1.1 不等关系(含答案)
2021-2022版老教材数学人教A版必修5学案:3.1.1不等关系与比较大小含答案

第三章不等式3.1 不等关系与不等式第1课时不等关系与比较大小学习目标1.了解现实世界和日常生活中的不等关系.(数学抽象、数学建模)2.能用不等式表示不等关系.(数学抽象、数学建模)3.理解实数大小与实数运算的关系,会用作差法比较两个实数的大小.(逻辑推理、数学运算、数学建模)【必备知识·自主学习】导思1.我们学过的不等号有哪些?什么是不等式?2.初中学过在数轴上表示大小,那两个实数比较大小还有别的方法吗?1.不等式的相关概念(1)不等号:<,≤,>,≥,≠;(2)不等式:由不等号表示的关系式.(1)“≤”的含义是什么?提示:<或=.(2)不等式a≥b和a≤b有怎样的含义?提示:①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b或a=b中有一个正确,则a≤b正确.2.实数a,b大小的比较如果a-b是正数,那么a>b a-b>0⇔a>b如果a-b等于零,那么a=b a-b=0⇔a=b如果a-b是负数,那么a<b a-b<0⇔a<b怎样证明a>b?提示:证明a-b是正数,即a-b>0.1.辨析记忆(对的打“√”,错的打“×”).(1)不等关系“不大于3”用不等式表示为x<3. ( )(2)不等式5≥5不成立. ( )(3)若>1,则a>b. ( )提示:(1)×.用不等式表示为x≤3.(2)×.不等式5≥5表示5=5或5>5,因为5=5成立,所以不等式5≥5成立.(3)×.如=2>1,但是-2<-1.2.(教材二次开发:习题改编)大桥桥头竖立的“限重60吨”的警示牌,是指示司机要安全通过该桥,应使车和货的总重量T满足关系为( ) A.T<60 B.T>60 C.T≤60 D.T≥60【解析】选C.“限重60吨”即为T≤60.3.已知x<1,则x2+2与3x的大小关系为.【解析】x2+2-3x=(x-2)(x-1),而x<1,所以x-2<0,x-1<0,所以x2+2-3x>0,所以x2+2>3x.答案:x2+2>3x【关键能力·合作学习】类型一利用不等式表示不等关系(数学抽象、数学建模)1.限速40 km/h的路标,指示司机在前方路段行驶时,使汽车速度v不超过40 km/h,用不等关系表示速度的限制为.2.某工厂8月份的产量比9月份的产量少;甲物体比乙物体重;A容器不小于B容器的容积,若前一个量用a表示,后一个量用b表示,则上述事实可表示为;;.3.有如图所示的两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a,b的不等式表示出来.【解题指南】抓住题干中的关键词,如:不超过、不小于等写出不等式. 【解析】1.“不超过”即“小于或等于”,所以v≤40 km/h .答案:v≤40 km/h2.注意理解题目中的关键词语,并转化为不等关系,8月份的产量比9月份的产量少可表示为a<b;甲物体比乙物体重可表示为a>b;A容器不小于B容器的容积可表示a≥b.答案:a<ba>ba≥b3.图(1)广告牌面积大于图(2)广告牌面积.设图(1)面积为S1,则S1=+,图(2)面积为S2,则S2=ab,所以a2+b2>ab.1.将不等关系表示成不等式(组)的思路(1)读懂题意,找准不等式所联系的量.(2)用适当的不等号连接.(3)多个不等关系用不等式组表示.2.常见的文字语言与符号语言之间的转换文字语言大于,高于,超过小于,低于,少于大于等于,至少,不低于小于等于,至多,不超过符号语言> < ≥≤【补偿训练】1.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),搅拌糖融化后,糖水更甜了,将这个事实用一个不等式表示为.【解析】因为b克糖水中含a克糖(0<a<b)时,糖水的“甜度”为,所以若在该糖水中加入m(m>0)克糖,则此时的“甜度”是,又因为糖水会更甜,所以<.答案:<2.一辆汽车原来每小时行驶x km,如果这辆汽车每小时行驶的路程比原来多20 km,那么在4天内它的行程就超过2 200 km,写成不等式为;如果它每小时行驶的路程比原来少12 km,那么它原来行驶8小时的路程现在就得花9小时多的时间,用不等式表示为.【解析】①原来每小时行驶x km,现在每小时行驶(x+20)km.则不等关系“在4天内它的行程就超过2 200 km”,写成不等式为4×24×(x+20)>2 200,即96(x+20)>2 200.②原来每小时行驶x km,现在每小时行驶(x-12)km,则不等关系“原来行驶8小时的路程现在就得花9小时多的时间”,写成不等式为8x>9(x-12).答案:96(x+20)>2 200 8x>9(x-12)类型二用不等式组表示不等关系(数学抽象、数学建模)【典例】某矿山车队有4辆载重为10 t的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.【思路导引】①甲型卡车和乙型卡车的总和不能超过驾驶员人数;②车队每天至少要运360 t矿石;③甲型卡车不能超过4辆,乙型卡车不能超过7辆.【解析】设每天派出甲型卡车x辆,乙型卡车y辆,则即用不等式组表示不等关系的三注意(1)适用条件:当问题中同时满足几个不等关系时,应用不等式组来表示它们之间的不等关系,另外若问题中有几个变量,则选用几个字母分别表示这些变量即可.(2)全:解决这类有多个不等关系的问题时,要注意根据题设将所有不等关系都找出来.(3)读:若有表格、图象等,读懂表格、图象对解决这类问题很关键.1.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为.【解析】根据题意得:答案:2.某家电生产企业计划在每周工时不超过40 h的情况下,生产空调、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时如表:家电名称空调彩电冰箱工时/h若每周生产空调x台、彩电y台,试写出满足题意的不等式组.【解析】由题意,知x≥0,y≥0,每周生产冰箱(120-x-y)台.因为每周所用工时不超过40 h,所以x+y+(120-x-y)≤40,即3x+y≤120.又每周至少生产冰箱20台,所以120-x-y≥20,即x+y≤100.所以满足题意的不等式组为【拓展延伸】列不等式组表示不等关系(1)关注限制条件:实际应用问题中往往有2到3个限制条件,应先分析这些限制条件,并用不等式表示;(2)关注变量范围:要根据实际问题的意义确定变量的范围,并在不等式组中表示出来.【拓展训练】有学生若干人,住若干宿舍,如果每间住4人,那么还余19人,如果每间住6人,那么只有一间不满但不空,求宿舍间数和学生人数.【解析】设宿舍x间,则学生(4x+19)人,依题意解得<x<.因为x∈N*,所以x=10,11或12,学生人数为:59,63,67.故宿舍间数和学生人数分别为10间59人,11间63人或12间67人. 【补偿训练】1.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式组表示为.【解析】“不低于”即“≥”,“高于”即“>”,“超过”即“>”,所以答案:2.用锤子以均匀的力敲击铁钉钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的(k∈N*),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的,请从这个实例中提炼出一个不等式组为.【解析】依题意得第二次钉子没有全部进入木板第三次全部进入木板所以(k∈N*).答案:(k∈N*)类型三比较大小(逻辑推理、数学运算、数学建模) 角度1 作差法比较大小【典例】若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( ) A.f(x)<g(x) B.f(x)=g(x)C.f(x)>g(x)D.随x值变化而变化【思路导引】作差,根据差的正负判断.【解析】选C.f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=x2-2x+2=(x-1)2+1>0,所以f(x)>g(x).本例中若g(x)=3x2+x,试比较f(x)与g(x)的大小关系.【解析】f(x)-g(x)=(3x2-x+1)-(3x2+x)=-2x+1,当-2x+1>0,x<时,f(x)>g(x) ;当-2x+1=0,x=时,f(x)=g(x);当-2x+1<0,x>时,f(x)<g(x).角度2 作商法比较大小【典例】已知a>0,b>0且a≠b,比较a a b b与(ab的大小.【思路导引】作商,利用指数运算的性质变形,判断商与1的关系.【解析】因为a>0,b>0且a≠b,所以==,当a>b>0时,>1,>0,>1,此时a a b b>(ab;当b>a>0时,<1,<0,>1,此时a a b b>(ab,综上所述a a b b>(ab.1.关于作差法比较大小对差式的变形是判断差式正负的关键,常用的变形有配方、通分、因式分解、分母有理化等.2.关于作商法比较大小多用于指数式的比较,对商式一般利用指数的运算性质,通过约分、化同次等方法,比较与1的大小.1.已知a>0,b>0,且a≠b,比较+与a+b的大小.【解析】因为-(a+b)=-b+-a=+=(a2-b2)=(a2-b2)=,又因为a>0,b>0,a≠b,所以(a-b)2>0,a+b>0,ab>0.所以-(a+b)>0,所以+>a+b.2.设a>0,b>0,且a≠b,试比较a a b b,a b b a的大小.【解析】因为=a a-b·b b-a=,(1)若0<a<b,则0<<1,a-b<0;故>1,(2)若0<b<a,则>1,a-b>0;故>1.综上,a a b b>a b b a.【拓展延伸】作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键. 【拓展训练】已知a,b为正实数,试比较+与+的大小. 【解题指南】注意结构特征,尝试用作差法或者作商法比较大小.【解析】方法一:(作差法)-(+)=+=+= =.因为a,b为正实数,所以+>0,>0,(-)2≥0,所以≥0,当且仅当a=b时等号成立.所以+≥+(当且仅当a=b时取等号).方法二:(作商法)======1+≥1,当且仅当a=b时取等号.因为+>0,+>0,所以+≥+(当且仅当a=b时取等号).方法三:(平方后作差)因为=++2,(+)2=a+b+2,所以-(+)2=.因为a>0,b>0,所以≥0,当且仅当a=b时取等号.又+>0,+>0,故+≥+(当且仅当a=b时取等号). 【补偿训练】(1)已知a>b>c>0,试比较与的大小;(2)比较2x2+5x+3与x2+4x+2的大小.【解析】(1)-====.因为a>b>c>0,所以a-b>0,ab>0,a+b-c>0.所以>0,即>.(2)(2x2+5x+3)-(x2+4x+2)=x2+x+1=+.因为≥0,所以+≥>0,所以(2x2+5x+3)-(x2+4x+2)>0,所以2x2+5x+3>x2+4x+2.【课堂检测·素养达标】1.(教材二次开发:习题改编)已知a,b分别对应数轴上的A,B两点坐标,且A在原点右侧,B在原点的左侧,则下列不等式成立的是( ) A.a-b≤0 B.a+b<0C.|a|>|b|D.a-b>0【解析】选D.a>0,b<0,所以a-b>0.2.已知a∈R,p=a2-4a+5,q=(a-2)2,则p与q的大小关系为( )A.p≤qB.p≥qC.p<qD.p>q【解析】选D.p-q=a2-4a+5-(a-2)2=1>0,所以p>q.3.某地规定本地最低生活保障金x元不低于1 000元,则这种不等关系写成不等式为.【解析】因为最低生活保障金x元不低于1 000元,所以x≥1 000.答案:x≥1 0004.某杂志原来以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就相应减少2 000本,若把提价后杂志的单价设为x元,表示销售的总收入不低于20万元的不等式为.【解析】由题意,销售的总收入为x万元,所以“销售的总收入不低于20万元”用不等式可以表示为x≥20.答案:x≥20【新情境·新思维】已知函数f(x)=x2+4x+c,则f(1),f(2),c三者之间的大小关系为. 【解析】f(1)=5+c,f(2)=12+c,则c<f(1)<f(2).答案:c<f(1)<f(2)。
8实际问题与一元一次不等式(基础)知识讲解及其练习 含答案

实际问题与一元一次不等式(基础)知识讲解【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题;2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+. 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B 型车x 辆 ”,而在答中应为“至少需要11辆 B 型车 ”.这一点应十分注意.【典型例题】类型一、行程问题1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外(包括100m )的安全地区,导火索至少需要多长?【思路点拨】设导火索要xcm 长,根据导火索燃烧的速度为0.8cm/s ,人跑开的速度是5m/s ,为了使点导火索的战士在爆破时能跑到离爆破点100m 的安全地区,可列不等式求解. 【答案与解析】 解:设导火索要xcm 长,根据题意得:1000.85x ≥ 解得:16x ≥答:导火索至少要16cm 长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m 的安全距离作为不等量关系列不等式求解.类型二、工程问题2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方?【思路点拨】假设以后几天平均每天完成x 土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计划至少提前两天完成任务,说明至多4天完成任务,用去一天,还剩4-1=3(天)则列不等式2403x≤ 解得x 即可知以后平均每天至少完成多少土方.解:设以后几天平均每天完成x 土方.由题意得: 30060621x---≤ 解得: x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方.【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.举一反三:【变式】某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400,解得:x≥2153. ∵x 为正整数,∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售?【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg 10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥ 答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三:【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打 折.【答案】六.类型四、方案选择4.(•资阳)某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【思路点拨】(1)根据题意结合购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.【答案与解析】解:(1)设A 型污水处理设备的单价为x 万元,B 型污水处理设备的单价为y 万元,根据题意可得:,解得:.答:A 型污水处理设备的单价为12万元,B 型污水处理设备的单价为10万元;(2)设购进a 台A 型污水处理器,根据题意可得:220a+190(8﹣a )≥1565,解得:a ≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.实际问题与一元一次不等式(基础)巩固练习【巩固练习】一、选择题1.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于( )米.A .1B .1.2C .1.3D .1.52.(•西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块3.小红和爸爸、妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,体重只有妈妈一半的小红和妈妈坐在跷跷板的另一端,这时爸爸那一端仍然着地,小红的体重应小于( )A .49kgB .50kgC .24kgD .25kg4.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%,则至少可打( ) A .六折 B .七折 C .八折 D .九折5.设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,结果如图所示,那么这三种物体的质量按从大到小的顺序排列应为( )A . ■、●、▲B . ■、▲、●C . ▲、●、■D . ▲、■、●6.现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在每人分7本,还多10本,则小朋友人数最少有 ( )A.7人B. 8人C. 10人D.11人二、填空题7.当x_______时,代数式-3x+5的值是正数;当x_______时,它的值不大于4;当x______时,它的值不小于2.8.一家商店计划出售60件衬衫,要使销售总额不低于5100元,则每件衬衫的售价至少应为_______元.9.有10名菜农,每名可种茄子3亩或辣椒2亩,已知茄子每亩的收入是0.5万元,辣椒每亩的收入是0.8万元,要使总收入不低于15.6万元,则最多只能安排________名菜农种茄子.10.用一根长不足160 cm的铁丝围成一个宽是x cm,长是宽的2倍的长方形,则可列不等式_______.11.(春•德州期末)某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.12.一个工程队规定在6天内完成300千米的修路工程,第一天完成了60千米,现在接到任务要比原计划至少提前2填完成任务,以后几天平均每天至少完成千米.三、解答题13.某工人计划在15天里加工408个零件,前三天每天加工24个,问以后每天至少加工多少个零件才能在规定时间内超额完成任务?14.某种飞机进行飞行训练,飞出去的速度为1200km/h,飞回机场的速度为1500km/h,飞机油箱中的燃油只能保持2.5h的飞行,则飞机最多飞出多少千米就应返回?(结果精确到10km)15.某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?16.沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器,下表是两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电器的销售单价;(2)若超市准备用不多于8200元的金额再采购这两种型号的电器共30台,求A种型号的电器最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;若不能,请说明理由.一、选择题1. 【答案】C ;【解析】解:设导火线的长度为x 米, 由题意得,>+,解得:x >1.3.故选C .2.【答案】C ;【解析】设这批手表有x 块,550×60+(x ﹣60)×500>55000解得x >104∴这批电话手表至少有105块,故选C .3. 【答案】D ;【解析】解:设小红的体重为xkg ,由题意可得: 2150(2)x x x x +<-+,解得:25x <.4. 【答案】B ;【解析】解:设打x 折,由题意得:1200800105%800x ⨯-≥,解得x ≥7,所以至少应打7折.5. 【答案】B ; 【解析】由图可得: 2■>■+▲ ①,●+▲=3● ②,由①②得■>▲,2●=▲, 所以可得:■>▲>●.6. 【答案】D ;【解析】设小朋友人数为x 人,可得:8710x x >+,解得:10x >,所以小朋友至少为11人.二、填空题7.【答案】53<,≥13,≤1; 【解析】 由5350,3x x -+><得;由35x -+≤4得x ≥13;由35x -+≥2得x ≤1. 8.【答案】85;【解析】设售价为x 元,则60x ≥5100得x ≥85.9.【答案】4;【解析】设最多只能安排x 名菜农种茄子,则有(10-x)人种辣椒,那么种茄子的收入为3×0.5x 万元,种辣椒的收入为2×0.8×(10-x)万元,那么总收入为3×0.5x+2×0.8(10-x)万元.根据题意:3×0.5x+2×0.8(10-x)≥15.6,解得x ≤4,故最多安排4名菜农种茄子10.【答案】x+2x <80;11.【答案】x >.【解析】设答对x 道.故6x ﹣2(15﹣x )>60解得:x >所以至少要答对12道题,成绩才能在60分以上.【解析】解:设以后几天平均每天完成x 千米,由题意得:60+(6﹣1﹣2)x≥300,解得:x≥80,故以后几天平均每天至少完成80千米,故答案为:80.三、解答题13.【解析】解:设三天后每天加工x 个零件,根据题意得:24×3+(15-3)x >408,解得 x >28.因为x 为正整数,所以以后每天加工的零件数至少为29个.14.【解析】解:设飞机最多飞出x 千米就应返回,则:2.512001500x x +<. 解得x <216663. ∴x 取1660.∴飞机最多飞出1660千米就应返回.15.【解析】解:设该同学买x 支钢笔,根据题题意,得:15×6+8x ≥200,解得 x ≥3134. 故该同学至少要买14支钢笔才能打折.16.【解析】解:(1)设A 、B 两种型号电器的销售单价分别为x 元和y 元,由题意,得:2x+3y=1700,3x+y=1500,解得x=400元,y=300元,∴A、B 两种型号电器的销售单价分别为400元和300元;(2)设采购A 种型号电器a 台,则采购B 种型号电器(30﹣a )台,依题意,得320a+250(30﹣a )≤8200,解得a≤10,a 取最大值为10,∴超市最多采购A 种型号电器10台时,采购金额不多于8200元;(3)依题意,得(400﹣320)a+(300﹣250)(30﹣a )≥2100,解得 a≥20,∵a 的最大值为10,∴在(2)的条件下超市不能实现利润至少为2100元的目标.。
人教版高中数学选修4-5课件:1.1不等式.1

【解析】(1)因为a>b>0,所以a>b两边同乘以1
ab
得 a
1
>b得1
> ,
,1故正1 确.
(2)因ab为c-aab>0,c-bb>0a ,且c-a<c-b
所以
>0,
又a>bc 1>a0>,所c 1以b
,正确.
a>b ca cb
(3)由 a >,所b 以 >a0,b
cd
cd
即即aaddcd>bcb>c0且,c所d以>0ac或dd>a0bd,c><0b,或c且accddd<<0b.c0<, 0,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
3.不等式的单向性和双向性 性质(1)和(3)是双向的,其余的在一般情况下是不可逆 的.
4.注意不等式成立的前提条件 不可强化或弱化成立的条件.要克服“想当然”“显然 成立”的思维定式.如传递性是有条件的;可乘性中c的 正负,乘方、开方性质中的“正数”及“n∈N,且n≥2” 都需要注意.
类型一 作差法比较大小 【典例】设m≠n,x=m4-m3n,y=n3m-n4,比较x与y的大小. 【解题探究】比较两个多项式的大小常用的方法是什 么? 提示:常用作差比较法.
高考数学解三角形中的不等问题基础知识与练习题(含答案解析)

高考数学解三角形中的不等问题基础知识与练习题(含答案解析)一、基础知识: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +−=⇔+−= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+−变式:()()2221cos a b c bc A =+−+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅=(其中R 为外接圆半径)4、三角形内角和:A B C π++=,从而可得到:(1)正余弦关系式:()()sin sin sin A B C B C π=−+=+⎡⎤⎣⎦ ()()cos cos cos A B C B C π=−+=−+⎡⎤⎣⎦ (2)在已知一角的情况下,可用另一个角表示第三个角,达到消元的目的 5、两角和差的正余弦公式:()sin sin cos sin cos A B A B B A ±=± ()cos cos cos sin sin A B A B A B ±=6、辅助角公式:()sin cos a A b B A ϕ+=+,其中tan b aϕ=7、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可。
1.1.1不等式的基本性质课件人教新课标4

堂 双
主
基
导 学
所以xx-2yx2+x+1y>0.
达 标
所以A2>B2,又A>0,B>0,故有A>B.
课
堂
互 动 探 究
课 时 作 业
菜单
不等式的基本性质
新课标 ·数学 选修4-5
判断下列命题是否正确,并说明理由.
课
当
前 自
(1)若a>b,则ac2>bc2;
堂 双
主
基
导 学
(2)若ca2>cb2,则a>b;
自 主
A.3a>2a
B.a2<2a
双 基
导
达
学
1
C.a<a
标
D.3-2a>1-2a
课
堂 互
【答案】 D
动
探
究
课 时 作 业
菜单
新课标 ·数学 选修4-5
2.已知m,n∈R,则m1 >1n成立的一个充要条件是
课 前
A.m>0>n
自
主 导
C.m<n<0
学
B.n>m>0 D.mn(m-n)<0
()
当 堂 双 基 达 标
课
堂 方面,严格依据不等式的性质和运算法则进行运算,是解答
互 动
探 此类问题的基础.
究
课 时 作 业
菜单
新课标 ·数学 选修4-5
课 前 自
已知-6<a<8,2<b<3,分别求a-b,ab的取值范围.
当 堂 双
主
基
导
达
学
【解】 ∵-6<a<8,2<b<3.
标
∴-3<-b<-2,∴-9<a-b<6,
不等关系综合应用(配方求最值与比较大小)(北师版)(含答案)

学生做题前请先回答以下问题问题1:作差法是比较大小的常用手段,作差后与____比较?问题2:作差是比较大小的常用手段,作差之后是________结构时,可以考虑通过配方借助____________进行判断.问题3:配方的口诀是什么?问题4:如何配方?不等关系综合应用(配方求最值与比较大小)(北师版)一、单选题(共10道,每道10分)1.比较大小:_____.( )A. B.C. D.无法确定答案:A解题思路:试题难度:三颗星知识点:作差法比较大小2.比较大小:_____.( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:作差法比较大小3.比较大小:_____.( )A. B.C. D.无法确定答案:A解题思路:试题难度:三颗星知识点:作差法比较大小4.比较大小:_____.( )A. B.C. D.无法确定答案:C解题思路:试题难度:三颗星知识点:作差法比较大小5.多项式有最______值,是______.( )A.小,5B.小,3C.大,5D.大,3答案:B解题思路:试题难度:三颗星知识点:配方求最值问题6.多项式有最______值,是______.( )A.小,4B.小,-94C.大,4D.大,-94答案:C解题思路:试题难度:三颗星知识点:配方求最值问题7.多项式有最______值,是______.( )A.大,-18B.大,-10C.小,-18D.小,-10答案:C解题思路:试题难度:三颗星知识点:配方求最值问题8.若,则当M取最小值时,x,y的值分别为( )A.-3,-2B.2,3C.-2,3D.-3,2答案:A解题思路:试题难度:三颗星知识点:配方求最值问题9.已知,若a有最小(大)值4,则有最大(小)值;已知,若a有最大(小)值﹣4,则有最小(大)值.根据上面的提示做题:有最_____值______.( )A.小,5B.小,C.大,D.大,答案:D解题思路:试题难度:三颗星知识点:配方求最值问题10.有最_____值,此时实数x的值为______.( )A.小,-1B.小,3C.大,-1D.大,3答案:C解题思路:试题难度:三颗星知识点:配方求最值问题。
广东省佛山市顺德区文田中学八年级数学下册 1.1不等关系导学案(无答案) 北师大版

1.1不等关系(导学案)【学习目标】理解不等式的意义;能根据条件列出不等式。
【学习重点】通过探寻实际问题中的不等式关系,认识不等式。
【学习难点】实际问题中怎样建立量与量之间的不等关系。
【课前自学】 (方法提示: 带着以下问题——什么是不等式?列出不等式的关键是什么?自学P1-6,然后完成以下填空。
)1.已知正方形的边长为a ,则该正方形的面积为 。
2.已知圆的半径为r ,则该圆的面积为 。
3.已知正方形的周长为l ,则该正方形的边长为_______;面积为 。
4.已知圆的周长为l ,则该圆的半径为_______;面积为 。
【新课学习与探究】1.(先独立完成,再小组合作交流)如图,用两根长度均为l cm 的绳子,分别围成一个正方形和圆 ○1如果要使正方形的面积不大于252cm , 那么绳长l 应满足怎样的关系式? 解: 绳长l 是正方形的周长,∴正方形的边长为__________,∴面积为__________∴要使正方形的面积不大于252cm ,则有关系式__________________________。
○2如果要使圆的面积不小于100 2cm ,那么绳长l 应满足怎样的关系式? 解:则有关系式__________________________。
○4通过完成上表,你能得到什么猜想? 解:我猜想,用长度均为l cm 的两根绳子分别围成一个正方形和圆,则有圆正方形S S ___。
2.做一做:通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m 的地方作为测量部位,某树栽种时的树围为5 cm ,以后树围每年增加约为 3 cm.,这棵树至少生长多少年其树围才能超过2.4 m ?解:设这棵树至少生长x 年其树围才能超过2.4 m ,则有关系式____________________。
☆3.观察以上所列的关系式有什么特点?一般地,用符号________________________________________连接的关系式叫做不等式。
八年级数学下册《一元一次不等式组》典型例题2(含答案)

《一元一次不等式组》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题8一条铁路线上EA,,,各站之间的路程如图所示,单位为千,DCB米.一列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题9某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题10某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三A,B类:A类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题11有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题12大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 不等关系
A卷:基础题
一、选择题
1.如果a<-1,则a与-a的关系为()
A.a>-a B.a<-a C.a=-a D.不能确定
2.实数m,n在数轴上的位置如图所示,则下列不等关系正确的是()
A.n<m B.n2<m2C.n0<m0D.│n│<│m│
3.下列表达式:①-m2≤0;②x+y>0;③a2+2ab+b2;④(a-b)2≥0;⑤-(y+1)2<0.•其中不等式有()
A.1个B.2个C.3个D.4个
4.x与3的和的一半是负数,用不等式表示为()
A.1
2
x+3>0 B.
1
2
x+3<0 C.
1
2
(x+3)>0 D.
1
2
(x+3)<0
5.若0<x<1,则x,x2,x3的大小关系是()
A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x
二、填空题
6.亚琪去菜市场买菜,店主称了一下说2斤,亚琪说:“不行,不行,你看称得那么低!”
请用不等式把这句话表示出来:________.
7.x与8的差的绝对值不大于6,用不等式可表示为______.
8.x不小于5且不大于8,用不等式表示为______.
9.某水井水位最低时低于水平面5米,记为-5米,最高时低于水平面1米,•则水井水位h米中h的取值范围是________.
三、解答题
10.恩格尔系数n是指家庭日常饮食开支占家庭经济收入的比例,•它反映了居民家庭的
实际生活水平,各种类型家庭的n的值如下表:
(1)用含n的不等式表示:贫困型家庭,小康型家庭,最富裕国家的家庭;
(2)当某一家庭n的值为0.6时,表明该家庭的实际生活水平是什么?
11.一列火车有x节车厢,每一节车厢有116个座位,在“五一”节期间,这列火车上有m 个人,其中有一些人没有座位,怎样用不等式表示上述关系?
12.有关学生体质健康指标规定:握力体重指数m=(握力÷体重)×100,九年级学生的合格标准是m不小于35,若某男生的体重是60千克,•那么他的握力达到多少千克才能合格,试列出不等式.
B卷:提高题
一、七彩题
1.(一题多解)一个两位数的十位数字比个位数字小3,已知这个两位数小于50,•求这个两位数.(只列不等式)
2.(多解一思路题)(1)a与b的和不超过c的相反数,即______;
(2)m与3的和不小于5,即______;
(3)y的2倍与y的相反数的和大于2,即______.
二、知识交叉题
3.(当堂交叉题)某圆柱形容器的底面半径为5cm,高为50cm,•容器内原有水的高度为10cm,现准备向它继续加不,用Vcm3表示新注水的体积,求出V的取值范围.
4.(科内交叉题)一个木工有两根长为40cm和60cm的木条,要另外找一根木条,钉成一个三角形木架,问第三根木条的长x的值应满足的不等式是_______.
三、实际应用题
5.滨海市出租汽车起步价为10元(即行驶距离在5千米以内的都需付10元车费).达到或超过5千米后,每增加1千米加价1.2元(不足1千米部分按1千米计),小华乘这种出租车从家到单位,支付车费多于15元,设小华从家到单位距离为x千米(x为整数),列关系式为_______.
四、经典中考题
6.(2007,吉林,3分)小华拿24元钱购买火腿场和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A.3×4+2x<24 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥24 7.(2008,广州,3分)有两个小朋友在公园玩跷跷板,他们的体重分别为P,Q,R,S,由下图可知,这四个小朋友体重的大小关系是().
A .P>R>S>Q
B .Q>S>P>R
C .S>P>Q>R
D .S>P>R>Q
参考答案
A 卷
一、1.B 点拨:由已知可知a<-1,而-a>1,所以a<-a ;
也可以取特殊值,因为a<-1,当a=-2时,-a=-(-2)=2,所以a<-a .
2.A 点拨:数轴上的点表示的数,右边的数总比左边的数大.
3.D 点拨:①②④⑤是不等式,③不是不等式.
4.D
5.C 点拨:大于0小于1的数,指数越大值越小;
也可以取特殊值,因为0<x<1,•当x=0.5时,x 2=0.5=0.25,x 3=0.5=0.125,
所以x 3<x 2<x ,故选C .
二、6.a<2 点拨:用a 斤表示菜的实际质量,则a<2.
7.│x -8│≤6 点拨:“不大于”应理解为“≤”,注意不要漏掉“=”.
8.5≤x≤8 点拨:x 不小于5为x≥5,不大于8为x≤8,合在一起是5≤x≤8.
9.-5≤h≤-1
三、10.解:(1)n>75%;40%≤n≤49%;x<20%;(2)温饱.
11.解:m>116x . 点拨:一列火车有x 节车厢,每一节车厢有116•个座位,共可坐116x
人,这列火车上有m 个人,其中有一些人没有座位,说明人数多于座位数,•
故m>116x .
12.解:设他的握力达到x 千克才能合格,则
60x ×100≥35.
B卷
一、1.解法一:设这个两位数的十位数字为x,则个位数字为(x+3),则10x+x+•3<50;
解法二:设这个两位数的个位数字为x,则十位数字为(x-3),则10(x-3)+x<50.2.(1)a+b≤-c (2)m+3≥5 (3)2y+(-y)>2
二、3.解:容器上部空的部分的体积为52π×40=1000π(cm3),
所以新注水的体积的取值范围是:0≤V≤1000πcm3.
点拨:新注水的体积的最大值为容器上部空的部分的体积.
4.20cm<x<100cm 点拨:三角形两边之差小于第三边,两边之和大于第三边.
三、5.10+1.2(x-5)>15
点拨:在生动,丰富的实际问题中探索不等关系,打折问题,费用问题,原料分配问题等,研究这些问题可提高应用能力和创新意识.
四、6.B 点拨:方便面用3×4元,火腿肠用2x元,则有3×4+2x≤24,故选B.
7.D 点拨:本题考查了不等式的相关知识,由三个图分别可以得到
S P
P R
P R Q S
>
⎧
⎪
>
⎨
⎪+>+
⎩
,
而Q+S>Q+P,带入第三个式子得到P+R>Q+P,
所以R>Q,所以它们的大小关系为S>P>R>Q,答案选D.。