浅谈纳米材料光催化技术研究现状

合集下载

纳米WO_3光催化材料的研究现状

纳米WO_3光催化材料的研究现状

研 究表 明, 除 掺 杂 金 属元 素 外 , 非金 属
直 接 利 用 太 阳 光 将 各 类 有 机 污 染 物 完 全 掺 杂 能 够 拓 展WO 样 品对 可 见光 的 响 应 范 元 素 掺 杂 也 可 以 实现 W O 的 光 催 化 活 性 的 矿化 , 无 二 次 污 染 等独 特 性 能 而 成 为 一种 围 , 提高其光催化活性。 杜 俊 平 等 采 用 低 提 高 , 且 正 成 为光 催 化 研 究的 新 热 点 。 如 王
I n t hi s p a p e r r e s e a r c h s t a t u s q u o o f n a n o t u n g s t e n t r i o x i d e p h o t o c a t a l y t i c ma t e r i a l s wa s r e v i e we d . t h e me t h o d s t o i mp r o v e p h o t o c a t a l y t i c p e r f o r ma n c e o f n a n o me t e r t u n g s t e n t r i o x i de a n d f u t u r e d e v e l o p me n t d i r e c t i o n s we r e p u t f o r wa r d. K e y W o r d s : W O3 p h o t o c a t al y s t n a n o ma t e r i a l s r e s e a r c h p r o g r e s s
关键词 : W O 。 光催化剂 : T B 3
文献标识码 : A
文章编号 : l 6 7 4 — 0 9 8 x ( 2 0 1 3 ) 0 4 ( c ) - 0 0 1 7 - 0 2

纳米材料的光催化性能研究

纳米材料的光催化性能研究

纳米材料的光催化性能研究随着科技的不断进步和发展,纳米材料作为一种新型材料,引起了广泛的关注和重视。

其中,纳米材料的光催化性能备受研究人员们的关注。

本文将详细探讨纳米材料的光催化性能研究。

一、纳米材料的光催化性能简介纳米材料的光催化性能指的是其在光照下促进化学反应的能力。

纳米材料能够利用光能将光子转化为激发态电荷,进而参与化学反应。

与传统的光催化材料相比,纳米材料具有较高的比表面积和更好的光吸收能力,能够提高反应速率和效率。

因此,研究纳米材料的光催化性能对于开发高效催化剂和环境净化具有重要意义。

二、纳米材料光催化性能的影响因素(1)粒径大小:纳米材料的粒径大小对其光催化性能有着重要影响。

通常情况下,较小的粒径有较大的比表面积,能够提供更多的活性位点,从而增强反应速率。

同时,较小的粒径也有利于提高光吸收效率,从而进一步提升光催化性能。

(2)晶体结构:纳米材料的晶体结构是其光催化性能的另一个关键因素。

晶体结构的变化会影响到纳米材料的载流子分离和传输效率,进而影响光催化反应的进行。

因此,在研究纳米材料的光催化性能时,晶体结构的优化也是一个重要的方向。

(3)光吸收范围:纳米材料的光吸收范围也会对其光催化性能产生显著影响。

通常来说,拥有广泛的光吸收范围的材料能够更高效地利用光能,从而提高光催化反应的效率。

因此,在开发纳米材料的光催化性能时,光吸收范围的扩展是一个重要的研究方向。

三、纳米材料光催化性能的研究方法(1)光催化活性测试:光催化活性测试是评价纳米材料光催化性能的一种常用方法。

通过在模拟的光照条件下,检测光催化材料对目标催化反应的催化效果,可以评估纳米材料的光催化活性,并与其他催化剂进行对比分析。

(2)表征手段:在研究纳米材料的光催化性能时,利用表征手段对其微观结构和光学性质进行分析是非常重要的。

常用的表征手段包括X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见吸收光谱等。

纳米材料在光催化领域中的催化性能分析

纳米材料在光催化领域中的催化性能分析

纳米材料在光催化领域中的催化性能分析近年来,纳米材料在光催化领域中催化性能的研究备受关注。

纳米材料具有较大比表面积和尺寸效应,使其在光催化反应中表现出卓越的催化性能。

本文将对纳米材料在光催化领域中的催化性能进行详细分析,并探讨其原理与应用。

首先,纳米材料由于其较大的比表面积,可以提供更多的活性表面位点,增强光催化反应的效率。

纳米材料的表面原子或分子与周围环境的相互作用会导致层极化、吸附和反应等过程。

纳米材料通过增加表面积相对于体积的比例,能够增加催化活性位点的数量,从而提高反应速率,并降低光催化反应的能量损耗。

其次,纳米材料的尺寸效应也对光催化反应的催化性能产生影响。

由于纳米材料的尺寸与光催化反应中所需的光子能量密切相关,尺寸效应可以调控催化剂的能带结构和光电子传输行为。

较小的纳米材料会产生更多的表面态,这有助于提高光催化反应的催化性能。

同时,较小的纳米材料还能够吸收更多的光子能量,从而提高光催化反应的效率。

另外,纳米材料的组成对光催化反应的催化性能也有重要影响。

不同的纳米材料可能具有不同的光吸收和光电转化特性。

例如,金属纳米颗粒具有较高的光吸收能力和电子导电性,常用于光催化反应中作为载流子接收体和电子传输介质。

半导体纳米材料,如二氧化钛、氧化锌等,具有较高的能带宽度和光电转化效率,适用于光催化水分解、有机废水处理等反应。

另外,纳米材料的形态和结构对光催化反应的催化性能也有重要影响。

例如,纳米颗粒的形状可以调控光吸收和光散射效果,影响光子在催化剂表面的分布和传输。

纳米材料的结构(如晶格结构、孔结构等)能够影响光催化反应的可及性和反应物分子的扩散速率。

调控纳米材料的形态和结构可以改善光催化反应的效率和选择性。

纳米材料在光催化领域中的催化性能已经被应用于广泛的领域。

例如,光催化水分解产氢是一种可持续的能源转化方式,纳米材料在该领域的催化性能得到了广泛研究。

一些金属氧化物和半导体纳米材料被用作光催化剂,通过吸收可见光或紫外光实现光解水反应,产生氢气和氧气。

纳米光催化剂研究现状与展望

纳米光催化剂研究现状与展望

年月纳米光催化剂研究现状与展望马成乡太原学院山西太原030032摘要:随着水污染环境问题的日益严重,纳米光催化剂的研究也逐渐的开展起来。

本文在分析影响纳米光催化剂性能因素的基础上,探讨了纳米光催化剂的研究现状,并对该材料的发展进行了相关探讨。

关键词:纳米光催化剂;影响因素;研究现状随着我们国家经济的不断发展,生态环境的污染呈现出不断恶化的趋势,各种环境污染事件开始被社会媒体广泛的暴露出来。

在种类比较多的环境污染物中,有机物的比例占到了50%以上。

其中天然有机物对环境水体的污染比较小,大多数人工有机物对水体环境的污染程度较大。

光催化技术与其他治理环境污染的技术相比,并不需要进行二次净化处理,而且这种纳米光催化剂可以循环使用。

一、影响纳米光催化剂的因素研究影响纳米光催化剂的性能的因素主要体现在以下几个方面:1.催化剂的晶体结构:通常用作光催化剂的TiO 2具有两种晶体结构,分别为锐钦矿型和金红石型。

有的研究结构表明,如果在锐钦矿型的晶体上进行金红石型晶体的生产,能够有效的促进锐钦矿型晶体多污染物的吸收。

2.纳米催化剂粒径的影响:催化剂粒径的大小对其催化性能具有着比较重要的影响。

很多研究结果表明,随着催化剂粒径的降低,光谱能够响应的范围也就越来越广。

尤其当光催化剂离子达到纳米级别时,将会具有更高的氧化还原能力。

但是随着纳米粒径的进一步减小,光的载流子在表面符合的概率会进一步增加,也就意味着光催化剂性能的下降。

3.比表面积的影响:在反应物质比较充足的情况下,表面积越大,催化剂的活性也就越高;另外催化剂表面的活性中心是并不稳定的。

在反应体系与催化剂的反应条件方面主要影响因素表现在以下几个方面:1.反应的温度:一般来说温度对于光子的表面迁移和吸附以及解吸并不会产生比较明显的影响,所以在某种程度上问对对光催化反应的影响比较小。

光催化剂在光的作用下进行各类有机物的催化反应过程时,反应速率与温度比较符合阿伦尼乌斯方程的描述。

纳米材料在光催化中的应用及机制研究

纳米材料在光催化中的应用及机制研究

纳米材料在光催化中的应用及机制研究引言:纳米材料作为一种新兴材料,具有独特的光电性能和表面活性,正越来越多地被应用于光催化领域。

光催化是一种通过光照射来促进化学反应的过程,其在环境净化、能源转化和有机合成等方面具有潜在的应用前景。

本文将重点探讨纳米材料在光催化中的应用及机制研究进展。

一、纳米材料在光催化中的应用1. 环境净化纳米材料能够通过光催化反应将有害气体和有机污染物转化为无害物质。

以二氧化钛纳米颗粒为例,其能够吸收紫外光,并形成活性氧和自由载流子,从而降解有机污染物和杀灭细菌。

此外,银基纳米材料也被广泛应用于光催化消毒领域,对细菌和病毒具有高效杀灭作用。

2. 能源转化纳米材料在太阳能转化和光电化学领域具有重要应用。

通过将纳米材料嵌入光敏化剂,并利用光催化反应将太阳光转化为电能,这为太阳能电池的制备提供了新思路。

此外,一些金属纳米结构材料如金、银和铜等也能够作为催化剂,促进光解水反应,产生氢气作为清洁能源的储存和利用。

3. 有机合成纳米材料在有机合成反应中也展现出独特的催化性能。

以金纳米颗粒为例,其表面的局域电场能够促进氢化反应和烯烃的异构化反应,提高有机合成的效率和选择性。

此外,纳米材料也可以作为载体负载催化剂,提供更大的表面积和活性位点,从而增强有机合成反应的催化效果。

二、纳米材料在光催化中的机制研究1. 光吸收纳米材料因其特殊的尺寸效应和量子限域效应,能够吸收特定波长的光,并将其转化为电子能量。

纳米材料的窄带隙和大比表面积使其具有优异的光吸收能力,从而提高光催化反应的效率。

2. 电子转移光照射后,纳米材料表面吸收到的光能会产生电子-空穴对。

这些电子-空穴对可以在纳米材料表面发生电子转移和氧化还原反应,促进反应物的活化和转化。

例如,二氧化钛纳米颗粒会将吸收到的光能转化为电子能量,并促进氧化还原反应。

3. 活性位点纳米材料通常拥有大量的活性位点,这些位点能够提供更多的反应表面,促进光催化反应的发生。

纳米材料在光催化领域的应用研究进展

纳米材料在光催化领域的应用研究进展

纳米材料在光催化领域的应用研究进展引言:光催化技术是一种将光能转化为化学能的方法,具有环境友好、高效能和可持续发展等特点。

随着纳米材料技术的快速发展,纳米材料在光催化领域的应用引起了广泛的关注。

本文将回顾近年来纳米材料在光催化领域的应用研究进展,总结其优点和挑战,并展望未来的发展方向。

一、纳米材料的种类及其应用纳米材料是指具有在纳米尺度(一般认为小于100纳米)上特殊性质的材料。

在光催化领域中,常用的纳米材料包括金属纳米颗粒、二氧化钛纳米颗粒和复合纳米材料等。

1. 金属纳米颗粒金属纳米颗粒由于其表面等离子共振现象以及局域表面等离子体共振效应,具有优异的光催化性能。

例如,纳米银颗粒在可见光下表现出良好的光催化活性,可用于有机污染物降解、水分解产氢等方面的应用。

2. 二氧化钛纳米颗粒二氧化钛是一种重要的半导体材料,其纳米颗粒具有高比表面积和光吸收性能,因此在光催化领域具有广泛的应用。

研究表明,二氧化钛纳米颗粒在紫外光照射下可以光解水制氢,还可以用于有机污染物的光催化降解、空气净化和自清洁材料等方面。

3. 复合纳米材料复合纳米材料由两种或多种不同的纳米材料通过特定的方法组装而成,将各种纳米材料的特点相结合,以实现更好的光催化性能。

例如,将金属纳米颗粒与二氧化钛纳米颗粒复合可有效提高光催化活性,广泛用于有机污染物降解等领域。

二、纳米材料在光催化领域的优点纳米材料在光催化领域具有许多优点,这些优点使其成为理想的光催化剂。

1. 高比表面积纳米材料的特点之一是其比表面积大大增加。

由于其纳米尺度的特殊结构,纳米材料具有更多的表面活性位点,使光催化反应更易进行。

2. 增加光吸收能力纳米材料由于其小粒径的特性,能够表现出更好的光吸收能力。

这使得纳米材料在可见光下具有较高的光催化活性,相对于传统的光催化材料具有更广泛的应用前景。

3. 提高光催化效率由于纳米材料的特殊性质,比如电子和能量传输的方便性,纳米材料能够提高光催化反应的效率。

纳米材料技术的发展现状与未来趋势分析

纳米材料技术的发展现状与未来趋势分析

纳米材料技术的发展现状与未来趋势分析近年来,纳米材料技术以其独特的性质和广泛的应用前景,成为了科技领域中备受瞩目的研究方向。

纳米材料,指的是颗粒尺寸在1-100纳米的物质,具有相对传统材料不可比拟的优势。

通过调控纳米材料的尺寸和结构,可以实现对其光、电、热、力等物理和化学性质的精确控制,从而为新一代高科技产品的开发提供了基础材料。

本文将就纳米材料技术的当前发展现状和未来趋势进行分析和探讨。

一、纳米材料技术的发展现状纳米材料技术的快速发展离不开先进的科学研究手段和先进的合成制备工艺。

当前,纳米材料技术在多个领域都取得了显著的进展。

例如,在电子领域,纳米材料被广泛应用于高性能电子器件,如纳米晶体管、纳米电容器等,其小尺寸和高表面积与体积比使得电子器件在体积、功耗和性能方面有了质的突破;在能源领域,纳米材料技术被用于开发高效的太阳能电池、储能材料和催化剂等,提高了能源转换效率和利用效率;在医学领域,纳米材料被广泛应用于生物分子探测、靶向药物输送和生物成像等,为疾病的诊断和治疗提供了新的手段。

除了应用领域的拓展,纳米材料技术的研究也在不断深入和细化。

目前,研究者们已经能够制备各种纳米材料,如纳米颗粒、纳米线、纳米管等,并通过结构设计和控制,实现了对纳米材料性能的精确调控。

此外,通过与其他材料的复合,纳米材料的性能和功能进一步得到了拓展和提升。

例如,石墨烯与纳米颗粒复合形成的纳米复合材料,具有优异的导电性、导热性和力学性能,被广泛应用于柔性电子和传感器领域。

二、纳米材料技术的未来趋势分析纳米材料技术的发展仍然充满潜力,可以预见,未来纳米材料技术将在以下几个方面取得更大突破。

首先,纳米材料的合成和制备技术将更加成熟和可控。

目前纳米材料的制备过程中存在一些困难和挑战,如纳米材料的分散性、稳定性和尺寸均一性问题,制备过程中的高能耗和高成本等。

未来,研究者将进一步改进合成方法,提高纳米材料的制备效率和产品质量,并开发出更加环保和低成本的制备工艺。

光催化技术的研究现状和应用

光催化技术的研究现状和应用

光催化技术的研究现状和应用光催化技术是通过用光线照射催化剂来促进化学反应的一种方法。

该技术已经被广泛应用于多个领域,如能源、环境治理、化学合成等。

本文主要介绍光催化技术的研究现状和应用。

一、光催化反应机理光催化反应的机理是在光照下,光子被吸收后会触发催化剂的电子跃迁,从而形成高能激发态,最后通过与反应物分子发生化学反应。

一般而言,光催化反应的催化剂主要分为三类:金属、半导体和有机催化剂。

不同种类的催化剂对光的吸收程度以及光子的激发过程都有所不同,因此导致了不同的催化效果和反应机理。

二、光催化技术的应用领域1. 太阳能光催化生产氢气由于氢气的储存能力极强,因此氢气被视为未来可持续能源体系的发展方向之一。

在太阳能光催化生产氢气方面,人们发现在将二氧化钛(TiO2)作为催化剂,通过普通的光照条件下使得水分子分解失去氧原子而得到氢气的过程。

该方法不仅具有环保、成本低廉的优点,而且也是一种可持续的能源。

2. 光催化降解有机污染物随着现代工业的发展,许多有毒物质如苯、氯化物、汞等有机污染物被排放入大气和水体中,对环境和人类健康产生了很大的威胁。

光催化技术可以有效地降解这些有机污染物,其机理为通过引入光照来触发催化剂与有机污染物反应,形成无害的化合物和水。

这种方法已经被广泛应用于废水处理、空气净化等领域。

3. 光催化合成在有机合成中,传统的合成方法可能会产生多种副产物或导致废物析出,而光催化合成可以对反应过程进行精准的控制,从而可以产生较高选择性的产物。

目前,该技术已经被应用于药物合成、高分子材料等领域。

三、未来光催化技术的发展方向未来光催化技术的发展方向主要包括以下几个方面:1. 提高催化剂的效率和稳定性。

当前的光催化剂在实际应用中仍然存在效率低下和稳定性差的问题,因此需要更加深入地研究催化剂的光学特性和结构特点,实现更高的效率和更好的稳定性。

2. 发展新型催化剂和材料。

除了目前使用较为广泛的二氧化钛之外,还需要研发更多的新型催化剂和材料,例如金属纳米颗粒、金属有机骨架等材料,以期获得更好的催化效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈纳米材料光催化技术研究现状
作者:林雪牛文成
来源:《神州》2012年第29期
摘要:近年来,人们对半导体纳米光学材料的研究越来越广泛。

从1972年Fujishima和Honda利用TiO2电极实验发现光解水现象开始,人们逐步开始对半导体材料进行研究。

本文就纳米材料光催化技术研究现状和发展前景进行了简要介绍。

关键词:纳米材料,光催化
一、纳米材料的分类
人类对材料科学的探索与研究已有上千年的历史了,但是纳米材料作为新型材料的一种,其从发展到现在也不过二三十年的时间。

1984年,德国著名学者通过现代技术将一个6nm的铁晶体压制成纳米块,并详细的分析了其内部结构的改变而引起的性能差异。

发现从强度和硬度上都较普通钢铁强很多倍,并且在低温下失去传导能力,随着自身晶粒尺寸的减小,材料的熔点也会随之降低。

1990年,纳米科技大会在美国第一次胜利举办,《纳米技术杂志》的正式创刊标志着纳米科技从此正式开山立派。

而我国的纳米领域的研究基本与国际发展同步,目前已具备开展纳米科技的研究条件,国家重点研究机构对相关高科技的研究步伐不断加快,部分领域已经与国际先进水平持平,这些都为实现跨越式发展提供了可能。

近年来,我国通过结合国家战略需求,对纳米技术在能源、环境、资源和污水处理等领域开展深入研究,纳米材料净化机、助燃剂、固硫剂和降解剂等新型产品相继研究成功。

人们对于一门新学科——纳米材料学的研究已经有一定的进展。

通常纳米材料以三种方式分类:按结构分类、按化学组分分类和按应用分类:
1、按结构分,我们通常将其分为四类:第一类是具有原子簇与原子束结构的零维纳米材料;第二类是具有纤维结构的一维纳米材料;第三类是具有层状结构的二维纳米材料;第四类是晶粒尺寸至少在一个方向上在纳米量级的单位纳米材料。

2、按化学组分,通常又有两种分类方式,一种是按材料的化学性质分类,另一种是按材料的物理性质分类。

按材料化学性质,我们通常将其分为纳米金属材料,纳米晶体材料,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料;按材料物理性质,我们可将纳米材料分为纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁电体材料,纳米超导材料和纳米热电材料等等。

3、按应用,我们可将其分为纳米电子材料、纳米光催化材料、纳米生物医学材料、纳米光敏材料、纳米储能材料等等。

二、纳米光催化技术的研究现状
光催化特性作为纳米材料的一种光学特性而被人们广泛研究。

它指当物质在光照条件下,自身由于独特的光学催化特性,使污染物(包括有机物、无机物)在光照条件下自身降解的过程。

光催化过程是光反应过程和催化过程的融合,是半导体纳米材料自身将光能转化为化学能的过程。

光催化技术是一种深度的氧化还原过程。

作为纳米光催化反应的降解剂来说,半导体纳米材料有着独特的优势和特点:首先,反应过程中利用绿色环保的太阳能作为反应的前提条件,这样做一方面在自然环境下进行反应能够有效的降低能耗,节约资源利用,并且不会在反应过程中引入新的杂质;另一方面对于反应本身来说,操作简单,适用范围广阔,对实验本身及对环境都不会造成二次污染;其次,催化剂本身无毒害、对环境无污染、稳定性较好,并且可以循环利用,极大的提高了资源再利用的原则;最后,光催化降解过程彻底、不复发,最后的生成物为有机小分子等各种无毒性产物。

在当今社会飞速发展下,由于人口数量的急剧增加而导致的环境污染问题和资源匮乏问题变得日趋明朗化,而人类对于环境污染的治理和创造新能源已经成为我们可持续性发展战略下所研究的重大课题。

为了早日解决环境和能源两大问题,在不同领域中的科研工作者们积极探索,寻求最优的途径来解决这两大难题。

其中,利用环保能源处理上述难题已成为人们解决问题的方向标和标准线。

太阳能是人类利用的最便捷的环保能源之一,而光催化技术由于其反应条件平缓、制作工艺简便、无污染无副作用、具备较高催化性能等方面的独特优势而成为人类所看好的探索领域之一。

三、纳米光催化技术的发展前景
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。

大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。

纳米粒子表面活性中心多,为它作催化剂提供了必要条件。

纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。

纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,尤其是在有机物制备方面。

分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子-空穴对。

在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中对应的反应成分发生氧化和还原反应。

光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。

半导体多相光催化剂能有效地降解水中的有机污染物。

例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。

已有
文章报道,选用硅胶为基质,制得了催化活性较高的TiO2/SiO2负载型光催化剂。

Ni或Cu-Zn 化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。

纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。

用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。

参考文献:
[1] 邓慧华,陆祖宏. 半导体光催化杀菌的机理和应用 [J]. 东南大学学报, 1996, 26: l-6.
[2] 高铁,钱朝勇. TiO2表面超亲水性 [J]. 材料导报, 2000, 14(7): 29.
[3] 周铭. 纳米TiO2研究进展 [J]. 涂料工业, 1996, 23(4): 3642.
[4] 李泉. 纳米粒子 [J]. 北学通报, 1995, 31(6): 29-35.
作者简介:林雪,女,硕士研究生,研究方向:纳米光学材料的制备及表征.。

相关文档
最新文档