【免费下载】流量计流量的校正实验

合集下载

08预防实验一流量计的校正

08预防实验一流量计的校正

实验一流量计的校正气体流量计读数准确与否,直接影响检验结果的准确性。

因此,采样前必须对气体流量计的刻度进行校正。

通常用皂膜流量计和湿式流量计作为标准流量计来校正其它流量计,所以首先应该对其刻度进行校准。

一、目的要求:1. 了解常用的流量计。

2. 熟悉皂膜流量计、湿式流量计校正原理。

3掌握皂膜流量计、湿式流量计、转子流量计的校正方法二、主要仪器:皂膜流量计、湿式流量计、转子流量计、抽气机、秒表三、实验步骤(一)皂膜流量计的校正体积较小的皂膜流量计可用称重法校正。

将待校正的皂膜流量计洗净,在玻璃管下口和下支管上各套上一根橡皮管用螺旋夹夹住,排尽气泡,从上口注水至上体积刻度后,打开下口螺旋夹,放水至下体积刻度, 精确称量水重,记录水温(t C )。

被校正的两体积刻度间的体积(V)为:Wd t式中:W为水的质量,kg ; d t为t C时水的密度,kg/L。

也可以用滴定管加水到皂膜流量计中,利用滴定管的体积校准流量计的刻度值。

体积大的皂膜流量计可用校正过的容器直接量取水的体积来测定两刻度间的体积,不必用称重法测量。

校正后,将校准的体积值和校正时的温度标记在流量计外壁上。

(二)湿式流量计的校准出厂前湿式流量计虽然已经校正过,但因气温、气压等条件的变化,使用前还必须校正。

湿式流量计刻度值反映的是流过气体的体积值,不是流速。

所以,校正时不需要记录时间,只需要检查流过气体的准确体积值与其两刻度差值的一致性。

具体装置见下图。

将2L容量瓶塞上的两根玻璃导气管分别连接下口瓶和待校正的湿式流量计。

放水排尽下口瓶至导气管出水口的气体后,将其放入干燥的容量瓶,密闭;记录流量计2图2-16皂膜流董计1.进气口2.岀气口氛带刻度的玻璃管4.橡皮球指针起始刻度值,从下口瓶放水至容量瓶的刻度线,立即停止放水。

将等体积空气排出流过流量计,推动流量计指针转动,记录指针终点刻度值,两个刻度之差应为2L。

否则,表示该段转盘刻度有误差。

转盘刻度应分段校正,每段校正3次,取平均值即为被校正刻度段的校正值。

流量计的校核实验报告

流量计的校核实验报告

流量计的校核实验报告
《流量计的校核实验报告》
近年来,随着工业技术的不断发展,流量计作为一种重要的工业仪表,在工业
生产中发挥着越来越重要的作用。

流量计的准确性和稳定性对于工业生产过程
中的流体流量监测至关重要。

因此,对流量计进行校核实验是非常必要的。

本次实验旨在对流量计进行校核,验证其准确性和稳定性。

实验过程中,我们
选择了不同流量范围的流体进行测试,以模拟实际工业生产中的流体流量情况。

通过对流量计的校核实验,我们可以评估其测量准确性和稳定性,为工业生产
提供可靠的数据支持。

实验结果显示,流量计在不同流量范围下的测量结果与标准值相比具有较高的
一致性和准确性。

同时,流量计在长时间运行过程中也表现出了良好的稳定性
和可靠性。

这些结果表明,流量计在工业生产中具有重要的应用价值,可以为
流体流量监测提供可靠的技术支持。

通过本次流量计的校核实验,我们进一步验证了流量计的准确性和稳定性,为
工业生产提供了可靠的数据支持。

同时,实验结果也为流量计的进一步优化和
改进提供了重要的参考依据。

相信在未来的工业生产中,流量计将继续发挥着
重要的作用,为工业生产的安全和稳定运行提供可靠的技术支持。

(整理)流量计的流量校验

(整理)流量计的流量校验

流量计的流量校验一、实验目的(1)熟悉孔板流量计的构造、性能与使用方法。

(2)测定孔板流量计与差压计读数之间的关系,计算流量系数,测绘C 0-Re 关系图;测定孔板流量计的阻力。

二、实验原理常用的流量计大都按标准规范制造,厂家为用户提供流量曲线表或按规定的流量计算公式给出指定的流量系数。

如果用户遗失出厂流量曲线表或在使用时所处温度、压强、介质性质同标定时不同,为了测量准确和使用方便,都必须对流量计进行标定。

即使已校正过的流量计,由于长时间使用磨损较大时,也应再次校正。

流量计的校正有容积法、称量法和基准流量计法。

容积法和重量法都是以通过一定时间间隔内排出的流体体积或重量来实现的。

基准流量计法是以一个事先校正过、精度较高的流量计作为比较标准而测定的。

孔板流量计的结构是在管道中装有一块孔板,在孔板两侧接出测压管,分别与U 形差压计连接。

孔板流量计是利用流体通过锐孔的节流作用,使流速增大、压强减小,造成孔板前后压强差,作为测量的依据。

若管路直径为d ,孔板锐孔直径为d 0,流体流经孔板后所形成缩脉的直径为d 2,流体密度为ρ,管道处及缩脉处的速度和压强分别为u 1、u 2与P 1、P 2,根据柏努利方程可得P P P u u ∆=-=-ρ2212212(1)由于缩脉位置因流速而变,其截面积A 2难以知道,而孔板的面积A 0是已知的,测压器的位置在设备一旦制成后是不变的。

因此用孔板孔径处流速u 0来代替式(1)中的u 2,又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。

上式就可改写为P C u u ∆=-22120对于不可压缩流体,根据连续性方程又可得AA u u 01= 整理后可得2012⎪⎪⎭⎫ ⎝⎛-∆=AA PC u (2)令 2001⎪⎭⎫⎝⎛-=A A C C则式(2)可简化为P C u ∆=200根据u 0和A 0即可算出流体的体积流量()()s mgR A C V s s /230ρρρ-=式中:R 为U 形压差计液柱高度差(m );ρs 为压差计中指示液的密度(kg/m 3);C 0为孔板流量系数。

流量计的校正试验报告

流量计的校正试验报告

流量计的校正试验报告1.引言流量计是用于测量流体流量的一种仪器设备,广泛应用于工业生产过程中。

校正是保证流量计准确性的关键步骤,通过与标准流量计对比,可以获得准确的校正系数,提高流量计的测量精度。

本报告对型号流量计进行了校正试验,并对结果进行了分析和评价。

2.实验目的本次实验的目的是获得流量计的校正系数,验证其测量准确性,并评估其使用范围和误差范围。

3.实验装置与方法3.1实验装置本次实验使用了一台标准流量计和待校正的流量计。

标准流量计具有高精度和稳定性,可以作为参考依据。

3.2实验方法3.2.1准备工作:根据流量计的规格和要求,对实验装置进行搭建和安装。

确保实验装置与流量计的连接完好,并消除可能的泄漏隐患。

3.2.2校正试验:按照流量计的使用方法,将标准流量计和待校正流量计依次安装在实验装置上。

调整实验装置的流量设置,使其在一定流量范围内变化。

记录标准流量计和待校正流量计的输出数值,并计算相应的流量值。

重复多组实验数据,以减小误差。

3.2.3数据处理:根据实验数据,计算流量计的校正系数和误差范围。

比较待校正流量计的实际测量值与标准流量计的测量值,分析误差的原因和程度。

4.实验结果与分析通过实验,获得了待校正流量计的校正系数及其误差范围。

在流量范围为100-1000 L/min时,待校正流量计的校正系数为0.98,并且误差范围在±0.05 L/min内,满足使用要求。

但在较低流量范围下(10-100L/min),校正系数下降至0.92,误差范围扩大至±0.1 L/min。

分析认为这可能是由于流量计的机械结构和算法设计造成的。

5.结论与建议通过本次实验,获得了待校正流量计的校正系数,验证了其测量准确性,并评估了其使用范围和误差范围。

实验结果显示,在较高流量范围内,待校正流量计表现良好,具备高精度和稳定性。

然而,在较低流量范围内,该流量计的性能下降,误差范围较大。

建议在实际应用中,针对流量范围进行选择,并在低流量范围内进行补偿或选择其他型号的流量计。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告
实验目的:
校核流量计的测量准确度和灵敏度。

实验设备与材料:
1. 流量计
2. 参考流量计
3. 水泵
4. 滑动尺
5. 计时器
6. 液体
实验原理:
流量计是一种用于测量流体流量的仪器。

在本实验中,我们使用流量计和参考流量计分别测量液体流量,并比较两者的测量结果。

通过对比测量结果,我们可以评估流量计的测量准确度和灵敏度。

实验步骤:
1. 将流量计和参考流量计连接到水泵和液体容器。

确保流体可以从容器通过流量计流出,并进入参考流量计。

2. 打开水泵,并调节流体的流速。

使用滑动尺测量流量计和参考流量计的流量。

3. 用计时器计时,记录每个测量时间间隔内的流量。

4. 重复步骤2和步骤3,直到获得足够的测量数据。

5. 比较流量计和参考流量计的测量结果,并计算出它们之间的误差。

实验结果:
通过对比流量计和参考流量计的测量结果,我们发现它们之间存在一定的误差。

流量计的测量结果可能偏高或偏低,具体取决于流量计的准确度和灵敏度。

在本实验中,我们测得的平均误差为5%。

结论:
根据实验结果,我们可以评估流量计的测量准确度和灵敏度。

当使用流量计进行流量测量时,需要考虑到其误差范围,以提高测量的准确性。

实际应用中,还可以根据实验结果对流量计进行校准,以进一步提高其测量精度和可靠性。

流量计的流量校正实验报告

流量计的流量校正实验报告

流量计的流量校正实验报告
《流量计的流量校正实验报告》
在工业生产和实验室研究中,流量计是一种常用的仪器,用于测量流体的流量。

然而,由于各种因素的影响,流量计的测量结果可能存在一定的误差。

为了确
保测量结果的准确性,需要对流量计进行流量校正实验。

流量校正实验是通过比较流量计测量结果和标准流量值之间的差异,来确定流
量计的准确性和精度。

在实验中,首先需要准备标准流量源,以确保实验数据
的可靠性。

然后,将流量计与标准流量源连接,进行一系列不同流量值的测量。

通过对比实际测量值和标准流量值,可以得出流量计的误差值,并进行相应的
校正。

在实验过程中,需要注意一些影响流量计准确性的因素,如流体温度、压力、
粘度等。

这些因素可能会导致流量计的测量结果与实际流量值存在偏差,因此
在实验中需要对这些因素进行控制和调整,以确保实验结果的准确性。

流量校正实验的结果将为工程师和科研人员提供重要的参考数据,帮助他们更
准确地进行流体流量的测量和控制。

同时,流量校正实验也为流量计的制造商
提供了改进产品性能的重要依据,以满足不同领域用户的需求。

总之,流量计的流量校正实验是确保流体流量测量准确性的重要手段,通过实
验得到的校正数据将为工业生产和科研实验提供可靠的数据支持,推动流量计
技术的不断进步和改进。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告流量计校核实验报告一、引言流量计是工业生产中常用的仪器设备,用于测量流体的流量。

为了确保流量计的准确性和可靠性,需要进行校核实验。

本报告旨在详细描述流量计校核实验的过程、结果和分析,以便进一步提高流量计的测量精度。

二、实验目的本次实验的主要目的是校核流量计的测量准确性和稳定性,验证其是否符合规定的技术要求。

同时,通过实验结果的分析,找出可能存在的问题,并提出改进措施。

三、实验设备和方法1. 实验设备本次实验使用的流量计为电磁流量计,具有高精度和稳定性。

配套的控制系统和数据采集仪器也是必不可少的。

2. 实验方法(1)选择合适的流量计校核点,包括低流量、中流量和高流量三个点位。

(2)根据流量计的使用要求,确定合适的校核流体,并保证流体的稳定性和纯度。

(3)按照流量计的使用说明书,正确连接流量计和控制系统,并进行预热和调试。

(4)逐个调节流量计的校核点,记录流量计的读数和控制系统的输出信号。

(5)重复多次实验,取平均值作为最终结果。

四、实验结果经过多次实验和数据分析,得到如下结果:1. 流量计在低流量点位的测量误差较大,偏离实际流量较多。

2. 流量计在中流量点位的测量误差相对较小,基本符合要求。

3. 流量计在高流量点位的测量误差有所增加,但仍在可接受范围内。

五、结果分析1. 低流量点位的测量误差较大可能是由于流量计的灵敏度不够,需要进一步调整和改进。

2. 中流量点位的测量误差较小可能是由于流量计在此范围内的测量精度较高,但仍需注意维护和保养。

3. 高流量点位的测量误差增加可能是由于流量计的饱和现象,需要增加流量计的容量或采用其他措施来提高测量精度。

六、改进措施1. 针对低流量点位的测量误差较大问题,可以考虑更换更灵敏的流量计,或者增加流量计的校核点位,以提高整体的测量精度。

2. 对于中流量点位的测量误差较小问题,需要加强流量计的维护和保养工作,定期清洁和校准流量计,确保其性能的稳定性和可靠性。

08预防实验一 流量计的校正

08预防实验一 流量计的校正

实验一 流量计的校正气体流量计读数准确与否,直接影响检验结果的准确性。

因此,采样前必须对气体流量计的刻度进行校正。

通常用皂膜流量计和湿式流量计作为标准流量计来校正其它流量计,所以首先应该对其刻度进行校准。

一、目的要求: 1.了解常用的流量计。

2.熟悉皂膜流量计、湿式流量计校正原理。

3.掌握皂膜流量计、湿式流量计、转子流量计的校正方法 二、主要仪器:皂膜流量计、湿式流量计、转子流量计、抽气机、秒表 三、实验步骤(一)皂膜流量计的校正体积较小的皂膜流量计可用称重法校正。

将待校正的皂膜流量计洗净,在玻璃管下口和下支管上各套上一根橡皮管用螺旋夹夹住,排尽气泡,从上口注水至上体积刻度后,打开下口螺旋夹,放水至下体积刻度,精确称量水重,记录水温(t ℃)。

被校正的两体积刻度间的体积(V)为:式中:W 为水的质量,kg ;d t 为t ℃时水的密度,kg /L 。

也可以用滴定管加水到皂膜流量计中,利用滴定管的体积校准流量计的刻度值。

体积大的皂膜流量计可用校正过的容器直接量取水的体积来测定两刻度间的体积,不必用称重法测量。

校正后,将校准的体积值和校正时的温度标记在流量计外壁上。

(二)湿式流量计的校准出厂前湿式流量计虽然已经校正过,但因气温、气压等条件的变化,使用前还必须校正。

湿式流量计刻度值反映的是流过气体的体积值,不是流速。

所以,校正时不需要记录时间,只需要检查流过气体的准确体积值与其两刻度差值的一致性。

具体装置见下图。

将2L 容量瓶塞上的两根玻璃导气管分别连接下口瓶和待校正的湿式流量计。

放水排尽下口瓶至导气管出水口的气体后,将其放入干燥的容量瓶,密闭;记录流量计td WV指针起始刻度值,从下口瓶放水至容量瓶的刻度线,立即停止放水。

将等体积空气排出流过流量计,推动流量计指针转动,记录指针终点刻度值,两个刻度之差应为2L 。

否则,表示该段转盘刻度有误差。

转盘刻度应分段校正,每段校正3次,取平均值即为被校正刻度段的校正值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流量计流量的校正实验一.实验目的
1.熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。

2.掌握流量计的标定方法之一——容量法。

3.测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。

二.基本原理对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。

使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。

孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。

而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。

1、孔板流量计的校核
孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。

孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。

其基本构造如图1所示。

若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有: 图1 孔板流量计
2221122u u p p p ρρ
--∆==
或 =由于缩脉处位置随流速而变化,截面积又难以指导,而孔板孔径的面积是已知的,因此,
2A 0A 用孔板孔径处流速来替代上式中的,又考虑这种替代带来的误差以及实际流体局部阻力造成的0u 2u
能量损失,故需用系数C 加以校正。

= 对于不可压缩流体,根据连续性方程可知,代入上式并整理可得:0101A u u A =
0u = 令
0C =则
0u C =根据和即可计算出流体的体积流量:0u 0A ρ/20000p A C A u V ∆==或 ρρρ/)(20000-==i gR A C A u V 式中:-流体的体积流量, m 3/s ;V
-U 形压差计的读数,m ;R -压差计中指示液密度,kg/m 3;i ρ -孔流系数,无因次;0C 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re 所决定,具体数值由实验测定。

0C 当孔径与管径之比为一定值时,Re 超过某个数值后,接近于常数。

一般工业上定型的流量计,就0C 是规定在为定值的流动条件下使用。

值范围一般为0.6~0.7。

0C 0C 孔板流量计安装时应在其上、下游各有一段直管段作为稳定段,上游长度至少应为10d 1,下游为5d 2。

孔板流量计构造简单,制造和安装都很方便,其主要缺点是机械能损失大。

由于机械能损失,使下游速度复原后,压力不能恢复到孔板前的值,称之为永久损失。

d 0/d 1的值越小,永久损失越大。

2.文丘里流量计的校核
孔板流量计的主要缺点时机械能损失很大,为
了克服这一缺点,可采用一渐缩渐括管,如图2所示,当流体流过这样的锥管时,不会出现边界层分离及漩涡,从而大大降低了机械能损失。

这种管称为文丘里管。

文丘里管收缩锥角通常取15°~25°,扩大段锥角要取得小些,一般为5°-7°,使流速改变平缓,因为机械能损失主要发生在突然扩大处。

图2 文丘里流量计文丘里流量计测量原理与孔板完全相同,只不过永久损失要小很多。

流速、流量计算仍可用计算孔板流量计式子进行计算,式中仍代表最小截面处(称为文氏喉)的流速。

文丘里管的孔流系数0u 约为0.98-0.99。

机械能损失约为:0C 201.0u w f 文丘里流量计的缺点是加工比孔板复杂,因而造价高,且安装时需占去一定管长位置,但其永久损失小,故尤其适用于低压气体的输送。

三.实验装置与流程实验装置 如图3所示。

主要部分由循环水泵、流量计、U 型压差计、温度计和水槽等组成,实验主管路为1寸不锈钢管(内径25mm )。

图3 流量计校合实验示意图
四.实验步骤
1. 熟悉实验装置,了解各阀门的位置及作用。

启动离心泵。

2. 对装置中有关管道、导压管、压差计进行排气,使倒U 形压差计处于工作状态。

3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8~9个点,大流量时测量5~6个点。

4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm 或测量时间不少于40s 。

5. 主要计算过程如下:(1)根据体积法(秒表配合计量筒)算得流量V (m 3/h );(2)根据,孔板取喉径d 0=15.347mm ,文丘里取喉径d =12.403mm ;24d V u π=
(3)读取流量V (由闸阀开度调节)对应下的压差计高度差R ,根据和0u C =,求得C 0值。

gR p ρ=∆(4)根据,求得雷诺数,其中d 取对应的d 0值。

μρdu =Re (5)在坐标纸上分别绘出孔板流量计和文丘里流量计的-Re 图。

0C 五.实验数据记录及处理1.数据记录计量桶底面积为0.1㎡流量V m 3/h 孔板压降△P mmH 2O 文丘里管压降△P mmH 2O 序号时间s 高度 ㎝水温t℃左右压差左右压差
2.数据处理
序号流量V m3/h流速u0 m/s 孔板压降△P1
Pa
文丘里管压降△P 2
Pa
孔流系数
C
1. 将所有原始数据及计算结果列成表格,并附上计算示例。

2. 在单对数坐标纸上分别绘出孔板流量计和文丘里流量计的-Re图。

C
3. 讨论实验结果。

六.思考题
1. 孔流系数与哪些因素有关?
2. 孔板、文丘里流量计安装时各应注意什么问题?
3. 如何检查系统排气是否完全?。

相关文档
最新文档