估计水塔用水量

合集下载

水塔用水量的估计-插值教材

水塔用水量的估计-插值教材

重庆大学学生实验报告实验课程名称数学实验开课实验室DS1421学院年级专业班学生姓名学号开课时间2013 至2014 学年第 2 学期数学与统计学院制开课学院、实验室:数统学院DS1421实验时间:2014年5月28日y=1/(1+x2)y=sin xy=cos10x(3)分析:由图可以看出,函数y=1/(1+x2)使用三次样条插值效果最好,函数y=sinx使用拉格朗日插值效果最好,y=cos10x使用分段线性插值效果最好,可见,三种插值方法各有各自最适用的函数。

2.轮船的甲板成近似半椭圆面形,为了得到甲板的面积。

首先测量得到横向最大相间8.534米;然后等间距地测得纵向高度,自左向右分别为:0.914, 5.060, 7.772, 8.717, 9.083, 9.144, 9.083, 8.992, 8.687, 7.376, 2.073,计算甲板的面积。

(1)程序:x=linspace(0,8.534,13);y=[0 0.914 5.060 7.772 8.717 9.083 9.144 9.083 8.992 8.687 7.376 2.073 0];x0=0:0.001:8.534;y1=interp1(x,y,x0);figure,plot(x,y,'k*',x0,y1,'-r')S=trapz(y1)*0.001(2)结果:S = 54.6894(3)分析:甲板横向最大相间为8.534米,然后等间距地测得纵向高度,共有11个值,所以应该是吧8.534米分成12分,对应的值为纵向高度;以左边零点位坐标原点,建立坐标系。

线性插值得到图形,再用数值积分可求面积。

3.火车行驶的路程、速度数据如表7.2,计算从静止开始20 分钟内走过的路程。

表7.2t(分) 2 4 6 8 10 12 14 16 18 20v(km/h) 10 18 25 29 32 20 11 5 2 0(1)程序:x=0:2:20;y=[0 10 18 25 29 32 20 11 5 2 0];x0=0:0.001:20;y1=interp1(x,y,x0,'spline');plot(x,y,'k*',x0,y1,'r')S=trapz(y1)*0.001(2)结果:S = 304(3)分析:用线性插值的方法作出火车行驶的v-t关系图,则火车行驶的路程为图形的面积,用数值积分的方法可以求出。

估计水塔的水流new

估计水塔的水流new

估计水塔的水流量New表1 水塔中水位原始数据>> t=[0 0.921 1.843 2.949 3.871 4.978 5.900...7.006 7.928 8.967 9.981 10.925 10.954 12.032...12.954 13.875 14.982 15.903 16.826 17.931 19.037...19.959 20.839 22.015 22.958 23.880 24.986 25.908];>> h=[9.677 9.479 9.308 9.125 8.982 8.814 8.686...8.525 8.388 8.220 0 0 10.820 10.500...10.210 9.936 9.653 9.409 9.180 8.921 8.662...8.433 8.220 0 10.820 10.591 10.354 10.180];>> D=17.4;>> V=pi/4*D^2*hV =1.0e+003 *Columns 1 through 92.3011 2.2540 2.2133 2.1698 2.1358 2.0959 2.0654 2.0271 1.9946Columns 10 through 181.9546 0 02.5729 2.4968 2.4278 2.36272.2954 2.2373Columns 19 through 272.1829 2.1213 2.0597 2.0053 1.9546 0 2.5729 2.5184 2.4620Column 282.4207表2 水塔中水的体积>> t1=t(1:10);>> t2=t(13:23);>> t3=t(25:28);>> V1=V(1:10);>> V2=V(13:23);>> V3=V(25:28);>> v=-[gradient(V1,t1),gradient(V2,t2),gradient(V3,t3)]v =Columns 1 through 951.1204 47.6090 41.5072 38.2242 36.4474 34.6895 33.8858 34.9411 36.9837Columns 10 through 1838.4487 70.5862 72.5251 72.7683 65.3094 61.7918 60.9942 57.2190 55.7095Columns 19 through 2557.2190 58.3251 57.5553 59.0599 54.6395 48.1906 44.8752表3 水塔中水流速度(近似为用水速度)>> t=[t1 t2 t3];>> ti=0:0.01:25.908;>> vi=interp1(t,v,ti,'spline');>> plot(t,v,'+',ti,vi,'g')0510********>> ti=0:0.01:24;>> vi=interp1(t,v,ti,'spline');>> I=trapz(ti,vi)I =1.2560e+003稳定性分析:>> ti=0.2:0.01:24.2;>> vi=interp1(t,v,ti,'spline');>> I=trapz(ti,vi)I =1.2565e+003>> ti=0.4:0.01:24.4;>> vi=interp1(t,v,ti,'spline');>> I=trapz(ti,vi)I =1.2567e+003>> ti=1:0.01:25;>> vi=interp1(t,v,ti,'spline'); >> I=trapz(ti,vi)I =1.2572e+003检验:第一段用水量>> ti=0:0.01:8.967;>> vi=interp1(t,v,ti,'spline'); >> I1=trapz(ti,vi)I1 =345.2792第二段用水量>> ti=10.954:0.01:20.839; >> vi=interp1(t,v,ti,'spline'); >> T2=trapz(ti,vi)T2 =618.3992第三段用水量>> ti=22.958:0.01:25.908; >> vi=interp1(t,v,ti,'spline'); >> I3=trapz(ti,vi)I3 =152.0959水泵第一次充水时用水量>> ti=8.967:0.01:10.954; >> vi=interp1(t,v,ti,'spline'); >> I=trapz(ti,vi)I =107.6730水泵第二次充水时用水量>> ti=20.839:0.01:22.958; >> vi=interp1(t,v,ti,'spline'); >> I=trapz(ti,vi)I =123.9158。

《数值分析》水塔问题

《数值分析》水塔问题

淮海工学院计算机工程学院实验报告书课程名:《数值分析》题目:水塔问题班级:学号:姓名:一、课程设计目的:1.训练学生灵活应用所学数值分析知识,独立完成问题分析,结合数值分析理论知识,编写程序求解指定问题。

2.初步掌握解决实际问题过程中的对问题的分析、系统设计、程序编码、测试等基本方法和技能;3.提高综合运用所学的理论知识和方法独立分析和解决问题的能力;4.训练用数值分析的思想方法和编程应用技能模拟解决实际问题,巩固、深化学生的理论知识,提高学生对数值分析的认知水平和编程水平,并在此过程中培养他们严谨的科学态度和良好的工作作风二、课程设计任务与要求:课程设计题目:计算水塔的水流量【问题描述】某居民区的民用自来水是由一个圆柱形的水塔提供,水塔高12.2米,直径17.4米。

水塔是由水泵根据水塔内水位高低自动加水,一般每天水泵工作两次,现在需要了解该居民区用水规律与水泵的工作功率。

按照设计,当水塔的水位降至最低水位,约8.2米时,水泵自动启动加水;当水位升高到一个最高水位,约10.8米时,水泵停止工作。

可以考虑采用用水率(单位时间的用水量)来反映用水规律,并通过间隔一段时间测量水塔里的水位来估算用水率,原始数据表是某一天的测量记录数据,测量了28个时刻,但是由于其中有3个时刻遇到水泵正在向水塔供水,而无水位记录。

试建立合适的数学模型,推算任意时刻的用水率、一天的总用水量。

进一步:可自己增加一些新的计算功能。

【问题假设】1.水塔中水流量是时间的连续光滑函数,与水泵工作与否无关,并忽略水位高度对水流速度的影响。

2.水泵工作与否完全取决于水塔内水位的高度。

3.水塔为标准的圆柱体。

体积V=PI*D*D*h/4 其中D为底面直径,h为水位高。

4.水泵第一次供水时间段为[8.967,10.954],第二次供水时间段为[20.839,22.958]。

【实验数据】原始数据(单位:时刻(小时),水塔中水位(米))【实现提示】由问题的要求,关键在于确定用水率函数,即单位时间内用水体积,记为f(t),又称水流速度。

案例6 估计水塔水流量

案例6 估计水塔水流量


f ( t )dt 335329 (加仑) f ( t )dt 336480 (加仑)
25.5 1.5
相差只约1%
[0,24]区间内检验
第一次充水 前总用水量 第一次充水后, 第二次充水前 总用水量 第一次充水 期间用水量 第二次充水 期间用水量
V1= 606125-514872=91253(加仑)
充水时间约为2.1189小时
3. 由Vi—ti关系产生水流量 fi—ti的关系
注:亦可以由Vi—ti关系拟合 V(t),再求微商得到 f(t)
关于水流量 fi
Vi 1 Vi f i f (t i ) t i 1 t i V i V i 1 与 f i f (t i ) t i t i 1
水体积的误差为0.5% 用样条逼近的用水量其误差可用抽样计算得5.1%
一天 总量 误差
2 2 2 2 SV [ SV0 SV8.9678 SV p SV10.9542 SV20.8392
1
2 2 2 2 SV p SV 22.9581 SV23.88 SV[ 23.88 , 24 ] ]1 2
水泵工作的时间为32284秒(8.9678 小时); 水泵结束时间为39435秒(10.9542小时); 充水时间约为1.9864小时
水泵工作的时间为75021秒(20.8392 小时),水 位26.97英尺 第 二 次 充 水 水泵结束时间为82649秒(22.9581小时), 补充水位35.50英尺
水流量值(表3)

(小时)

水 流 量
(加仑/小时)

(小时)

水流量
(加仑/小时)

水塔流量估计的数学建模

水塔流量估计的数学建模

水塔流量估计的数学建模1. 引言水塔是现代城市供水系统中至关重要的组成部分,其作用是通过储存水源来保障城市居民日常用水,并且在有紧急情况时提供应急用水。

为了更好地保障全社会的用水需求,并降低供水系统建设和运营成本,对水塔的流量进行准确的估计和预测具有重要意义。

本文将探讨如何利用数学建模的方法对水塔流量进行估计和预测。

2. 水塔流量的影响因素水塔流量的大小受到多种因素的影响,主要包括以下几个方面:2.1 水塔容积水塔的容积越大,其流量也就越大。

因此,在进行水塔流量估计时,首先需要考虑其容积。

2.2 外部水压水塔的流量受到外部水压的影响。

如果外部水压较大,则水塔的流量也将较大。

2.3 水泵功率水泵功率的大小直接影响到水塔的流量大小。

水泵功率越大,水塔的流量也就越大。

2.4 关阀状态水塔流量还受到管道关阀状态的影响。

如果关阀状态较大,则水塔流量也将减小。

3. 水塔流量的数学建模方法水塔流量的数学建模方法主要包括以下几个步骤:3.1 收集数据收集水塔流量的相关数据,并对其进行初步的整理和分析。

3.2 设计建模方程根据已收集到的数据,设计合适的建模方程。

建模方程需要考虑到水塔容积、外部水压、水泵功率、关阀状态等多种因素。

3.3 参数估计利用已有的数据对建模方程中的参数进行估计。

参数估计是非常重要的一步,其准确性直接影响到模型的准确性和可靠性。

3.4 模型检验和优化使用已有的数据来对所建立的模型进行检验和优化。

检验过程中需要对模型的精度、准确性、鲁棒性等进行评估,如果出现问题,需要进行适当的调整。

4. 案例分析为了说明水塔流量估计的数学建模方法,我们以某市几座水塔为例进行分析。

4.1 收集数据在该市的几座水塔中,我们选取了其中一座水塔进行了数据的收集,主要包括该水塔的容积、水泵功率、外部水压等基本信息。

4.2 设计建模方程根据收集到的数据,我们设计了一个基础的建模方程,其中各项参数分别为:Q为流量,V为水塔容积,P为外部水压,H为水泵的扬程,K为关阀系数。

水塔水流量的估计

水塔水流量的估计

水塔水流量的估计一.实验问题某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。

但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量。

通常水泵每天供水一次,每次约2h。

水塔是一个高为12.2m,直径为17.4m的正圆柱。

按照设计,水塔水位降至约8.2m时,水泵自动启动,水位升到约10.8m时水泵停止工作。

表1是某一天的水位测量纪录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。

表1 水位测量纪录二.问题分析根据以上数据的形式和以往经验,适合采用线性拟合的方式进行数据处理。

对第1、2、3未供水时段可直接进行用五次多项式进行拟合。

对第1、2供水时段分别在两端各取两个点用前后时刻的流速拟合得到。

结果可以用分段函数表示分为5段,分别是第一未供水时段,第一供水时段,第二未供水时段,第二供水时段,第三未供水时段。

得出流速之后再乘以水塔横截面积即得任何时刻与水塔流出水流量的关系,即流速与时间的关系。

对流速进行分段积分并求和,即得一天的总水流量。

三.程序的设计与求解方法1.数据的单位转换水塔的横截面积为A=(17.4)^2*pi/4=237.0661(平方米)。

2.拟合水位——时间函数(1)对第1未供水时段的数据进行拟合。

t=[0 0.92 1.84 2.90 3.87 4.98 5.90 7.00 7.93 8.97 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 19.04 19.96 20.84 23.88 24.99 25.91]h=[ 9.68 9.48 9.31 9.13 8.98 8.81 8.69 8.52 8.39 8.22 10.82 10.50 10.21 9.94 9.65 9.41 9.18 8.92 8.66 8.43 8.22 10.59 10.35 10.18] f1=polyfit(t(1:10),h(1:10),5); tm1=0:0.1:9.0; y1=polyval(f1,tm1); plot(tm1,y1)01234567898.28.48.68.899.29.49.69.8(2)对第2未供水时段的数据进行拟合。

第5章_水塔用水量的估计

第5章_水塔用水量的估计

x
插值要求在每一个观测点处满足yi=f(xi)
2013-6-27 河北大学
Hebei University
5.1 引例

机床加工
X=0 3
5
7 9
11 12 13 14 15 1.8 1.2 1 1.6
4 Y=0 1.2 1.7 2 2.1 2 2 0 0
2013-6-27
5
河北大学
10
15
Hebei University
被插值节点 插值节点
xi处的插 值结果
2013-6-27
河北大学
Hebei University
5.2 插值基本原理

例:在1-12的11小时内,每隔1小时测量一次温度, 测得的温度依次为:5,8,9,15,25,29,31, 30,22,25,27,24。试估计1/10小时的温度值 hours=1:12 temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:.1:12; t=interp1(hours,temps,h); plot(hours,temps,’+’,h,t); title(‘线性插值下的温度曲线’) xlabel(‘Hour’), ylabel(‘Degrees Celsius’)
x=-5:10/2:5; y=1./(1+x.^2); x1=-5:0.1:5; y1=Langrage(x,y,x1); plot(x1,y1,'b--','linewidth',2) hold on x=-5:10/4:5; y=1./(1+x.^2); y2=Langrage(x,y,x1); plot(x1,y2,'r-','linewidth',2) x=-5:10/6:5; y=1./(1+x.^2); y3=Langrage(x,y,x1); plot(x1,y3,'k:','linewidth',2)

[VIP专享]实验六 水塔用水量的估计

[VIP专享]实验六  水塔用水量的估计
实验课程名称数学实验开课实验室ds1422学院自动化年级2010级专业自动化班级班学生姓名学号开课时间2011至2012学年第2学期总成绩教师签名数学与统计学院制开课学院实验室数统学院ds1407实验时间2012年5月7日课程名称数学实验实验项目名称实验六水塔用水量的估计插值实验项目类型演示综合设计其他验证指导教师一实验目的及意义肖剑成绩1了解插值的基本原理2了解拉格朗日插值线性插值样条插值的基本思想3了解三种网格节点数据的插值方法的基本思想4掌握用matlab计算三种一维插值和两种二维插值的方法5通过范例展现求解实际问题的初步建模过程通过自己动手作实验学习如何用插值方法解决实际问题提高探索和解决问题的能力
n=5; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y2=lagr1(x0,y0,x); hold on,plot(x,y2,'b:'),gtext('n=4'),pause, hold off
n=7; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y3=lagr1(x0,y0,x);hold on,
2006年经省农业厅,南平市政府19批41准年,毛南泽平东农在校《与改建造阳我农们业的工学程习学》校一合文署中办,学把,这强句强原联指合治,学实态行度一的套话班古子为,今两用个,校从区哲的学管的理高体度制做,了从新而的使分学析校,的深办化学了规对模实,事办求学是实的力理都解有,长并足为的其发提历展出史,了的逐一经步个验发经教展典训成的告为注诉有释我着,们广指:泛出什发:么展“时空‘候间实坚和事持良’实好就事发是求展客是前观,景存党的在和闽着国北的家唯一的一切事一事业所物就集,会文第‘顺理一是利、个’发农问就展工题是;商,客什实贸实观么事为事事时求一求物候是体是的背是,地内离一面看部实个向待联事老全我系求话国们,是题招的即,,生学规党实和校律和事就。性国求业职,家是的业‘的一,教求事一语办育’业、,学明就就实出规显是会事自模不我遭求东最同们遇是汉大于去挫地班、高研折看固师等究。待所资教”同学著力育。时校《量和毛,、汉最中泽只学书雄学东有生河厚教对坚和间、育中持学献办,国实校王学不社事当传质同会求前》量点、是工。和就中,作书办在国党以中学于革和及称声职命人存赞誉业的民在刘高教分的的德的育析事问“综所无业题修合有不才学性工贯能好国作穿顺古家和着利,级任实前实重何事进事点事求,求中情是一是专都的旦。和必精背”省须神离其级靠。实意文自因事思明己而求是学完他是根校成才就据。。能必实而找然事这到遭求些中到索成国挫真绩革折理的命甚。取的至得规倒是律退得,。益制实于定事学出求校适是党合是政中马领国克导国思的情主坚的义强路世领线界导方观,针的得政根益策本于,要全指求体导,党中是员国马干革克部命思和走主教向义职胜的工利精的,髓辛实。勤事工求作是和是共中同国努革力命的实结践果经,验但的最高主度要总的结一和条概是括得,益中于国学革校命始和终建坚设持的实经事验求表是明的,原实则事,求可是以是说胜,利坚之持本实,事只求要是坚原持则实是事我求们是学,校我各们项党事就业会健永康远、立稳于定不和败谐之发地展。的重要保证。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

估计水塔流量实验报告
姓名:祁华东
学号:110714220
班级:11级测绘工程(2)班
指导老师:刘利斌
估计水塔流量实验报告
一.问题的提出
某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时.
水塔是一个高12.2m ,直径17.4m 的正圆柱.按照设计,水塔水位降至约8.2m 时,水泵自动启动,水位升到约10.8m 时水泵停止工作.
表 1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量.
表1 水位测量记录
(符号//表示水泵启动)
二.问题分析
流量是单位时间流出水的体积,由于水塔是圆柱形,横截面积是时刻(h)
水位(cm)
0 0.92 1.84 2.95 3.87 4.98 5.90 7.01 7.93 8.97 968 948 931 913 898 881 869 852 839 822 时刻(h)
水位(cm)
9.98 10.92 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 // // 1082 1050 1021 994 965 941 918 892 时刻(h)
水位(cm)
19.04 19.96 20.84 22.01 22.96 23.88 24.99 25.91 866 843 822 // // 1059 1035 1018
一个常数,在水泵不工作时,流量可以通过水位随时间的变化率求出。

先用表中数据拟合水位—时间函数,求导后即可获得流量。

三.流量估计
1.拟合水位—时间函数
从测量记录看,一天有两个供水时段(以下称第1供水时段和第2供水时段),和3个水泵不工作时段(以下称第1时段t=0到t=8.97,第2次时段t=10.95到t=20.84和第3时段t=23以后)。

对第1、2时段的测量数据直接分别作多项式拟合,得到水位函数。

为使拟合曲线比较光滑,多项式次数不要太高,一般在3~6。

由于第3时段只有3个测量记录,无法对这一时段的水位作出较好的拟合。

(1)拟合第1时段水位—时间函数
在matlab中输入以下命令:
x=[0 0.92 1.84 2.95 3.87 4.98 5.90 7.01 7.93 8.97];
y=[968 948 931 913 898 881 869 852 839 822];
A1=polyfit(x,y,5)
z1=polyval(A1,x);
plot(x,y,'k+',x,z1,'r')
得到运算结果为:
A1=
﹣0.0024 0.0556 ﹣0.5293 2.8554 ﹣23.8296 967.9638
即第1时段的水位—时间函数为:
y=﹣0.0024*x5+0.0556*x4-0.5293*x3+2.8554*x2-23.8296*x+967.9638。

对应图形如图1所示
0123456789820840
860
880
900
920
940
960
980
data 1data 2
图1
(2)拟合第2时段水位—时间函数
在MATLAB 中输入以下命令:
x=[10.95,12.03,12.95,13.88,14.98,15.90,16.83,17.93,19.04,19.96,20.84]; y=[1082,1050,1021,994,965,941,918,892,866,843,822];
A2=polyfit(x,y,5)
z2=polyval(A2,x);
plot(x,y,'*',x,z2,'r')
得到运算结果为:
A2 =
0.0025 ﹣0.2031 6.5627 ﹣103.4293 764.7074 ﹣974.7321
即第2时段的水位—时间函数为:
y=0.0025*x 5-0.2031*x 4+6.5627*x 3-103.4293*x 2+764.7074*x -974.7321
对应图形如图2所示
10121416182022
800850
900
950
1000
1050
1100data 1
data 2
图 2
2.确定流量—时间函数
对于第1、2时段只需将水位函数求导数即可,对于两个供水时段的流量,则用供水时段前后(水泵不工作时段)的流量拟合得到,并且将拟合得到的第2供水时段流量外推,将第3时段流量包含在第2供水时段内。

(1)对第1时段的水位—时间函数求导
在MATAB 中输入以下命令:
B1=polyder(A1) %输出多项式(系数为A1)导数的系数
S1=-polyval(B1,x); %输出多项式(系数为B1)在x 点的函数值, 即 x 时刻的流量。

(对S1取负后结果变为正值) plot(x,S1) %作出拟合流量—时间曲线的图形
运行结果为:
B1 =
﹣0.0120 0.2224 ﹣1.5878 5.7108 ﹣23.8296
对应的函数表达式为:
y ’=﹣0.0120*x 4+0.224*x 3-1.5878*x 2+5.7108*x -23.8296
流量—时间函数图形如图3所示
0123456789
1415
16
17
18
19
20
21
22
23
24
图3
(2)对第2时段的水位—时间函数求导
在MATAB 中输入以下命令:
B2=polyder(A2) %输出多项式(系数为A2)导数的系数
S2=-polyval(B2,x); %输出多项式(系数为B2)在x 点的函数值, 即x 时刻的流量。

(对S2取负后结果变为正值) plot(x,S2) %作出拟合流量—时间曲线的图形
运行结果为:
B2 =
0.0123 -0.8123 19.6881 -206.8586 764.7074
对应的流量—时间函数表达式为:
y ’=0.0123*x 4-0.8123*x 3+19.6881*x 2-206.8586*x+746.7074
流量—时间函数图形如图4所示
10121416182022
2324
25
26
27
28
29
30
31
图4
四.心得体会
初次接触接触matlab ,对函数还不熟悉,但通过本次试验我才了解到数学软件的强大功能,集计算与绘图于一体,而且算法比C 语言简单。

刚开始对函数不熟悉,总是把求多项式系数的函数polyfit 误写为ployfit ,以至于算法不能运行而耽误大量时间。

随着对软件的不断深入,我觉得matlab 软件还是很有意思的,但软件界面全部是英文,对于我们初学者还是比较困难的,必须要查阅相关书籍才能解决问题,我体会到在面对问题时要学会自己去寻找方法解决。

同时,
通过学习matlab软件,使我懂得了无论做什么事情都要严谨,因为即使是很小的疏忽都会影响最终的结果与成败。

相关文档
最新文档