刚体的基本运动

合集下载

理论力学6—刚体的基本运动

理论力学6—刚体的基本运动
34.8
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
1、角速度矢量和角加速度矢量
角速度矢量
dj
ww
dt

大小
角速度矢沿轴线,弯向表示刚体转动的方向。
指向用右手螺旋法则。
w wk
角加速度矢量

dw dw

k k
dt
dt
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
2

例6-6
某定轴转动刚体通过点M0(2,1,3),其角速度矢w 的方向
余弦为0.6,0.48,0.64,角速度 的大小ω=25rad/s 。求:刚体上点
M(10,7,11)的速度矢。
解:角速度矢量
w wn
其中 n (0.6,0.48,0.64)
M点相对于转轴上一点M0的矢径
r rM rM0 10,7,11 2,1,3 8,6,8
Z2=60,Z3=12,Z4=70。(a)求减速箱的总减速比i13 ;(b)如
果n1=3000r/min,求n3.
1
n1
2
n2
3
n3
4
解:求传动比:
n1 n1 n2 Z 2 Z 4
i13
34.8
n3 n2 n3 Z1 Z 3
则有:
n1 3000
n3

86r / min
i13
4 rad
dw dw d
dw



w
dt
d dt
d
dw
w
0.2
d
解:
w
w wdw
0

15刚体的基本运动

15刚体的基本运动

于是得 a at an
例1 荡木用两条等长的钢索平行吊起,如图所示。 钢索长为l,单位为m。当荡木在图示平面内摆动 π j j 0 sin t t 为时间, 时, 钢索的摆动规律为 ,其中 4 单位为s;转角j0的单位为rad,试求当t=0和 t=2s 时,荡木的中点M的轨迹、速度和加速度。
v1 v2
a1 a2
O2 r2
v1 v2
a1 a2


由于 v1 r1w1
于是可得 即
r1 w 2 w1 r2
v2 r2w 2 a1 r11 a2 r2 2
w1 1 r2 w2 2 r1
r1 2 1 r2
通常称主动轮与从动轮角速度或角加速度之比 为传动比,记为i12,由上例可知
解:系统为匀变速转动,根据 v2 – v02 = 2as,得M点的速度
2 v 2as v0
2 4.9m/s 2 2m (4m/s) 2 5.96 m / s dv M点的切向加速度: at a 4.9m/s 2 dt M点的法向加速度:
2 2as v0 2 4.9m/s 2 2m (4m/s) 2 an R 0.2m
解:用n1, n2 , n3和n4分 别表示各齿轮的转速,且有 n2 n3 传动比i12,i34为 n1 z2 n3 z4 i12 , i34 n2 z1 n4 z3 n1n3 z2 z4 将两式相乘,得 n2 n4 z1 z3 因为n2= n3,于是从动轮Ⅰ到齿轮Ⅳ的传动比为
2
j =0.15 t3
代入 t =2 s, 得
w 1.8 rad / s , 1.8 rad / s 2

刚体的基本运动

刚体的基本运动

转速:刚体每分钟转过的圈数。单位:r / min。 转速 n 与角速度 2n n 60 30
的关系:
(7-6)
角加速度
d d 2 lim 2 t 0 t dt dt
(7-7)
刚体的角加速度(Angular acceleration)
等于其角速度对时间的一阶导数,也等于其转角对
v r 0.4 50 20 m / s
an r 0.4 50 1000 m /s
2 2
2
例7-4 定轴轮系如图7-9所示,主动轮I通过轮齿
与从动轮II轮齿啮合实现转动传递。主动轮I和从动轮 II的节圆半径分别为r1、r2,齿数分别为z1、z2。设I轮 的角速度为 1 (转数为n1),角加速度为 1 ;II轮的 角速度为 2(转数为n2),角加速度为 2 。试求上
2 a a2 an (r )2 (rω2 )2 r 2 ω4
tan
a an


ω
2
(7-13)
在给定瞬时,刚体的角速度和角加速度有确 定的值,对刚体上任何点都是一样。因而,在同一瞬 时,转动刚体上各点的速度 v 和加速度 a 的大小均与
该点的转动半径 r 成正比;各点速度 v 的方向都垂直
O轴作定轴转动,其转动方程为 t 2 4t (1)当t = 1 s时,试求轮缘上M点速度和加速度;
(2)若轮上绕一不可伸长的绳索,并在绳索下端
悬一物体A,求当t = 1 s时,物体A的速度和加速度。 解:圆轮在任一瞬时的角速 a M 度和角加速度为 d 2t 4 rad / s

t 1s,直杆AB上D点的速度和加速度。
解:由于O1A与O2B平行等

3-1刚体的基本运动

3-1刚体的基本运动

3-1
刚体的基本运动
例3-1 一半径 r 0 .5 0 m 的飞轮,转速n 6 0 0 r m in 1 , 制动后转过 1 0 圈而静止.设转动过程中飞轮作匀变 速转动.求:(1)转动过程中飞轮的角加速度和经过的 时间;(2)在1 s末时,飞轮边缘某点的线速度、切向加 速度和法向加速度.
0
0
第三章 刚体的定轴转动
3-1
刚体的基本运动
t d dt
瞬时角速度(角速度)
lim
t 0

刚体定轴转动(一维转动)的转动方向可以 用角速度的正负来表示 .
z
面对 O z 轴方向观察, 如果 0,刚体逆时 针转动;反之,刚体顺 时针转动.
z


0
0
1
3 1 .4 rad s
1
轮边缘某点的线速度
v r 0 .5 3 1 .4 m s
1
1 5 .7 m s
1
切向加速度
a t r 0 .5 3 1 .4 m s
2
1 5 .7 m s
2
法向加速度
a n r
3-1
刚体的基本运动
三、 匀变速转动公式 匀变速转动:当刚体绕定轴转动的角加速度为 恒量时的转动. 刚体匀变速转动与质点匀变速直线运动公式对比 质点匀变速直线运动
v v 0 at
x x0 v 0t 1 2 at
2
刚体绕定轴作匀变速转动
0 t
0 0t
第三章作业 P83
15、17、18、19、21、23
第三章 刚体的定轴转动
解 (1) 0 5 π rad s

第三章-刚体力学基础

第三章-刚体力学基础

薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O

刚体力学基础

刚体力学基础

非专业训练,请勿模仿
例 解 由转动定律得
1 mgl sin J 2 1 2 式中 J ml 3 3g sin 得 2l
角加速度与质量无关,与长 度成反比,竹竿越长越安全。
-------------------------------------------------------------------------------
刚体的一般运动 质心的平动
+
绕质心的转动
-------------------------------------------------------------------------------
二、刚体绕定轴转动定律
F外力 F内力 mi ai
ai :质元绕轴作圆运动
-------------------------------------------------------------------------------
二、定轴转动的角动量守恒定律
质点角动量(相对O点)
定轴转动刚体
L r p r mv
-------------------------------------------------------------------------------
解:
M 1l gdl cos M mgL cos 2 m g1 l cos dl cos mgl M 2 3g cos L 1 22 J 2l M ml L g 3 cos L 2 3g cos d d d d 1 2 l dt cos d d mgL dt 2
2 法向: F cos F cos m r 法向力的作用线过转轴 i i i i. 内力 ,其力矩为零 外力 切向:F外力 sin i F内力 sin i mi ri

第八章 刚体的基本运动

第八章 刚体的基本运动
平移刚体在任一瞬时速度、加速度都一样, 平移刚体在任一瞬时速度、加速度都一样,各点的运动轨迹 形状相同。 平移刚体的运动可以简化为一个点的运动。 形状相同。即平移刚体的运动可以简化为一个点的运动。
理论力学电子教程
第八章 刚体的基本运动
荡木用两条等长的钢索平行吊起,如图所示。 例8-1 荡木用两条等长的钢索平行吊起,如图所示。钢索长 为 长 l, 长 度 单 位 为 m。 当 荡 木 摆 动 时 钢 索 的 摆 动 规 律 , 。 π 为时间,单位为s;转角φ 为 ϕ =ϕ0 sin t ,其中 t 为时间,单位为 ;转角 0的单位为 4 rad,试求当 和t=2 s时,荡木的中点 的速度和加速度。 的速度和加速度。 ,试求当t=0和 时 荡木的中点M的速度和加速度
∴aτ =ε × r
∴a n =ω × v
a n =ω × v
理论力学电子教程
第八章 刚体的基本运动
三、定轴轮系的传动比 在实际工程中,不同机器的工作转速往往是不一样的, 在实际工程中,不同机器的工作转速往往是不一样的, 故需要利用轮系的传动来提高或降低机器转速。 故需要利用轮系的传动来提高或降低机器转速。常用的有 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 表示, 用i表示,即 表示 n主 ω主 i= = n从 ω 从 1.带传动 当主动轮Ⅰ转动时, 当主动轮Ⅰ转动时,利用胶带与带轮轮缘间的摩擦带动 从动轮Ⅱ转动。 从动轮Ⅱ转动。 不考虑胶带由于拉力引起的变形及胶带的厚度, 不考虑胶带由于拉力引起的变形及胶带的厚度,为此在 同一瞬时胶带上各点速度大小应相等, 同一瞬时胶带上各点速度大小应相等,即v1 = v = v2。若胶带 与带轮间没有滑动, 与带轮间没有滑动,则

理论力学 第二章 刚体的基本运动

理论力学 第二章 刚体的基本运动

0
nπ 式中n为转速 单位:转/ 分(r/min) 。 山东大学 土建与水利学院工程力学系 THEORETICAL MECHANICS 30
§ 2.2 刚体绕定轴的转动
3.角加速度
描述角速度变化的快慢程度
2
d d lim 2 t 0 t dt dt
单位:弧度/秒2 (rad/s2 ) α与同号,刚体加速转动;
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
§2.4 轮系的传动比
1 n1 r2 Z2 i1,2 2 n2 r1 Z1
此结论对于锥齿轮传动和带 轮传动同样适用。 在一些复杂轮系(如变速器) 中包含有几对齿轮。可将每一对 齿轮的传动算出后,将它们连乘 起来,变为可得总的传动比。
392.8 62.5 转 2π
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
例2- 3 轮子绕O点作定轴转动,其加速度方向和轮的半径
成60度角,求轮的转动方程,以及角速度和转角之间的关系。
00, 0.
M

O
a
60
THEORETICAL MECHANICS
解 : AB 杆 为 平 移 , O1A 为 定 轴 转 动 。 根 据 平移的特点,在同一瞬 时,M、A两点具有相同 的速度和加速度。
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
A点作圆周运动,其运动方程为
s O1 A 3π t
ds dv vA 3π (m/s) a A t 0 dt dt
§ 2.1 刚体的平行移动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体的基本运动 班级 姓名 学号
一、是非题(正确用√,错误用×,填入括号内。


1、定轴转动刚体上与转动轴平行的任一直线上的各点加速度的大小相等,而且方向也相同。

( )
2、刚体作平动时,其上各点的轨迹可以是直线,可以是平面曲线,也可以是空间曲线。

( )
3、刚体作定轴转动时,垂直于转动轴的同一直线上的各点,不但速度的方向相同而且其加速度的方向也相同。

( )
二、选择题(每题3分。

请将答案的序号填入划线内。


1、在图示机构中,杆B O A O 21//,杆D O C O 32//,且201=A O cm ,402=C O cm,
CM=MD =30cm, 若杆1AO 以角速度s rad /3=ω匀速转动,
则D 点的速度的大小为﹍﹍﹍﹍﹍﹍﹍cm ,M 点的加速度的大小为﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2/s cm 。

① 60 ;② 120 ;③ 150 ;④ 360 ;
2、已知正方形板ABCD 作定轴转动,转轴垂直于板面,A 点的速度s cm v A /10=,加速度
2/210s cm a A =,方向如图。

则正方形板转动的角速度的大小为﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍。

①s rad /1; ②s rad /2; ③无法确定。

三、计算题
1、已知搅拌机的主动齿轮O 1以m in r 950=n
的转速转动。

搅杆ABC 用销钉A 、B 与齿轮O 2、O 3相连,如图所示。


32O O AB =,m 25.023==B O A O ,各齿轮齿数为z 1=20,z 2=50,z 3=50。

求搅杆端点C 的速度和轨迹。

2、机构如图所示,假定杆AB 在某段时间内以匀速v 运动,开始时0=ϕ。

试求当4πϕ=时,摇杆OC 的角速度和角
加速度。

3、图示曲柄滑道机构中,T 形杆中BC 保持水平、DE 保持铅直。

曲柄OA 长10cm ,以匀角速度s rad /20=ω绕O 轴转动,通过套筒A 使杆BC 作往复运动。

求杆BC 的速度和加速度。

相关文档
最新文档