材料力学讲义2 2轴力及轴力图课件
合集下载
§2–1 轴向拉压的概念及实例§2–2 轴力及轴力图§2–3.

横截面
受载后
b´ d´
平面假设:原为平面的横截面在变形后仍为平面。
纵向纤维变形相同。
2. 拉伸应力: 由平截面假定,变形均匀,内力分布均匀。 轴力引起的正应力 —— : 在横截面上均布分布。 P
N(x)
N ( x) A
规定:N为拉力,则σ为拉应力;N为压力,则σ为压应力 ;拉应力为正,压应力为负 3. Saint-Venant(圣维南)原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作 用方式的影响。
12
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
5kN 5kN
8kN
3kN
+
8kN
–
3kN
[例2] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出 杆的轴力图。 解:x 坐标向右为正,坐标原点在
p
N
N N>0 p N N N<0 p
N 与外法线同向,为正轴力(拉力) N与外法线反向,为负轴力(压力) p
三、 轴力图—— N (x) 的图象表示。
意 ①反映出轴力与截面位置变化关系,较直观; 义 ②确定出最大轴力的数值 N 及其所在横截面的位置, P + x
即确定危险截面位置,为
强度计算提供依据。
[例1] 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 P 的力,方向如图,试画出杆的轴力图。 O A PA N1 A PA B PB B PB C PC C PC
D
PD D PD
解: 求OA段内力N1:设置截面如图
X 0 N1 PA P B P C P D 0
材料力学——2拉伸和压缩

对于拉压杆,学习了 • 应力计算 • 力学性能 • 如何设计拉压杆?—— 安全,或 不失效
反面看:危险,或 失效(丧失正常工作能力) (1)塑性屈服 (2)脆性断裂
28
• 正面考虑 —— 应力 为了—— 安全,或不失效
( u — Ultimate, n — 安全因数 Safety factor)
(1)塑性 n =1.5 - 2.5 (2)脆性 n = 2 - 3.5 • 轴向拉伸或压缩时的强度条件 ——
截面法(截、取、代、平) 轴力 FN(Normal) 1.轴 力
Fx 0
得
FN P 0 FN P
5
•轴力的符号
由变形决定——拉伸时,为正 压缩时,为负
注意: • 1)外力不能沿作用线移动——力的可传性不
成立 变形体,不是刚体
6
2. 轴 力 图
• 纵轴表示轴力大小的图(横轴为截面位 置) 例2-1 求轴力,并作轴力图
哪个杆先破坏?
§2-2 拉 ( 压 ) 杆 的 应 力
杆件1 —— 轴力 = 1N, 截面积 = 0.1 cm2 杆件2 —— 轴力 = 100N, 截面积 = 100 cm2
哪个杆工作“累”?
不能只看轴力,要看单位面积上的力—— 应力 • 怎样求出应力?
思路——应力是内力延伸出的概念,应当由 内力 应力
材料力学
Mechanics of Materials
1
2
§2-1 概念及实例
• 轴向拉伸——轴力作用下,杆件伸长 (简称拉伸)
• 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
3
拉、压的特点:
• 1.两端受力——沿轴线,大小相等,方向相反
• 2. 变形—— 沿轴线的伸长或缩短
反面看:危险,或 失效(丧失正常工作能力) (1)塑性屈服 (2)脆性断裂
28
• 正面考虑 —— 应力 为了—— 安全,或不失效
( u — Ultimate, n — 安全因数 Safety factor)
(1)塑性 n =1.5 - 2.5 (2)脆性 n = 2 - 3.5 • 轴向拉伸或压缩时的强度条件 ——
截面法(截、取、代、平) 轴力 FN(Normal) 1.轴 力
Fx 0
得
FN P 0 FN P
5
•轴力的符号
由变形决定——拉伸时,为正 压缩时,为负
注意: • 1)外力不能沿作用线移动——力的可传性不
成立 变形体,不是刚体
6
2. 轴 力 图
• 纵轴表示轴力大小的图(横轴为截面位 置) 例2-1 求轴力,并作轴力图
哪个杆先破坏?
§2-2 拉 ( 压 ) 杆 的 应 力
杆件1 —— 轴力 = 1N, 截面积 = 0.1 cm2 杆件2 —— 轴力 = 100N, 截面积 = 100 cm2
哪个杆工作“累”?
不能只看轴力,要看单位面积上的力—— 应力 • 怎样求出应力?
思路——应力是内力延伸出的概念,应当由 内力 应力
材料力学
Mechanics of Materials
1
2
§2-1 概念及实例
• 轴向拉伸——轴力作用下,杆件伸长 (简称拉伸)
• 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
3
拉、压的特点:
• 1.两端受力——沿轴线,大小相等,方向相反
• 2. 变形—— 沿轴线的伸长或缩短
材料力学第2章轴向拉伸与压缩

ε 相同,这就是变形的几何关系。
图2.5
(2)物理关系
根据物理学知识,当变形为弹性变形时,变形和力成正比。因为各“纤维” 的正应变ε 相同,而各“纤维”的线应变只能由正应力ζ 引起,故可推知横
截面上各点处的正应力相同,即在横截面上,各点处的正应力ζ 为均匀分布
,如图2.6所示。
图2.6
(3)静力学关系 由静力学求合力的方法,可得
α
和沿斜截面的切应力
,如图2.8(d)所示,即得
从式(2.4)可以看出,ζ
α
和α 都是α 的函数。所以斜截面的方位不同,截 , 即横截面上的正应力是所有截
面上的应力也就不同。当α =0时,
面上正应力中的最大值。当α =45°时,α 达到最大值,且
可见,在与杆件轴线成45°的斜截面上,切应力为最大值,最大切应力在数 值上等于最大正应力的1/2。 关于切应力的符号,规定如下:截面外法线顺时针转90°后,其方向和切应 力相同时,该切应力为正值,如图2.9(a)所示;逆时针转90°后,其方向和 切应力相同时,该切应力为负值,如图2.9(b)所示。
同理,可求得BC段内任一横截面上的轴力(见图2.4(d))为
在求CD段内任一横截面上的轴力时,由于截开后右段杆比左段杆受力简单, 所以宜取右段杆为研究对象(见图2.4(e)),通过平衡方程可求得
结果为负,说明N3的实际方向与假设方向相反。 同理,DE段内任一横截面上的轴力为
依据前述绘制轴力图的规则,所作的轴力图如图2.4(f)所示。显然,最大轴 力发生在BC段内,其值为50 kN。
由此可得杆的横截面上任一点处正应力的计算公式为
对于承受轴向压缩的杆,式(2.3)同样适用。但值得注意的是:细长杆受压
时容易被压弯,属于稳定性问题,将在第11章中讨论,式(2.3)适用于压杆 未被压弯的情况。关于正应力的符号,与轴力相同,即拉应力为正,压应力
图2.5
(2)物理关系
根据物理学知识,当变形为弹性变形时,变形和力成正比。因为各“纤维” 的正应变ε 相同,而各“纤维”的线应变只能由正应力ζ 引起,故可推知横
截面上各点处的正应力相同,即在横截面上,各点处的正应力ζ 为均匀分布
,如图2.6所示。
图2.6
(3)静力学关系 由静力学求合力的方法,可得
α
和沿斜截面的切应力
,如图2.8(d)所示,即得
从式(2.4)可以看出,ζ
α
和α 都是α 的函数。所以斜截面的方位不同,截 , 即横截面上的正应力是所有截
面上的应力也就不同。当α =0时,
面上正应力中的最大值。当α =45°时,α 达到最大值,且
可见,在与杆件轴线成45°的斜截面上,切应力为最大值,最大切应力在数 值上等于最大正应力的1/2。 关于切应力的符号,规定如下:截面外法线顺时针转90°后,其方向和切应 力相同时,该切应力为正值,如图2.9(a)所示;逆时针转90°后,其方向和 切应力相同时,该切应力为负值,如图2.9(b)所示。
同理,可求得BC段内任一横截面上的轴力(见图2.4(d))为
在求CD段内任一横截面上的轴力时,由于截开后右段杆比左段杆受力简单, 所以宜取右段杆为研究对象(见图2.4(e)),通过平衡方程可求得
结果为负,说明N3的实际方向与假设方向相反。 同理,DE段内任一横截面上的轴力为
依据前述绘制轴力图的规则,所作的轴力图如图2.4(f)所示。显然,最大轴 力发生在BC段内,其值为50 kN。
由此可得杆的横截面上任一点处正应力的计算公式为
对于承受轴向压缩的杆,式(2.3)同样适用。但值得注意的是:细长杆受压
时容易被压弯,属于稳定性问题,将在第11章中讨论,式(2.3)适用于压杆 未被压弯的情况。关于正应力的符号,与轴力相同,即拉应力为正,压应力
内力截面法·及轴力图ppt课件

第二章 轴向拉伸和压缩
Ⅱ. 截面法·轴力及轴力图
FN=F
步骤: (1)假想地截开指定截面;
(2)用内力代替另一部分对所取分离体的作用力;
(3)根据分离体的平衡求出内力值。
横截面m-m上的内—轴力。无论取横截面m-m的左 边或右边为分离体均可。
一般来说:正值的轴力画上轴线上方,负值画在轴线下 方。
第二章 轴向拉伸和压缩
F (c)
F (f)
轴力图(FN图)——显示横截面上轴力与横截面位置的关系。
第二章 轴向拉伸和压缩
注意:杆受多个轴向外力作用时,应以外力作用点处 的横截面作为特征截面,将梁分成若干段来求整段梁的轴 力。 例题2-1 试作此杆的轴力图。
1
FR = F
F
F
FN1 = F
2
q
3
F x
1
FR = F
2
FN 3 = F
3 F
F
FR = F
q
FN2
F
x
0
F F
FR = F
x1
Fx1 F l
FN 2
Fx1 FN2 2 F - FR 0 l
FN2 Fx1 F l
F
x1
第二章 轴向拉伸和压缩
F
l F + F
q=F/l
F 2l l F
系替代。
3.轴力图(FN图)——显示横截面上轴力与横截面位置的关系。 杆受多个轴向外力作用时,在杆的不同截面上的轴力各 不相同。为表示横截面上的轴力随横截面位置而变化的情况, 用平行于杆轴线的坐标表示横截面的位置,垂直于轴线的坐 标表示横截面上轴力的数值,从而绘制出轴力与横截面位置 关系的图形,称为轴力图。
《材料力学》课件2-2轴力及轴力图

内力、截面法、轴力及轴力图
1、内力的概念
固有内力:分子内力.它是由构成物体的材料的物理性 质所决定的.(物体在受到外力之前,内部就存在着内力)
附加内力:在原有内力的基础上,又添加了新的内力
内力与变形有关
内力特点:
1、有限性 2、分布性 3、成对性
2、轴力及其求法——截面法
轴向拉压杆的内力称为轴力.其作用线与杆 的轴线重合,用符号 FN 表示
1、切开; 2、代力; 3、平衡。
F
FN
FN
F
FN F
内力的正负号规则
同一位置处左、右侧截面上内力分量必须具有相 同的正负号。
FN FN
FN
FN
拉力为正
FN
FN
ቤተ መጻሕፍቲ ባይዱ
压力为负
例题 2.1
一直杆受力如图示,试求1-1和2-2截面上的轴力。
20KN 20KN 1 40KN 2
20KN 20KN
1 1
2
40KN
FN 1
FN 2
FN 1 0
1
FN 2 40kN
例题 2.2
求图示直杆1-1和2-2截面上的轴力
1 2F 2
2F
F
F
1
2F
2
2 F
2
10KN
10KN
A=10mm2
100KN
100KN
A=100mm2
哪个杆先破坏?
1、内力的概念
固有内力:分子内力.它是由构成物体的材料的物理性 质所决定的.(物体在受到外力之前,内部就存在着内力)
附加内力:在原有内力的基础上,又添加了新的内力
内力与变形有关
内力特点:
1、有限性 2、分布性 3、成对性
2、轴力及其求法——截面法
轴向拉压杆的内力称为轴力.其作用线与杆 的轴线重合,用符号 FN 表示
1、切开; 2、代力; 3、平衡。
F
FN
FN
F
FN F
内力的正负号规则
同一位置处左、右侧截面上内力分量必须具有相 同的正负号。
FN FN
FN
FN
拉力为正
FN
FN
ቤተ መጻሕፍቲ ባይዱ
压力为负
例题 2.1
一直杆受力如图示,试求1-1和2-2截面上的轴力。
20KN 20KN 1 40KN 2
20KN 20KN
1 1
2
40KN
FN 1
FN 2
FN 1 0
1
FN 2 40kN
例题 2.2
求图示直杆1-1和2-2截面上的轴力
1 2F 2
2F
F
F
1
2F
2
2 F
2
10KN
10KN
A=10mm2
100KN
100KN
A=100mm2
哪个杆先破坏?
材料力学第2讲-轴力图与扭矩图

Me
60P(马 力)
2n(r / min)
0.7355
7024
P n
(N
m)
2.2(2)外力偶矩的计算 (Calculation of external moment)
{M e }Nm
9549 {P}kW {n}r/min
Me2
Me1
从动轮 主动轮
Me3 n
从动轮
Me—作用在轴上的力偶矩( N · m ) P—轴传递的功率(kW)
①截取
m
从求内力的截面m-m 处, F
F
截取任一部分为研究对象。 ②画图
F
画出所选研究对象的受
m m
FN
力图。
m
③平衡
对研究对象列写平衡方程后求出内力与外力的关系表达式。
FN = F
截面法(Method of sections)
若取右侧为研究对象,
m
则在截开面上的轴力与左侧 F
F
部分上的轴力数值相等而指 向相反。
由平衡方程
Me2
Me3 2
Me1
Me4
Mx 0
Me2 Me3 T2 0
B
C2
A
D
T2 M e2 M e3 9549N m Me2
Me3 T2 x
结果为负号,说明T 2 应是负值扭矩 同理,在 BC 段内
BC
T1 Me2 4774.5 N m
Me2
T1 x
同理,在 BC 段内
1)工程实例(Engineering examples)
2.1(1)轴向拉压的概念及实例(Concepts and
example problems of axial tension & compression)
《材料力学》课件2-2轴力及轴力图

清晰性
确保轴力图清晰易懂,能 够让其他人快速理解结构 和受力情况。
03
轴力的分类
按作用方式分类
拉伸或压缩轴力
由于拉伸或压缩作用产生的轴力,其方向与杆件轴线平行。
弯曲轴力
由于弯曲作用产生的轴力,其方向与杆件轴线垂直。
按作用效果分类
拉力
使杆件产生拉伸变形的轴力。
压力
使杆件产生压缩变形的轴力。
按作用位置分类
感谢您的观看
THANKS
绘制杆件
根据杆件的位置和 方向,绘制出各段 杆件。
绘制轴力
根据杆件上各点的 受力情况,绘制出 轴力。
确定受力点
根据受力分析,确 定各段杆件上的受 力点。
标注重力
根据重力方向和大 小,标注重力。
标注轴力
在轴力图上标注出 各点的轴力大小和 方向。
轴力图的应用场景
机械设计
在机械设计中,轴力图可用于分 析机械结构的受力情况,优化设
计。
建筑分析
在建筑结构分析中,轴力图可用于 分析建筑结构的稳定性,确保安全。
车辆工程
在车辆工程中,轴力图可用于分析 车辆的行驶稳定性,提高车辆性能。
轴力图的绘制注意事项
01
02
03
准确性
确保轴力图绘制准确,能 够真实反映结构的受力情 况。
完整性
确保轴力图绘制完整,包 括所有需要分析的杆件和 受力点。
轴力的计算方法
截面法
通过截取物体的一部分,分析其受力情况,然后根据力的平衡条件计算轴力。
转矩平衡法
利用转矩平衡原理,通过分析物体的转矩平衡条件,计算出轴力的大小。
轴力的单位与符号
单位
牛顿(N),国际单位制中的基本单 位。
材料力学第2章

2-2截面,即BC段:
BC
FN 2 30 103 N 100MPa 6 2 A2 300 10 m
FN 4 20 103 N 100MPa 6 2 A3 200 10 m
(压应力)
3-3截面,即DE段:
DE
(压应力)
23
材料力学
出版社
科技分社
2.3.3 拉压杆斜截面上的应力
4
材料力学
出版社
科技分社
由上可知苹果把中的内力和外力(重力)是有关 系的,它随外力作用而产生,是由于外力的作用而 引起的“附加内力”,有别于物体中微观粒子间的 作用力,这就是材料力学中的内力。 2.2.2 轴力、截面法、轴力图 当直杆轴向拉伸或压缩时,所产生的内力是沿杆 件轴线的,故称为轴力。由于内力是受力物体内相邻 部分的相互作用力,可用截面法来分析内力 。
32
材料力学
出版社
科技分社
例题 2.5
解: 由于杆的轴力FN沿杆长是变化的,材料有两种 ,截面为变截面,所以在运用式(2-10)计算 杆长度改变量时,应按FN 、E、A的变化情况, 分别计算每段长度的改变量,最后的代数和即 为杆纵向总变形量Δl 。
先画出杆的轴力图, 见(b)图。各段的纵向 伸长或缩短量分别为:
5
材料力学
出版社
科技分社
截面法的基本步骤如下:
1)截开: 2)代替: 3)平衡:
F
x
0 : FN F 0, FN F
轴力的正负号规定: a.拉杆的变形是沿纵向伸长, 其轴力规定为正,称为拉力; b.压杆的变形是沿纵向缩短,其轴力规定为负,称 为压力。
6
材料力学
出版社
科技分社
为了表示轴力随横截面位臵而变化的情况,可选 取一定的比例,用平行于杆轴线的坐标表示横截面 的位臵,用垂直于杆轴线的坐标表示横截面上轴力 的数值,从而绘出表示轴力与截面位臵关系的图线 ,称为轴力图。习惯上将正值的轴力画在坐标轴的 上侧,负值的轴力画在下侧。轴力图上可以确定最 大轴力的数值及其所在横截面的位臵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9KN 3KN
1
2
F
3F
2F
4KN
2KN
A 1B
2C
F
4KN
2F
2KN
5KN
7
?
例题 2.3
F 2F 2F
F 2F
8
10KN 100KN
10KN
A=10mm2
100KN
A=100mm2
哪个杆先破坏?
9
的轴线重合,用符号 FN 表示
1、切开; 2、代力;3、平衡。
F
FN
FN F
FN ? F
2
内力的正负号规则
同一位置处左、右侧截面上内力分量必须具有相 同的正负号。
FN
FN
FN ?
FN
FN
FN ?
拉力为正 压力为负3
例题 2.1
? 一直杆受力如图示 ,试求1-1和2-2截面上的轴力。
1
2
20KN
40KN
20KN
20KN
20KN
1
1 40KN
FN1
2 FN 2
FN1 ? 0 1
FN 2 ? 40kN 4
例题 2.2
? 求图示直杆1-1和2-2截面上的轴力
1
2
2F
2F
F
F
1
2
2F
2
F
2
5
课堂练习:
1F
2F
3
1
2
3
10KN
10KN 1
2
6KN
1
2
3 6KN
3
6
3、轴力图
轴力与截面位置关系的图线称为轴力图.
内力、截面法、轴力及轴力图
1、内力的概念
固有内力:分子内力 .它是由构成物体的材料的物理性 质所决定的 .(物体在受到外力之前,内部就存在着内力)
附加内力:在原有内力的基础上,又添加了新的内力
内力与变形有关
内力特点: 1、有限性 2、分布性 3、成对性 1
2、轴力及其求法——截面法
轴向拉压杆的内力称为轴力.其作用线与杆