MATLAB作业

合集下载

matlb课程设计作业

matlb课程设计作业

matlb课程设计作业一、教学目标本课程的教学目标是使学生掌握MATLAB基本语法、编程技巧以及应用方法,培养学生解决实际问题的能力。

具体目标如下:1.知识目标:(1)理解MATLAB的基本概念,如变量、数据类型、运算符等。

(2)掌握MATLAB编程的基本语法,如矩阵操作、函数定义与调用、循环结构、条件语句等。

(3)熟悉MATLAB与其他软件(如Mathematica、Python等)的接口转换。

(4)了解MATLAB在工程领域中的应用,如信号处理、控制系统、图像处理等。

2.技能目标:(1)能够运用MATLAB进行简单的数学计算、数据分析及图形绘制。

(2)具备编写MATLAB脚本文件和函数文件的能力。

(3)学会使用MATLAB解决实际问题,如编写程序实现线性方程组求解、最优化问题求解等。

(4)掌握MATLAB在实验数据处理、仿真实验等方面的应用。

3.情感态度价值观目标:(1)培养学生对科学探究的兴趣,提高其创新意识。

(2)培养学生团队协作、沟通交流的能力。

(3)培养学生具备良好的编程习惯和职业道德。

二、教学内容本课程的教学内容主要包括以下几个部分:1.MATLAB基本概念:变量、数据类型、运算符等。

2.MATLAB编程语法:矩阵操作、函数定义与调用、循环结构、条件语句等。

3.MATLAB高级应用:数组运算、图像处理、控制系统、信号处理等。

4.MATLAB与其他软件的接口转换。

5.实践项目:利用MATLAB解决实际问题,如线性方程组求解、最优化问题求解等。

三、教学方法本课程采用讲授法、案例分析法、实验法等多种教学方法相结合,以提高学生的学习兴趣和主动性。

1.讲授法:用于讲解MATLAB基本概念、语法和应用。

2.案例分析法:通过分析实际案例,使学生掌握MATLAB在各个领域的应用。

3.实验法:让学生亲自动手实践,培养其运用MATLAB解决实际问题的能力。

四、教学资源1.教材:选用《MATLAB教程》作为主要教材,辅助以相关参考书籍。

matlab整理

matlab整理

作业一:P55:1.在一个MATLAB命令中,6+7i和6+7*i有何区别?i和I有何区别?解:在MATLAB中6+7i是一个复数常量,6+7*i则是一个表达式。

i是虚数单位,而I是单位向量。

4.要产生均值为3,方差为1的500个正态分布的随机序列,写出相应的表达式。

解:y=3+sqrt(1)*randn(500)5.求下列矩阵的对角线元素、上三角矩阵、逆矩阵、行列式的值、秩、迹。

(1) A =1 -12 35 1 -4 23 0 5 211 15 0 9(2) B =0.43 43 2-8.9 4 21解:(1)A=[1,-1,2,3;5,1,-4,2;3,0,5,2;11,15,0,9]主对角元素:D=diag(A)上三角矩阵:B=triu(A)下三角矩阵:C=tril(A)逆矩阵:X=inv(A)行列式的值:E=det(A)秩:F=rank(A)逆:G=trace(A)运行结果:A =1 -12 35 1 -4 23 0 5 211 15 0 9主对角元素:D =1159上三角矩阵:B =1 -12 30 1 -4 20 0 5 20 0 0 9下三角矩阵:C =1 0 0 05 1 0 03 0 5 011 15 0 9逆矩阵:X =-0.1758 0.1641 0.2016 -0.0227 -0.1055 -0.1016 -0.0391 0.0664 -0.0508 -0.0859 0.1516 0.0023 0.3906 -0.0313 -0.1813 0.0281 行列式的值:E =1280秩:F =4逆:G =16(2)B = [0.43,43,2;-8.9,4,21]主对角元素:D=diag(B)上三角矩阵:Y=triu(B)下三角矩阵:C=tril(B)逆矩阵:X=pinv(B)行列式的值:E=det(B)秩:F=rank(B)迹:G= trace(B)运行结果:B =0.4300 43.0000 2.0000-8.9000 4.0000 21.0000主对角元素:D =0.43004.0000上三角矩阵:Y =0.4300 43.0000 2.00000 4.0000 21.0000下三角矩阵:C =0.4300 0 0-8.9000 4.0000 0逆矩阵:X =0.0022 -0.01750.0234 -0.0017-0.0035 0.0405行列式的值:E = 1.2526e+003秩:F=3迹:G =5.43006. 当A=[34,NaN,Inf,-Inf,-pi,eps,0]时,求函数all(A)、any(A)、isnan(A)、isinf(A)、isfinite(A)的值。

MATLAB作业

MATLAB作业

MATLAB作业⼀、必答题:1. MATLAB系统由那些部分组成?答:MATLAB系统主要由开发环境、MATLAB语⾔、MATLAB数学函数库、图形功能和应⽤程序接⼝五个部分组成。

2. 如何启动M⽂件编辑/调试器?答:在操作界⾯上选择“建⽴新⽂件”或“打开⽂件”操作时,M⽂件编辑/调试器将被启动。

在命令窗⼝中键⼊“edit”命令也可以启动M⽂件编辑/调试器。

3. 存储在⼯作空间中的数组能编辑吗?如何操作?答:存储在⼯作空间的数组可以通过数组编辑器进⾏编辑:在⼯作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输⼊修改内容即可。

4. 在MATLAB中有⼏种获得帮助的途径?答:在MATLAB中有多种获得帮助的途径:(1)帮助浏览器:选择view菜单中的Help菜单项或选择Help菜单中的MATLAB Help菜单项可以打开帮助浏览器;(2)help命令:在命令窗⼝键⼊“help” 命令可以列出帮助主题,键⼊“help 函数名”可以得到指定函数的在线帮助信息;(3)lookfor命令:在命令窗⼝键⼊“lookfor 关键词”可以搜索出⼀系列与给定关键词相关的命令和函数(4)模糊查询:输⼊命令的前⼏个字母,然后按Tab键,就可以列出所有以这⼏个字母开始的命令和函数。

5. 有⼏种建⽴矩阵的⽅法?各有什么优点?答:(1)以直接列出元素的形式输⼊;(2)通过语句和函数产⽣;(3).在m⽂件中创建矩阵;(4)从外部的数据⽂件中装⼊。

6. 命令⽂件与函数⽂件的主要区别是什么?答:命令⽂件: M⽂件中最简单的⼀种,不需输出输⼊参数,⽤M ⽂件可以控制⼯作空间的所有数据。

运⾏过程中产⽣的变量都是全局变量。

运⾏⼀个命令⽂件等价于从命令窗⼝中顺序运⾏⽂件⾥的命令,程序不需要预先定义,只要依次将命令编辑在命令⽂件中即可。

函数⽂件:如果M⽂件的第⼀个可执⾏⾏以function开始,便是函数⽂件,每⼀个函数⽂件定义⼀个函数。

MATLB实验作业

MATLB实验作业

实验一MATLAB运算基础1、用逻辑表达式求下列分段函数的值。

t=0:0.5:2.5y=t.^2.*((t>=0)&(t<1))+(t.^2-1).*(( t>=1)&(t<2))+(t.^2-2*t+1).*((t>=2 )&(t<3))2、求[100,999]之间能被21整除的数的个数。

p=rem([100:999],21)==0;sum(p)3、建立一个字符串向量,删除其中的大写字母。

ch='KdDdfKaWdsfCI',k=find(ch>=' A'&ch<='Z'),ch(k)=[]4、输入矩阵,并找出A中大于或等于5的元素。

A=[1 2 3;4 5 6;7 8 9],[m,n]=find(A>=5),for j=1:length(m)x(j)=A(m(j),n(j))xend5、求矩阵的行列式值、逆和特征根。

a11=input('a11='),a12=input('a12 ='),a21=input('a21='),a22=input('a22 ='),A=[a11,a12;a21,a22],DA=det(A),IA=inv(A),EA=eig(A) 6、不采用循环的形式求出和式的数值解。

sum(2.^[0:63])实验二1、1行100列的Fibonacc数组a,a(1)=a(2)=1,a(i)=a(i-1)+a(i-2),用for循环指令来寻求该数组中第一个大于10000的元素,并指出其位置i。

n=100;a=ones(1,n);for i=3:na(i)=a(i-1)+a(i-2);if a(i)>10000a(i),break;end;end,i2、编写M脚本文件,定义下列分段函数,并分别求出当()、()和()时的函数值。

Matlab基础及应用第一章上机作业

Matlab基础及应用第一章上机作业

1、新建一个文件夹(自己的名字命名)
答:
2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。

保存,关闭对话框。

使用path命令查看MATLAB搜索路径。

3、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye。

4、使用clc、clear,观察command window、command history和workspace等窗口的变化结果。

5、编写一段简短的脚本文件,保存并显示运行结果。

6、创建两个double型变量a=32、b=5,并计算a+b、a-b、a*b、a/b、a\b;
创建两个int8型变量a、b,取同样数值,并计算a+b、a-b、a*b、a/b、a\b,对于计算结果与前次计算结果不同的情形请给出解释。

7、查看int16数据类型的取值范围(intmin,intmax);查看单精度数据类型的取值范围和精度(realmin,realmax,eps)。

8、求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量:
(1)sin(60o) (2) e3 (3) cos(3/4π)
9、用两种定义复数的方法计算(直接定义,complex(a,b))
(1)(3-5i)(4+2i) (2) sin(2-8i)。

MATLAB平时作业(图文版)

MATLAB平时作业(图文版)

MATLAB 平时作业第一章 习题16. 以下两种说法对吗?(1)“MATLAB 的数值表达精度与其指令窗中的数据显示精度相同。

”答:此种说法错误。

MATLAB 提供了控制数据显示格式的控制指format ,该指令并不改变MATLAB 内存中变量的精度,只是改变其显示精度。

(2)“MATLAB 指令窗中显示的数值有效位数不超过7位。

”答:此种说法错误。

当变量小于1000时,使用format 或format short 后,或者默认情况下,变量的显示精度最多不超过7位,但显示精度不等于变量的精度。

7. 想要在MATLAB 中产生二维数组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321S ,下面哪些指令能实现目的? S=[1,2,3;4,5,6;7,8;9]S=[1 2 3;4 5 6;7 8 9]S=[1,2,3;4,5,6;7,8,9] %整个指令在中文状态下输入 答:操作如图:第1、2条指令可以实现,第3条指令不可实现。

第三章 习题31.在MATLAB 中,先运行指令A=magic(3), B=[1,2,1;3,4,3;5,6,7], C=reshape(1:6,3,2)生成阵列33⨯A ,23⨯B ,23⨯C ,然后根据运行结果回答以下问题:运行结果如图:(1)计算A*B, B*A ,这两个乘积相同吗? 计算结果如图:答:不同。

(2)计算A\B, B/A ,左除、右除结果相同吗?计算结果如图:答:不同。

(3)计算B( : ,[1,2]).*C和C.*B( : , [1,2]),这两个乘积相同吗?计算结果如图答:相同。

(4)计算A\A和A.\A,这两个计算结果相同吗?计算结果如图:答:相同。

(5)计算A\eye(3)和inv(A),这两个计算结果相同吗?计算结果如图:答:不同。

(提示:根据对计算结果的目测回答问题)2.在MATLAB中,先运行A=[1, 2; 3, 4],b=0.5,C=[4, 2; 1, 0.5], 然后根据计算结果回答以下问题:创建数据步骤略(1)计算A^b和A.^b, 这两个计算结果相同吗?答:不同。

matlab作业3参考答案

matlab作业3参考答案

matlab作业3参考答案Matlab作业3参考答案Matlab作业3是一个综合性的编程任务,要求学生运用Matlab的各种功能和工具来解决实际问题。

本文将提供Matlab作业3的参考答案,并对其中的关键步骤和思路进行详细解释。

一、问题描述在本次作业中,学生需要解决一个关于图像处理的问题。

具体来说,给定一张彩色图像,学生需要编写Matlab代码来实现以下功能:1. 将彩色图像转换为灰度图像;2. 对灰度图像进行高斯滤波;3. 对滤波后的图像进行边缘检测;4. 对边缘图像进行二值化处理。

二、解决方案1. 将彩色图像转换为灰度图像首先,我们需要读取彩色图像。

可以使用Matlab的imread函数来实现。

然后,使用rgb2gray函数将彩色图像转换为灰度图像。

代码如下:```matlabrgbImage = imread('image.jpg');grayImage = rgb2gray(rgbImage);```2. 对灰度图像进行高斯滤波接下来,我们需要对灰度图像进行高斯滤波。

高斯滤波是一种常用的图像平滑方法,可以有效地去除图像中的噪声。

Matlab提供了fspecial函数来生成高斯滤波器。

代码如下:```matlabh = fspecial('gaussian', [3 3], 1);filteredImage = imfilter(grayImage, h);```3. 对滤波后的图像进行边缘检测在这一步中,我们需要对滤波后的图像进行边缘检测。

边缘检测可以帮助我们找到图像中的边缘和轮廓。

Matlab提供了多种边缘检测算法,如Sobel算子和Canny算子。

代码如下:```matlabedgeImage = edge(filteredImage, 'canny');```4. 对边缘图像进行二值化处理最后,我们需要对边缘图像进行二值化处理,将图像中的边缘转换为黑白两种颜色。

Matlab习题及答案

Matlab习题及答案

现代计算方法Matlab 作业答案1.绘出函数f(x)=sin x x ,在[0,4]上的图形解:在M 文件输入:x=0:pi/100:4;y=x.*sin(x);plot(y)运行2. 求3x +2x +5 = 0的根解:在命令窗口输入:>> solve('x^3+2*x+5=0')ans =((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3) - 2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3))1/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) - ((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)/2 -(3^(1/2)*i*(2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) + ((108^(1/2)*707^(1/2))/108 -5/2)^(1/3)))/21/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) - ((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)/2 +(3^(1/2)*i*(2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) + ((108^(1/2)*707^(1/2))/108 -5/2)^(1/3)))/23.321436min x x x z ++=120..321=++x x x t s301≥x5002≤≤x203≥x解:运用单纯形法计算此题,首先把约束条件化成标准形式:,,,,,205030120654321635241321≥=-=+=-=++x x x x x x x x x x x x x x x(1)在M 文件输入SimpleMthd 函数:function [x,minf] = SimpleMthd(A,c,b,baseVector)sz = size(A);nVia = sz(2);n = sz(1);xx = 1:nVia;nobase = zeros(1,1);m = 1;for i=1:nViaif (isempty(find(baseVector == xx(i),1)))nobase(m) = i;m = m + 1;else;endendbCon = 1;M = 0;while bConnB = A(:,nobase);ncb = c(nobase);B = A(:,baseVector);cb = c(baseVector);xb = inv(B)*b;f = cb*xb;w = cb*inv(B);for i=1:length(nobase)sigma(i) = w*nB(:,i)-ncb(i);end[maxs,ind] = max(sigma);if maxs <= 0minf = cb*xb;vr = find(c~=0 ,1,'last');for l=1:vrele = find(baseVector == l,1);if (isempty(ele))x(l) = 0;elsex(l)=xb(ele);endendbCon = 0;elsey = inv(B)*A(:,nobase(ind));if y <= 0disp('不存在最优解!');x = NaN;minf = NaN;return;elseminb = inf;chagB = 0;for j=1:length(y)if y(j)>0bz = xb(j)/y(j);if bz<minbminb = bz;chagB = j;endendendtmp = baseVector(chagB);baseVector(chagB) = nobase(ind);nobase(ind) = tmp;endendM = M + 1;if (M == 1000000)disp('找不到最优解!');x = NaN;minf = NaN;return;endend(2)在命令窗口输入:clear allA=[1 1 1 0 0 0;1 0 0 -1 0 0;0 1 0 0 1 0;0 0 1 0 0 -1];c=[6 3 4 0 0 0];b=[120;30;50;20];[xm,mf]=SimpleMthd(A,c,b,[3 4 5 6])xm =0 50 70mf =4304.计算下面函数在区间(0,1)内的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、必答题:1. MATLAB系统由那些部分组成?答:MATLAB系统主要由开发环境、MATLAB语言、MATLAB数学函数库、图形功能和应用程序接口五个部分组成。

2. 如何启动M文件编辑/调试器?答:在操作界面上选择“建立新文件”或“打开文件”操作时,M文件编辑/调试器将被启动。

在命令窗口中键入“edit”命令也可以启动M文件编辑/调试器。

3. 存储在工作空间中的数组能编辑吗?如何操作?答:存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可。

4. 在MATLAB中有几种获得帮助的途径?答:在MATLAB中有多种获得帮助的途径:(1)帮助浏览器:选择view菜单中的Help菜单项或选择Help菜单中的MATLAB Help菜单项可以打开帮助浏览器;(2)help命令:在命令窗口键入“help” 命令可以列出帮助主题,键入“help 函数名”可以得到指定函数的在线帮助信息;(3)lookfor命令:在命令窗口键入“lookfor 关键词”可以搜索出一系列与给定关键词相关的命令和函数(4)模糊查询:输入命令的前几个字母,然后按Tab键,就可以列出所有以这几个字母开始的命令和函数。

5. 有几种建立矩阵的方法?各有什么优点?答:(1)以直接列出元素的形式输入;(2)通过语句和函数产生;(3).在m文件中创建矩阵;(4)从外部的数据文件中装入。

6. 命令文件与函数文件的主要区别是什么?答:命令文件: M文件中最简单的一种,不需输出输入参数,用M 文件可以控制工作空间的所有数据。

运行过程中产生的变量都是全局变量。

运行一个命令文件等价于从命令窗口中顺序运行文件里的命令,程序不需要预先定义,只要依次将命令编辑在命令文件中即可。

函数文件:如果M文件的第一个可执行行以function开始,便是函数文件,每一个函数文件定义一个函数。

函数文件区别于命令文件之处在于命令文件的变量在文件执行完成后保留在工作空间中,而函数文件内定义的变量只在函数文件内起作用,文件执行完后即被清除。

7. 创建符号变量有几种方法?答:创建符号变量和表达式的两个基本函数:sym, syms*x=sym(‘x’) 创建一个符号变量x,可以是字符、字符串、表达式或字符表达式。

*syms用于方便地一次创建多个符号变量,调用格式为: syms a b c d. 书写简洁意义清楚,建议使用。

8. 下面三种表示方法有什么不同的含义?(1)f=3*x^2+5*x+2(2)f='3*x^2+5*x+2'(3)x=sym('x')f=3*x^2+5*x+2答:(1)f=3*x^2+5*x+2为一函数表达式。

(2)f='3*x^2+5*x+2'为一符号函数。

(3)用sym函数定义的符号表达式。

9.什么是图形句柄?图形句柄有什么用途?答:图形对象的句柄是MATLAB显示图形数据和建立图形用户接口的基础,每个对象从产生时起就被赋予了一个唯一的标识,这种标识就是该对象的句柄。

利用句柄就可以操纵一个已经存在的图形对象的特性(属性)。

10. 什么是Simulink ?答:MATLAB Simulink是一个动态仿真系统,用于对动态系统进行仿真和分析,预先模拟实际系统的特性和响应,根据设计和使用要求,对系统进行修改和优化。

Simulink提供了图形化用户界面,只须点击鼠标就可以轻易的完成模型的创建、调试和仿真工作,用户不须专门掌握一种程序设计语言。

Simulink可将系统分为从高级到低级的几个层次,每层又可以细分为几个部分,每层系统构建完成后,将各层连接起来构成一个完整系统。

Simulink可以仿真线性和非线性系统,并能创建连续时间、离散时间或二者混合的系统。

支持多采样频率系统。

11.计算与的数组乘积。

x=[6 9 3,2 7 5];y=[2 4 1,4 6 8];z=x.*yz =12 36 3 8 42 4012.对于,如果,,求解X。

a=[4 9 2; 7 6 4; 3 4 7]b=[37 26 28]x=a/ba =4 9 27 6 43 4 7b =37 26 28x =0.15480.18630.145313. 求解多项式x3-7x2+2x+40的根。

a=[1 -7 2 40]r=roots(a)a =1 -72 40r =5.00004.0000-2.000014. 求解在x=8时多项式(x-1)(x-2) (x-3)(x-4)的值。

a=[1 2 3 4];pa=poly(a);ppa=polyval(pa,8)ppa = 84015. 计算多项式除法(3x3+13x2+6x+8)/(x+4)。

c=[3 13 6 8];[q2,r2]=deconv(c,[1,4])cc=conv(q2,[1,4])test=((c-r2)==cc)q2 =3 1 2r2 =0 0 0 0cc =3 13 6 8test =1 1 1 116.计算多项式的微分和积分。

微分:syms x;f=4*x^4-12*x^3-14*x^2+5*x+5;diff(f)ans =16*x^3-36*x^2-28*x+5积分:syms x;f=4*x^4-12*x^3-14*x^2+5*x+5;int(f)ans =4/5*x^5-3*x^4-14/3*x^3+5/2*x^2+5*x 17.解方程组。

a=[2 9 0,3 4 11,2 2 6]b=[13 6 6]x=a\ba =2 9 034 11 2 2 6b =13 6 6x =0 0 00 0 00 0 00 0 00 0 01.1818 0.5455 0.54550 0 00 0 00 0 018. y=sin(x),x从0到2,x=0.02,求y的最大值、最小值、均值和标准差。

x=0:0.02*pi:2*piy=sin(x)Amax=max(y)Amin=min(y)Amean=mean(y)Astd=std(y)Amax =1Amin =-1Amean =2.2995e-017Astd =0.707119.符号函数绘图法绘制函数x=sin(3t)cos(t),y=sin(3t)sin(t)的图形,t 的变化范围为[0,2]。

syms tfigure (1)ezplot(sin(3*t)*cos(t))figure (2)ezplot(sin(3*t)*sin(t))20.用sphere函数产生球表面坐标,绘制不通明网线图、透明网线图、表面图和带剪孔的表面图。

并将其中的带剪孔的球形表面图的坐标改变为正方形,以使球面看起来是圆的而不是椭圆的,然后关闭坐标轴的显示。

无透明处理:Z=sphere(64);mesh(Z)colormap([0,1,0])透明处理后:Z=sphere(64);mesh(Z)colormap([0,0.2,0.5])hidden off表面图:z=sphere(36);surf(z)带剪孔的表面图:p=sphere(64);p(20:23,9:15)=NaN*ones(4,7); %剪孔位置(将以部分网格设置为非数)meshz(p)21. 有一正弦衰减数据y=sin(x).*exp(-x/10),其中x=0:pi/5:4*pi,用三次样条法进行插值。

x0=0:4*pi;y0=sin(x0).*exp(-x0/10);x=0:pi/5:4*pi;y=spline(x0,y0,x);plot(x0,y0,'or',x,y,'k')22. 建立一个简单模型,用信号发生器产生一个幅度为2V、频率为0.5Hz的正弦波,并叠加一个0.1V的噪声信号,将叠加后的信号显示在示波器上并传送到工作空间。

23.矩阵,计算a的行列式和逆矩阵。

a=[4 2 -6;7 5 4;3 4 9];d1=det(a);x1=inv(a);>> a=[4 2 -6;7 5 4;3 4 9];d1=det(a)x1=inv(a)d1 =-64x1 =-0.4531 0.6562 -0.59370.7969 -0.8437 0.9062-0.2031 0.1562 -0.093724.,,计算x的协方差、y的协方差、x与y的互协方差。

x=[1 2 3 4 5];y=[2 4 6 8 10];cx=cov(x)cy=cov(y)cxy=cov(x,y)cx =2.5000cy =10cxy =2.5000 5.00005.0000 10.000025.用符号函数法求解方程a t2+b*t+c=0。

syms a b c xf=a*x^2+b*x+c;x=solve(f)S=solve(f);[S.x]x =[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))][ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]28.求代数方程组关于x,y的解。

syms a b c x yf=a*x^2-b*y+c;g=x+y;[x,y]=solve(f,g)S=solve(f,g);[S.x,S.y]x =[ -1/2/a*(b+(b^2-4*a*c)^(1/2))][ -1/2/a*(b-(b^2-4*a*c)^(1/2))]y =[ 1/2/a*(b+(b^2-4*a*c)^(1/2))][ 1/2/a*(b-(b^2-4*a*c)^(1/2))]ans =[ -1/2/a*(b+(b^2-4*a*c)^(1/2)), 1/2/a*(b+(b^2-4*a*c)^(1/2))] [ -1/2/a*(b-(b^2-4*a*c)^(1/2)), 1/2/a*(b-(b^2-4*a*c)^(1/2))] 2.求矩阵的行列式值、逆和特征根。

syms a11 a12 a21 a22;A=[a11 a12;a21 a22];t=det(A)m=inv(A)[b,c]=eig(A)t =a11*a22-a12*a21m =[ -a22/(-a11*a22+a12*a21), a12/(-a11*a22+a12*a21)][ a21/(-a11*a22+a12*a21), -a11/(-a11*a22+a12*a21)]b =[ -(1/2*a22-1/2*a11-1/2*(a22^2-2*a11*a22+a11^2+4*a12*a21)^(1/2))/a21, -(1/2*a22-1/2*a11+1/2*(a22^2-2*a11*a22+a11^2+4*a12*a21)^(1/2))/a21][ 1,1]c =[ 1/2*a22+1/2*a11+1/2*(a22^2-2*a11*a22+a11^2+4*a12*a21)^(1/2), 0][ 0, 1/2*a22+1/2*a11-1/2*(a22^2-2*a11*a22+a11^2+4*a12*a21)^(1/2)]3.,用符号微分求df/dx。

相关文档
最新文档