选修4-5基本不等式

合集下载

选修4-5 基本不等式(三元均值不等式)

选修4-5 基本不等式(三元均值不等式)

a b c 3abc,
3 3 3
当且仅当a b c时,等号成立.
问题探讨
abc 3 怎么证明不等式 abc (a, b, c R )? 3
证: a b c
3 3
a3 b3 c3 3abc(a, b, c R )
3 3 3 3
( a) ( b) ( c) 3 abc ,
3
3
x
a
例3. 已知a, b, c R ,求证: abc 3 ab 3( abc ) 2( ab ). 3 2
1 1. 求函数 y x (1 5 x) (0 x ) 的最大值. 5 2 4 答案:当 x 时, ymax . 15 675
2
课堂练习:
a1 a2 , an R , 则 n
an
≥ n a1a2
an .
小 结
2.基本不等式的变形: ab 2 ①若a, b R , 则ab ( ). 2
③若a1 , a2 , , an R , 则a1a2
abc 3 ②若a, b, c R , 则abc ( ). 3a a a 1 2 n
an ( n
).
n
作业: P10 11-15
12 1.求函数y = 3x + 2 x > 0 的最小值. x 12 3 3 12 3 3 12 3 解 :∵ y = 3x + 2 = x + x + 2 3 x× x× 2 = 9 x 2 2 x 2 2 x 3 12 ∴当且仅当 x = 2 , 即x = 2 时,y min = 9. 2 x
三个正数的算术-几何 平均不等式
2017年4月22日星期六

高中数学(人教版选修4-5)配套课件第一讲 1.1.2 基本不等式

高中数学(人教版选修4-5)配套课件第一讲 1.1.2 基本不等式
第一讲
不等式和绝对值不等式 1.1 不 等 式
1.1.2 基本不等式
栏 目 链 接
1.会用基本不等式证明一些简单问题.
2.能够利用两项的平均值不等式求一些特定函数
的最值,从而学会解决简单的应用问题.
栏 目 链 接
栏 目 链 接
1.定理 1. 如果 a, b∈R, 那么 a2+b2≥2ab(当且仅当 a=b 时取“=”). 思考 1
2 2
栏 目 链 接
3 2 也即 x= ,y= 时, 2 2 x 答案: 1+y2取得最大值 3 2 4 3 2 . 4
题型二
利用基本不等式证明不等式
2 2
1 例2 已知 a,b∈(0,+∞)且 a+b=1,求证:(1)a +b ≥ ; 2 1 1 (2) 2+ 2≥8.
a
b
≥ ab, 2 证明:由 a+b=1, a,b ,+
栏 目 链 接
∴x 1+y2= x21+y2=
变 式 训 练
2 2 1 + y y 1 x2+ x2+ + 2 2 2 3 2 2 = 2 = , 2 2 4
1+y2 3 2 当且仅当 x = ,即 x= ,y= 时, 2 2 2
2
3 2 x 1+y 取得最大值 . 4
2
栏 目 链 接
方法二 则x
6x 利用定理 1 有:x2+32≥________,其中等号成立的
栏 目 链 接
3 条件是:x=________.
2.定理 2. 如果 a , b 是正数,那么 “=”). 思考 2 如果 x,y 是正数,那么
a+b
2
≥ ab ( 当且仅当 a = b 时取
x2+ y2
2
≥ ________ xy(当且

高二数学人教b版选修4-5课件:第一章_1.2_基本不等式

高二数学人教b版选修4-5课件:第一章_1.2_基本不等式
答案:≤
7.函数 y=x4x+2 9(x≠0)有最大值________,此时 x=________.
解析:∵x≠0,∴x2>0.
∴y=x4x+2 9=x2+1 x92≤2
1x2·x92=16,
当且仅当 x2=x92,即 x4=9,x=± 3时取等号,
即当 x=± 3时,ymax=16.
答案:16 ± 3
围是
()
A.(-∞,lg 6]
B.(-∞,3lg 2]
C.[lg 6,+∞)
D.[3lg 2,+∞)
解析:∵lg x+lg y+lg z=lg(xyz), 而 xyz≤x+3y+z3,∴lg(xyz)≤lg 8=3lg 2 (当且仅当 x=y=z=2 时,等号成立). 答案:B
4.设 a,b,c∈(0,+∞)且 a+b+c=1,令 x=1a-11b-11c-1,
则 x 的取值范围为
()
A.0,18 C.[1,8)
1-a a·1-b b·1-c c=b+c·ca+bca·a+b
≥2
bc·2 ca·2 abc
ab=8,
提示:a,b,c 的范围为 a≥0,b≥0,c≥0.
利用基本不等式证明不等式
[例 1] 已知 a,b,c 为正实数,且 abc=1 求证:(a+b)(b+c)(c+a)≥8. [思路点拨] 本题考查基本不等式在证明不等式中的应 用,解答本题需要分析不等式的特点,先对 a+b,b+c,c+ a 分别使用基本不等式,再把它们相乘. [精解详析] ∵a,b,c 为正实数, ∴a+b≥2 ab>0,
当且仅当 a=b=c 时取等号,∴x≥8.
答案:D
二、填空题
5.已知 x,y∈R+,且满足x3+4y=1,则 xy 的最大值为_______. 解析:因为 x>0,y>0,

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式
1
年销售收入为 150% 32 3- t+1 + 3 + 2t.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
探究三
由题意,生产 x 万件化妆品正好销完,
由年利润=年销售收入-年生产成本-促销费,
-t2 +98t+35
得年利润 y=
(t≥0).
2(t+1)
-t2 +98t+35
1 2x+y 2
1
(x,y∈R+)中,用的是不等式链中的
其变形去解题,如 xy= ×(2x)y≤
2
2
2
2
1 (2x+y)
1
a+b 2
(x,y∈R+)也可以,这两种解法比较,
.但是 xy= ×(2x)y≤ ×
ab≤
2
2
2
2
可以发现,求得的最值不一样,这说明选择不同的重要不等式的变形形式,求
得的值或范围是不同的,所以我们在选择重要不等式的变形形式时,要使
论有关的不等关系,得出有关理论参数的值.
(4)作出问题结论:根据③中得到的理论参数的值,结合题目要求得出问
题的结论.
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
1
1.下列各式中,最小值等于 2 的是(
x
A.
y
y
+
x
B.
1
C.tanθ+θ
2
3
S 随堂练习
1
的最大值,转化为求 (2x)y 的最大值,即

(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(含答案解析)(3)

(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(含答案解析)(3)

一、选择题1.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b ++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 2.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞ B .(0,)+∞ C .[0,)+∞ D .(1,)+∞3.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+4.已知x ,y ∈R ,且0x y >>,则( ) A .11x y> B .11()()22xy<C .1122x y <D .sin sin x y >5.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,则ac 2>bc 2 D .若a >b ,c >d ,则ac >bd 6.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b > D .若a b >, 则22ac bc > 7.若a >b ,c 为实数,下列不等式成立是()A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y->D .ln x +ln y >09.不等式536x x -++≥的解集是 ( ) A .[]5,7- B .(),-∞+∞C .()(),57,-∞-+∞ D .[]4,6-10.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 11.若,则下列结论不正确的是A .B .C .D .12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C a b a b <-.2a ab <二、填空题13.已知实数a ,b ,c 满足a >c ﹣2且1333abc++<,则333a bc-的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接) 17.已知ln ln x y <,则21x y y x-++的最小值为___________________. 18.设5x >,45P x x --23Q x x --,则P 与Q 的大小关系是P ______Q .19.设()f x x a x =-+,且|()|2f x ≤在[1,1]x ∈-上恒成立,则实数a 的取值范围为_________.20.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____. 三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.(1)解不等式:1|1||2|2x x --->; (2)设集合P 表示不等式121x x a -+->对任意x ∈R 恒成立的a 的集合,求集合P ; (3)设关于x 的不等式22||200ax x a +--<的解集为A ,试探究是否存在a ∈N ,使得不等式.220x x +-<与|212x x -<+的解都属于A ,若不存在,说明理由.若存在,请求出满足条件的a 的所有值.23.(1)已知a <b <c ,且a +b +c =0,证明:a a a cb c--<. (224.已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ; (2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 25.比较log (1) n n +与()*(1)log (2),2n n n N n ++∈≥大小,并证明.26.(1)若0a >,0b >,求证:11()4a b a b ⎛⎫++≥ ⎪⎝⎭; (2【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>,所以()()0-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()0+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。

高中数学-选修4-5不等式的基本性质

高中数学-选修4-5不等式的基本性质
即 加法法则:同向可相加
性质6 若a > b>0 ,且 c >d>0,那么 ac > bd . 也就是说,两边都是正数的同向不等式相乘,所得 的不等式和原不等式同向。
即 乘法法则:同向可相乘
性质7 如果 a > b>0, 那么an bn.(n N, n 1)
也就是说,当不等式的两边都是正数时,不等式两 边同时乘方所得的不等式与原不等式同向
第一讲 不等式和绝对值不等式 1、不等式的基本性质
一、实数比较大小的理论依据
ab0 a b ab0 a b ab0 a b
要比较两个实数的大小,只要考察他们的差与0 的大小就可以了.
二、不等式的基本性质
性质1: 如果 a > b ,那么 b < a ;
如果 b < a ,那么 a > b.
题型3:利用不等式的性质求取值范围
例4:已知12 a 60,15 b 36,求a b 及 a的取值范围。
b
例5:已知f (x) ax2 c,且 4 f (1) 1, 1 f (2) 5,求f (3)的取值范围。
a>b b<a
性质2:如果 a > b ,且 b > c ,那么 a > c .
a > b ,b > c
等价命题是: c<b, b<a
a>c c<a
性质3:如果 a > b,那么 a + c > b + c。
(1) 等价命题:如果 a < b,那么 a + c < b + c
(2) 移项法则:如果 a + b > c,那么 a > c-b

选修4-5基本不等式

选修4-5基本不等式

以上有不当之处,请大家给与批评指正, 谢谢大家!
12
Q 1 (lg a lg b), R lg( a b) ,则( B )
2
2
A、R P Q B、P Q R C、R P Q D、P Q R
题型二:解决最大(小)值问题
结论:利用 a b 2 ab (a 0,b 0) 求最值时要注意下面三条:
(1)一正:各项均为正数
(2)二定:两个正数积为定值,和有最小值。 积定,和最小 两个正数和为定值,积有最大值。 和定,积最大
1.若a1, a2 , a3,an R ,
则a1 a2 a3 an nn a1 a2 an
当且仅当a1 a2 a3 an时取 号
4.若பைடு நூலகம், b R , 则
1
2
1
ab a b 2
ab
a2 b2 2
几何平均数 算术平均数 平方平均数 调和平均数
(当且仅当a=b时,取“=”号)
ab叫做a,b的 几何平均数
这样,基本不等式可以表述为:
算术平均数
两个正数的算术平均数不小于它们的几何平均数。
注意:
1、重要不等式与基本不等式有什么区别与联系? 基本不等式可以看作是重要不等式的变形,但它们
的前提条件不同。重要不等式中a,b属于全体实数,
而基本不等式中a,b均为大于0的实数。 2、重要不等式与基本不等式的几个推广公式:
B、6 3 C、4 6 D、18 3
题型三:构造积为定值,利用基本不等式求最值
例4、 求函数 y 1 x(x 3)的最小值
x3
例5、求函数 y x2 5 的最小值
x2 4
例6、已知正数x、y满足2x+y=1,求

北师大版高中数学选修4-5《不等式选讲》全套教案

北师大版高中数学选修4-5《不等式选讲》全套教案

课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。

怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等号能成立的是 (1)(2)(3) 。 例2:若 a b 1, P lg a lg b ,
例1:设a>0,b>0,给出下列不等式
1 ab Q (lg a lg b), R lg( ) ,则( B ) 2 2 A、R P Q B、P Q 的几个推广公式:
1.若a1 , a2 , a3 , an R , 则a1 a2 a3 an n n a1 a2 an

当且仅当 a1 a2 a3 an时取 号
4.若a, b R , 则 2 1 1 a b
当且仅当a=b时,等号成立。
算术平均数
ab叫 做 a, b的 几何平均数
这样,基本不等式可以表述为:
两个正数的算术平均数不小于它们的几何平均数。
注意:
1、重要不等式与基本不等式有什么区别与联系?
基本不等式可以看作是重要不等式的变形,但它们
的前提条件不同。重要不等式中a,b属于全体实数,
而基本不等式中a,b均为大于0的实数。
题型三:构造积为定值,利用基本不等式求最值
1 x( x 3)的最小值 例4、 求函数 y x3
例5、求函数 y x 5 的最小值
2
x2 4
例6、已知正数x、y满足2x+y=1,求
1 1 的最小值 x y
3 例7、 求函数 y 1 2 x 的值域 x
题型四:利用基本不等式证明不等式
且在销售完该货物时,立即进货,现以年平均x/2件货储存在
调和平均数


ab ab 2
a b 2
2
2
几何平均数 算术平均数
平方平均数
(当且仅当a=b时,取“=”号)
题型一:利用基本不等式判断代数式的大小关系
1 1 1 (1) a 2 (2)( a )( b ) 4 a a b 1 1 1 2 (3)( a b)( ) 4 (4)a 2 2 2 a b a 2 其中成立的是 (1)(2)(3)(4)
题型二:解决最大(小)值问题
结论:利用 a b 2 ab (a 0, b 0) 求最值时要注意下面三条:
(1)一正:各项均为正数
(2)二定:两个正数积为定值,和有最小值。 积定,和最小 两个正数和为定值,积有最大值。 和定,积最大
(3)三相等:求最值时一定要考虑不等式是否能取 “=”。
例8、已知 x , y, z都为正数,且 xyz( x y z ) 1 求证 : ( x y )( y z ) 2
题型五:基本不等式的实际应用
例9:一个商店经销某种货物,根据销售情况,年进货量为5万件
分若干次等量进货(设每次进货x件),每进一次货运费50元 仓库里,库存费以每件20元计算,要使一年的运费和库存费 最省,每次进货量x应是多少?
第一讲 不等式和绝对值不等式 2、基本不等式及其应用
一、重要不等式:
一般地,对于任意实数a,b,我们有
a2+b2≥2ab
(当且仅当a=b时,取“=”号)
文字语言:两个数的平方和不小于它们积的2倍
二、定理2(基本不等式)
如果a, b>0, 那么
ab ab 2
a b 如果a,b都是正数,我们就称 为a,b的 2
练习:
1 1、当x>0时, 的最小值为 2 ,此时x= 1 x x
2、已知 2 x 3 y 2( x 0, y 0)
则x y 的最大值是
1 6


3、若实数 x, y ,且 x y 5,则 3 x 3 y的最小 值是( D ) A、10 B、 6 3 C、4 6 D、18 3
相关文档
最新文档