
a
b
长方体外接球的直径等于长方体的体对角线。
2R a2 b2 c2
构造正方体或长方体
例1、已知三棱锥P ABC的三条侧棱两两互相垂直,且AB 5, BC 7,AC 2, 则此三棱锥的外接球的体积为
8 2 3
A
c
b
P
C
O
B
a
例2、已知三棱锥A BCD的顶点都在球O的球面上, 且AB 面BCD,AB 2,BD CD 1,BD CD, 则球O的体积为
4 3
②一条侧棱垂直于底面,底面是直角三角形的三棱锥
例3、已知三棱锥A BCD的所有棱长都为 2,则该三棱锥 外接球的体积为
A B
C
D
③各棱相等的三棱锥(正四面体)
例4、已知三棱锥A BCD中,AC BD 13,AD BC 5, AB CD 2 5,则该三棱锥外接球的表面积为
简单多面体的外接球问题
1、 用一个平面去截球,截面是圆面;
用一个平面去截球面,截线是圆。
2、大圆--截面过球心,半径等于球半径;
小圆--截面不过球心
大圆
小圆
3、 球心和截面圆心的连线垂直于截面
4、球心到截面的距离d与球的半径R 及截面圆的半径r的关系为: R2 r 2 d 2
O1
ห้องสมุดไป่ตู้
4 V球 = R 3 3
④对棱相等的三棱锥
B
A
c
b
C
a
D
提外心
例5、三棱锥P ABC中,AB BC 15,AC 6,且 PC 面ABC,PC 2,则该三棱锥的外接球的表面积 为
83 2
简单多面体的外接球问题解析版

为 6 cm,若不计容器厚度,则球的体积为( )
A.5030π cm3
B.8636π cm3
1 372π C. 3
cm3
2 048π D. 3
cm3
[解析] 如图,作出球的一个截面,则 MC=8 -6=2(cm),BM=12AB=12×8=4(cm).设球的半 径为 R cm,则 R2=OM2+MB2=(R-2)2+42,∴R =5.∴V 球=43π×53=5030π(cm3).
A. 64 B. 16 C. 12 D. 4
O
O
16
3
O
O1
什么样旳三棱锥外接球球心好拟定?
上下底面中心旳连线旳中点
•
(贵州省• 2016适应性考试)已知正三棱柱的体积为3 3,所有顶点都在球 O的球面上,则球O的表面积的最小值为
在其高上
例7、求棱长为1旳正四面体外接球旳体积. 6
课堂跟踪检测
题点五:球的内接直棱柱问题
5.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一
个球面上,则该球的表面积为
()
A.πa2
B.73πa2
C.131πa2
ห้องสมุดไป่ตู้D.5πa2
解析:选B 由题意知,该三棱柱为正三棱柱,且侧棱
与底面边长相等,均为a.如图,P为三棱柱上底面的中
心,O为球心,易知AP=23× 23a= 33a,OP=12a,所以
[活学活用] 某几何体的三视图如图所示,则其表面积为________. 解析:由三视图可知,该几何体为一个半 径为 1 的半球,其表面积为半个球面与截 面面积的和,即12×4π×12+π×12=3π. 答案:3π
球的截面问题
[典例] 如图,有一个水平放置的透明无盖的
外接球问题方法总结

外接球问题方法总结
外接球问题方法总结
简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0的位置问题,其中球心的确定是关键。
(一)由球的定义确定球心
在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心。
由上述性质,可以得到确定简单多面体外接球的球心的如下结论。
结论1:正方体或长方体的外接球的球心其体对角线的中点。
结论2:正棱柱的外接球的球心是上下底面中心的连线的中点。
结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点。
结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到。
结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心。
(二)构造正方体或长方体确定球心
长方体或正方体的外接球的球心是在其体对角线的'中点处。
以下是常见的、基本的几何体补成正方体或长方体的途径与方法。
途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体。
途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体。
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体。
途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体。
(三)由性质确定球心
利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心。
多面体与外接球的三种题型

多面体与外接球的三种题型 题型一(直接找直径) 1、在三棱锥S-ABC 中,SA=AC=,SB=,BC=1,则三棱锥S-ABC 的外接球的表面积是 。
2、若三棱锥S-ABC 的所有顶点都在同一个球O 的球面上,SA 面ABC ,SA=,AB=1,AC=2,∠BAC=60°,求球O 的体积。
题型二(作轴截面构造Rt △)1、已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 是球O 的直径,且SC=2,求此棱锥的体积。
2、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,则这个球的体积为 。
题型三(补形法)1、若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积为2、一个几何体的三视图如图所示,其中主视图和侧视图是腰长为4的两个全等直角三角形,若该几何体的所有顶点都在同一个球面上,则该球的表面积为 。
3、已知S ,A ,B ,C 是球O 表面上的一点,SA 面ABC ,AB BC ,SA=AB=1,BC=,则球O 的表面积等于 。
23⊥3233⊥⊥24、四棱锥P -ABCD 的三视图如图所示,四棱锥P -ABCD 的五个顶点都在同一个球面上,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截的线段长为,则该球的表面积为5、在三棱锥S -ABC 中,SA=BC=2,SB=AC=3,SC=AB=,则该三棱锥外接球的体积是 。
题型四(割补法)1、如图所示的四棱锥P -ABCD 中,底面ABCD 是边长为a的正方形,PD 底面ABCD ,且PD=a ,PA=PA=a ,若在这个四棱锥内放一球,则此球的最大半径是 。
2、已知正四面体的外接球的半径为1,则此正四面体的体积为 。
3、已知三棱锥D -ABC 的顶点都在球O 的球面上,AB=4,BC=3,AB BC ,AD=12,且DA 平面ABC ,则三棱锥A -BOD 的体积是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单多面体外接球球心的确定
一、知识点总结
1.由球的定义确定球心
⑴长方体或正方体的外接球的球心是其体对角线的中点. ⑵正三棱柱的外接球的球心是上下底面中心连线的中点. ⑶直三棱柱的外接球的球心是上下底面三角形外心连线的中点.
⑷正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到. ⑸若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.
2.构造长方体或正方体确定球心
⑴正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥. ⑵同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥. ⑶若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体. ⑷若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.
3.由性质确定球心
利用球心O 与截面圆圆心1O 的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.
二:常见几何体的外接球小结
1、设正方体的棱长为a ,求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。
(1)截面图为正方形EFGH 的内切圆,得2
a R =
; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 2
2
=。
(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 2
3
1=
=。
2、正四面体的外接球和内切球的半径(正四面体棱长为a ,O 也是球心) 内切球半径为:
r =
外接球半径为:a R 4
6= 三:常见题型
1.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
解析:本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 补形法
2.
,则其外接球的表面积是 . 解析: 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R
,则有2R =
图1
图2
图 3
3.正四棱锥S ABCD -
S A B C D 、、、、都在同一球面上,则此球的体积为 .
解析:寻求轴截面圆半径法
4. 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为( ) 解析:确定球心位置法 四:练习
1、已知点P 、A B C D 、、、是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD
是边长为
.
若PA =OAB ∆的面积为多少?
2、设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在同一个球面上,则该球的表面积为多少?
3、三棱锥S ABC -中,SA ⊥平面ABC ,2SA =,ABC ∆是边长为1的正三角形,则其外接球的表面积为多少?
A O D
B
图4
C
D
A
B
S
O 1图3
4、点A B C D 、、、在同一个球的球面上,AB BC ==2AC =,若四面体ABCD 体积
的最大值为2
3
,则这个球的表面积为多少?
5、四面体的三组对棱分别相等,棱长为.
6、正四面体ABCD 外接球的体积为,求该四面体的体积.
7、若底面边长为2的正四棱锥P ABCD -.
8、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为
9
8
,底面周长为3,则这个球的体积为 .
9、已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,,则球O 的体积等于 .
Welcome !!! 欢迎您的下载,资料仅供参考!。