-实验1分治法

合集下载

分治算法实验

分治算法实验

分治算法实验(用分治法查找数组元素的最大值和最小值)算法分析与设计实验报告第一次实验实验步骤关键代码}else//当数组中元素个数少于2时,直接赋值处理1. 先解决小规模的问题,如数组中只有1个元素或者只有两个元素时候的情况。

2. 将问题分解,如果数组的元素大于等于3个,将数组分为两个小的数组。

3. 递归的解各子问题,将中分解的两个小的数组再进行以上两个步骤最后都化为小规模问题。

4. 将各子问题的解进行比较最终得到原问题的解。

//分治法处理整个数组,求出最大值与最小值void merge( int a[], int left, int right, int &Max, int &Min){int max1=0,min 1=0,max2=0,min2=0;if (right-left>2) //当数组中元素个数大于3时,才实行分治法{int mid=(right+left)/2;merge(a,left,mid,max1,mi n1);//左半边递归调用自身,求岀最大值与最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,mi n2);//右半边递归调用自身,求岀最大值与最小值,分别保存在max2,min2中if (max1>=max2)Max=max1; //子序列两两合并,求岀最大值与最小值elseMax=max2; //分别保存在Max与Minif (min1<=min2)Min=mi n1;elseMin=mi n2;测试结果实验心得Max=compmax(a,left,right);Min=compmi n( a,left,right);}}利用分治法(递归实现):非递归实现:请输入数据克1000093 32767The tine is1990003276? 9The tine is1000032767 0TJ IE tine is1000 32767 9The time is3276? RThe tine is內.0060-004TO通解,明白了分治法到底是怎样的一个过程,在代码实现分治法的时候,也使我加深了对于自己构造函数的理解,明白了分治法利用代码是怎样实现的,以及构造函数的传参与返回值等等地方需要注意的F;\鮒实验沁[p || B附录:完整代码(分治法)#include <iostream>#inelude <time.h>#include <iomanip> using namespacestd;//当数组中的元素个数小于3时,处理最大值int compmax(int A[], int start, int end) {int max;if (start<end) //有两个元素{if (A[start]<=A[end]) max=A[e nd];elsemax=A[start];}else //有一个元素max=A[start];return max;}//当数组中元素的个数小于2时,处理最小值int compmin(int A[], int start, int end){int min;if (start<end) //有两个元素{if (A[start]<=A[end]) mi n= A[start];elsemin= A[e nd];}else //有一个元素mi n=A[start];return mi n;}//分治法处理整个数组,求最大值与最小值void merge( int a[], int left, int right, int &Max,int &Min) 〃Max,Min 用来保存最大值与最小值//之所以使用&引用,是由于如果只是简单的使用变量,并不会改变Ma>与Min的值,使用指针也可以{int max1=0,min 1=0,max2=0,min2=0;if (right-left>2) //当数组中元素个数大于等于3时,进行分治{int mid=(right+left)/2;merge(a,left,mid,max1,min1); //左半边递归调用自身,求出最大值最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,min2); //右半边递归调用自身,求出最大值最小值,分别保存在max2,min2中if (max1>=max2) //子序列两两合并,求出最大值与最小值,保存在Max与Mi n 中Max=max1;elseMax=max2;if (min 1<=min2)Min=min1;elseMin=min 2;}else //数组中元素个数小于3时的情况,直接赋值{Max=compmax(a,left,right);Mi n=compmi n( a,left,right);}}void ran( int *input, int n) //随机生成数组元素函数{int i;sran d(time(0)); for(i=0;i<n;i++) input[i]=ra nd();input[i]= '\0';}int a[1000000]; //定义全局变量用来存放要查找的数组int main(){int n;int i;int max;int min;coutvv "请输入要查找的序列个数:"<<e ndl;for (i=0;i<5;i++){cin>>n;ran (a,n);start=clock();en d=clock();over=end-start;start=clock();//调用分治法算法merge(a,0, n-1,max,min);coutvvmax<<‘ " vvminvvendl;en d=clock();printf( "The time is %6.3f" ,( double )(end-start-over)/CLK_TCK); //显示运行时间}system( "pause"); // 停止运行窗口return 0;}完整代码(非递归方法)#include <iostream>#include <time.h>#include <iomanip> usingnamespacestd;void ran( int *input, int n) {//随机生成数组元素函数int i;sran d(time(0));for (i=0;i<n;i++)in put[i]=ra nd();input[i]= '\0';}int a[1000000];int main(){int max=a[0],min=a[0];int i,j,n;cout<<"请输入数据规模: "<<e ndl;for (j=0;j<5;j++){cin»n;ran( a, n);clock_t start,e nd,over;//计算程序运行时间的算法start=clock();en d=clock();start=clock(); for(i=1;i<n;i++) {if (a[i]>max)max=a[i];if (a[i]<min) min=a[i];}coutvvmax<<‘ " vvminvvendl;en d=clock();printf( "The time is %6.3f" ,( double )(end-start-over)/CLK_TCK); // 显示运行时间}system( "pause");return 0;}。

算法实验报告

算法实验报告

实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。

2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。

3.学会利用分治算法解决实际问题。

二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。

假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。

并对自己的程序进行复杂性分析。

三.问题分析:一般思路:假设袋中有n 个金块。

可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。

找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。

这样,比较的总次数为2n-3。

分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。

当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。

第二步,分别找出在A和B中最重和最轻的金块。

设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。

第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。

在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。

该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。

当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。

首先处理n≤1的情况。

若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。

当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。

分治算法的实验报告

分治算法的实验报告

一、实验背景分治算法是一种常用的算法设计方法,其基本思想是将一个复杂问题分解成若干个相互独立的小问题,然后将小问题递归求解,最终将子问题的解合并为原问题的解。

分治算法具有高效性、可扩展性和易于实现等优点,被广泛应用于各个领域。

本实验旨在通过实现分治算法解决实际问题,掌握分治算法的设计思想,并分析其时间复杂度。

二、实验目的1. 理解分治算法的基本思想;2. 掌握分治算法的递归实现方法;3. 分析分治算法的时间复杂度;4. 应用分治算法解决实际问题。

三、实验内容本实验选择两个分治算法:快速排序和合并排序。

1. 快速排序快速排序是一种高效的排序算法,其基本思想是将待排序序列分为两个子序列,其中一个子序列的所有元素均小于另一个子序列的所有元素,然后递归地对两个子序列进行快速排序。

(1)算法描述:① 选择一个基准值(pivot),通常取序列的第一个元素;② 将序列分为两个子序列,一个子序列包含所有小于基准值的元素,另一个子序列包含所有大于基准值的元素;③ 递归地对两个子序列进行快速排序。

(2)代码实现:```cvoid quickSort(int arr[], int left, int right) {if (left < right) {int pivot = arr[left];int i = left;int j = right;while (i < j) {while (i < j && arr[j] >= pivot) {j--;}arr[i] = arr[j];while (i < j && arr[i] <= pivot) {i++;}arr[j] = arr[i];}arr[i] = pivot;quickSort(arr, left, i - 1);quickSort(arr, i + 1, right);}}```2. 合并排序合并排序是一种稳定的排序算法,其基本思想是将待排序序列分为两个子序列,分别对两个子序列进行排序,然后将排序后的子序列合并为一个有序序列。

分治法实验报告

分治法实验报告

一. 实验目的及实验环境实验目的:熟练掌握运用分治法解决问题。

实验环境:windows下的Ubuntu虚拟机二. 实验内容利用分治法求一个数组的最大值、最小值(要求:数组的大小和数组的长度随机产生)三.方案设计分治法解决问题就是要将原问题分解成小问题,再将小问题分解成更小的问题,以此类推,直到最终分解的问题能够一步解决即可。

代码要求最后要输出数组的最大值、最小值。

所以,在用分治法求最值的函数max_min()中,需要将设置参数int *max,int *min。

即void max_min(int a[],int m,int n,int *max,int *min)。

这样就可以直接得到最大值、最小值。

该函数使用递归来实现,而递归的终止条件是最后分得的数组中只有一个或两个元素,当分得的数组元素个数大于2时,就进行递归调用。

四.测试数据及运行结果正确的3组运行结果:出现的错误:若将代码中的随机数函数返回值的类型改变,则会出现错误结果,甚至编译不通过。

五.总结1.实验过程中遇到的问题及解决办法;实验过程中,用分治法求最大值、最小值时,如果用返回值求最大值和最小值,则需要两个函数。

这样就会导致代码冗余,不会达到代码的复用性功能。

所以要将两个功能用一个函数直接实现就可以使用参数指针的形式。

2.对设计及调试过程的心得体会。

算法设计的课内实验既要实现实验的功能,还要讲究代码中算法的精妙、简单以及它的效率。

不能同其他高级语言的课内实验一样仅仅考虑如何完成该实验的功能,这样就可以真正地体验到算法与设计这门课的意义。

平时做实验时我们可以用不同算法实现,这样不仅可以积累平常上课学到的知识,还可以为以后的算法设计能力奠定基础。

平常更多地进行思考,可以让我们在求职时更受益。

六.附录:源代码(电子版)#include<stdio.h>#include<stdlib.h>#include<time.h>void max_min(int a[],int m,int n,int *max,int *min){int middle,hmax,hmin,gmax,gmin;if(m==n){ *max=a[m];*min=a[m];}else if(m==n-1){if(a[m]>a[n]){*max=a[m];*min=a[n];}else{*max=a[n];*min=a[m];}}else{max_min(a,m,middle,&gmax,&gmin);max_min(a,middle+1,n,&hmax,&hmin);if(gmax>hmax)*max=gmax;else*max=hmax;if(gmin<hmin)*min=gmin;else*min=hmin;}}int main(){int i;int max,min;srand((unsigned)time(NULL));int n=rand()%10+1;printf("数组的个数:%d\n",n);int a[n];for(i=0;i<n;i++){a[i]=rand()%50+1;printf("%d\t",a[i]);}max_min(a,0,n-1,&max,&min);printf("最大数:%d,最小数:%d\n",max,min);retur n 0;}。

实验1 分治法的应用

实验1 分治法的应用

实验1 分治法的应用1.实验目的(1)理解分治法的思想。

(2)掌握用分治法解决问题2.实验类型设计型3.预习要求熟悉Visual C++ 6.0上机编程调试的基本方法。

掌握教材上分治法的思想。

4.实验基本要求(1)仔细阅读实验的题目,选择其中的两个题目完成,设计的程序要满足正确性,代码中有关键的注释,书写格式清晰,简洁易懂,效率较高,适合各种合理输入,并能对不合理输入做出正确的提示。

(2)实验题目:a)最大值次大值★问题描述输出n个数中的最大值和次大值(注意:不能用排序)★编程任务利用分治法策略设计一个算法对任意输入的n个数可以输出最大值和次大值★数据输入第一行输入数的个数n,第二行输入n个数★结果输出输出最大值和次大值。

输入示例输出示例3 3 22 1 3★实现提示最大数是两组中的最大值中较大的值,次大值是从两组中较小的最大值和另一组的次大值选取。

b)查找第K小元素★问题描述在n个数当中找第K小元素问题。

★编程任务利用分治策略试设计一个算法对任意的n个数构查找第K小元素,不能用排序。

★数据输入第一行输入n的值,第二行输入n个数,第三行输入K的值。

★结果输出程序运行结束时,输出第K小元素的值。

输入示例输出示例658 1 3 6 93★实现提示使用快速排序中所采用的分划方法。

c)中位数问题★问题描述设X[ 0 : n - 1]和Y[ 0 : n– 1 ]为两个数组,每个数组中含有n个已排好序的数。

找出X和Y的2n个数的中位数。

★编程任务利用分治策略试设计一个算法求出这2n个数的中位数。

★数据输入第1行中有1个正整数n(n<=200),表示每个数组有n个数。

接下来的两行分别是X,Y数组的元素。

★结果输出程序运行结束时,将计算出的中位数输出。

输入示例输出示例1435 15 183 14 21★实现提示比较两个序列的中位数大小,如果两个数相等,则该数为整个2n个数据的中位数,否则通过比较,分别减少两个序列的查找范围,确定查找的起止位置,继续查找。

实验项目1:蛮力法与分治法应用

实验项目1:蛮力法与分治法应用

实验项目1:蛮力法与分治法应用1、目的与要求:实验目的:了解蛮力法和分治法的基本思想,学会运用蛮力法和分治法解决实际系统设计应用中碰到的问题。

实验要求:用蛮力法实现选择、冒泡排序,或旅行商问题、背包问题等问题(任选其中之一)。

用分治法实现合并排序或快速排序。

要求写出算法的伪代码描述,并编写程序实现之,相关算法放在函数实现,主程序给出测试用例,要设计足够多的相关测试用例,验证程序的正确性。

注意观察程序执行结果和运行的时间。

实验报告要求给出问题定义及算法的伪代码描述,程序设计的代码,算法的测试用例及结果,并分析算法的时间效率,回答指导书中的思考题。

2、实验容:(2)用分治法实现快速排序、合并排序算法。

本实验主要是用分治法实现合并排序,快速排序程序等。

合并排序算法描述:MergeSort ( A[0...p-1] )// input 待排序数组A[0..n-1]// output 非降序排列的数组A[0..n-1]if ( n>1 ) {//至少有2个元素Copy A[0.. n/2-1 ] to B[0.. n/2-1 ];Copy A[n/2..n-1 ] to C[0.. n/2-1 ];MergeSort ( B[0.. n/2-1 ] );MergeSort (C[0.. n/2-1 ]t);Merge (B, C, A); //复制回数组a快速排序算法描述:QuickSort ( A[1.. r ] ){if (l<r) s=Partition( A[l,r] ); // s 是分裂位置QuickSort ( A[l..s-1] ); //对左半段排序QuickSort ( A[s+1,r); //对右半段排序}Partition ( A[l..r] ){p=A[[l] ;i = l; j = r + 1;repeatedrepeated i=i+1; until A[i]> p // 将>= x的元素交换到左边区域repeated i=i+1; until A[i]> p // <= x的元素交换到右边区域Swap( A[i], A[j] )Until i>jSwap( A[i] = a[j] );Swap( A[l], A[j] )return j;要求先给出算法的伪代码,然后用C++或其他程序设计语言编写程序实现之,并设计相关的测试用例,验证程序的正确性。

实验1 分治法找到数组元素中的最大值与最小值

实验1 分治法找到数组元素中的最大值与最小值

算法分析与设计实验报告第 1 次实验附录:完整代码#include <time.h>#include <iostream>#include <iomanip>#include <stdlib.h>using namespace std;void min_max(int a[],int i,int j,int &min,int &max) {int mid,max1,max2,min1,min2;if(i==j){max=a[i];min=a[i];return;}if(j==i+1){if(a[i]>a[j]){min=a[j];max=a[i];}else{min=a[i];max=a[j];}}else{mid=(i+j)/2;min_max(a,i,mid,min1,max1);min_max(a,mid+1,j,min2,max2);if(min1>min2)min=min2;elsemin=min1;if(max1>max2)max=max1;elsemax=max2;}}int main (){int m,a[100],min,max;while(1){int f;cout<<"随机数组的规模:";cin>>m;cout<<"随机数的范围:";cin>>f;//计时开始clock_t start,end,over;start=clock();end=clock();over=end-start;start=clock();srand((unsigned)time(NULL));for(int i=1;i<=m;i++){a[i]=(rand()%(f)+0);cout<<a[i]<<' ';}cout<<endl;min_max(a,1,m,min,max);cout<<"最小值:"<<min<<endl;cout<<"最大值:"<<max<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK);cout<<endl;cout<<endl;}}。

分治法实验心得

分治法实验心得

分治法实验心得分治法实验心得分治法是一种常见的算法设计策略,它将原问题划分成若干个规模较小但结构与原问题相似的子问题,然后递归地求解这些子问题,最终将子问题的解合并得到原问题的解。

在本次实验中,我们实现了两个基于分治法的算法:归并排序和快速排序,并对它们进行了性能测试和比较。

一、归并排序1. 原理归并排序是一种典型的分治算法。

它将待排序数组不断地二分为两个子数组,直到每个子数组只剩下一个元素。

然后将相邻的两个子数组合并成一个有序数组,再将相邻的两个有序数组合并成一个更大的有序数组,直到最终合并成整个待排序数组。

2. 实现我们采用了自顶向下的递归方式实现了归并排序。

具体来说,我们定义了一个merge函数用于合并两个有序子数组,并定义了一个sort 函数用于递归地对左右两个子数组进行排序和合并。

3. 性能测试与比较我们使用Python内置的time模块对不同规模(10^2 ~ 10^6)的随机整数列表进行了性能测试,并绘制出了运行时间随数组规模增大的变化曲线。

结果表明,归并排序的时间复杂度为O(nlogn),与理论分析相符。

二、快速排序1. 原理快速排序也是一种分治算法。

它选择一个基准元素,将数组中小于等于它的元素放在其左侧,大于它的元素放在其右侧。

然后递归地对左右两个子数组进行同样的操作,直到每个子数组只剩下一个元素。

2. 实现我们实现了两个版本的快速排序:递归版本和非递归版本。

其中,递归版本采用了经典的Lomuto分区方案,而非递归版本则采用了更高效的Hoare分区方案。

3. 性能测试与比较我们同样使用Python内置的time模块对不同规模(10^2 ~ 10^6)的随机整数列表进行了性能测试,并绘制出了运行时间随数组规模增大的变化曲线。

结果表明,快速排序具有很好的平均时间复杂度(O(nlogn)),但最坏情况下时间复杂度会退化到O(n^2)。

三、总结与思考通过本次实验,我们深入理解了分治算法设计策略,并学会了如何实现归并排序和快速排序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的
1.理解分治法的方法;
2. 掌握使用分治法解决一般问题的步骤;
3. 掌握分治算法求解数组的最大值和最小值的方法。

二、实验原理
在一个给定数组中查找最大值和最小值是一类常见的问题,也是解决其他一些算法的基础。

假设给定数组为a,数组中含有n个元素,一般的算法是在数组中进行直接
循环的次数在算法第2行给出,为(n-2)+1=n-1次,因此,算法元素比较总次数为2(n-1)次。

现在采用分治的思想,假设数组的长度为2的整数幂,将数组分割成两半,分别为a[0…(n/2)-1]和a[n/2…n-1],在每一半中分别查找最大值和最小值,并返回这两个最小值中的最小值以及两个最大值中的最大值。

假设给定数组为a,数组的下标上界和下界分别为low和high,则其算法伪
接比较数组的两个元素,选出最大值和最小值,此为函数的递归终止条件;代码第7行和第8行是两个递归调用,分别在数组的下标范围[low,mid]和
[mid+1,high]查找最小值和最大值,第9行比较两个最大值取其中较大者,第10行比较两个最小值取较大者。

代码的第2、9和10行涉及到元素的比较,第7、8行由于递归也产生元素比较,因此令算法总的元素比较次数为C(n),则有
⎩⎨⎧>+==2
2)2/(221)(n n C n n C 若若 对递推式进行求解
2
2/3 2
2)2/( 2)2(2 2
2...22)2/(2 ...
2
48)8/(824)2)8/(2(4 2
4)4/(42)2)4/(2(22)2/(2)(1
1122111-=-+=+=+++++==+++=+++=++=++=+=∑-=-----n n C n C n C n C n C n C n C n C k k j j
k k k k k 得到minmax 算法的元素比较总次数为3n/2-2,优于直接比较的性能。

三、实验内容及要求
1. 编写程序使用分治算法MINMAX 求解数组的最小值和最大值,并用实际数组对算法进行测试。

2. 要求算法中元素比较的次数为3n/2-2,在程序中元素比较的地方进行记录,并在程序末尾输出数组最大值和最小值以及元素比较次数。

四、实验步骤
1. 定义结构体类型或类,用以在函数的返回值同时返回数组的最大值和最小值。

3. 在main函数中使用给定数组{21,25,49,16,25,6,78,1}测试MINMAX函数
并输出元素比较次数,效果如下图所示。

五、思考和作业
1. 试修改程序MINMAX,使得当数组长度n不是2的整数幂也能运行,并分
析修改后算法的元素比较次数。

2. 使用分治算法解决最大子数组和问题,问题描述如下:
给定一个整数序列S,找出S中的连续子序列,使得该子序列和最大,要求
算法时间复杂性为Θ(nlogn)。

例如:-2, 11, -4, 13, -5, -2; 结果为20: (11,
-4, 13)。

提示:
假定要寻找子数组S[low…high]的最大子数组,使用分治法将数组分解成
两个尽可能想相等的子数组,找到子数组中点mid,则S[low…high]中任何连续
数组S[i…j]必然是一下三种情况之一:
完全位于S[low…mid]中,low≤i≤j≤mid
完全位于S[mid+1…high]中,mid<i≤j≤high
跨越中点mid,low≤i≤mid<j≤high
因此,S[low…high]的一个最大子数组所处的位置必然是三种情况之一。


以通过递归方法求解A[low…mid]和A[mid+1…high]的最大子数组,则剩下的问
Part 1Part 2
the sub with largest sum may be in:
Part 1Part 2
or:
Part 1Part 2
recursion
The largest
is the
result。

相关文档
最新文档