七实际问题与一元一次方程-配套调配分配问题
人教版七年级上册实际问题与一元一次方程--配套与工程问题

合作探讨:
2.一套仪器由5个A部件和6个B部件构成. 用1 m3钢 材可以做40个A部件或240个B部件. 现要用6 m3钢材 制作这种仪器,应用多少钢材做A部件,多少钢材 做B部件,恰好使生产的两种部件刚好配套?
分析:设应用 x m3钢材做A部件, (6-x) m3 钢材做 B部件,则做A部件 40 x 个,做B部件 240 (6-x)个
解:设 x天可以铺好这条管线. x x 1 12 24 x=8.
答:两个工程队从两端同时施工,要8天可以铺 好这条管线.
解:设还需 x天可以铺好这条管线. x3 x 3 12 24 4
3.一条地下管线由甲工程队单独铺设需要12天, 由乙工程队单独铺设需要24天. 如果甲乙工程队 合作施工2天,因甲工程队另有任务,剩下的由
乙工程队完成,乙还需多少天可以铺好这条管线 ?
解:设乙还需x天可以铺好这条管线.
课后作业:
必做题:教材练习102页2题3题 选做题:题册106页5、6
三、小结与归纳
问题5:用一元一次方程解决实际问题的基本 过程有几个步骤?分别是什么?
实际问题 设未知数,列方程 一元一次方程
实际问题 的答案
检验
解 方 程
一元一次方程 的解(x = a)
解题后的反思
议一议 (1)用方程解实际问题的基本过程:
审(借助表格,图表等提炼数学信息,理解问题中的基本数学关系); 设(用代数式表示实际问题中的文字语言,文字语言符号化); 列(找到所列代数式中的基本等量关系,列出方程); 解(解方程); 验(是否是方程的解,实际问题有意义); 答(实际问题的答案).
可列方程为:
。
探究二:
七年级上册数学一元一次方程应用题之调配问题

一元一次方程应用题之调配问题:
调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。
调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。
在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。
例题精讲
1.甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?
2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?
3.一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?
针对练习
1.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
2.某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?
3.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
4.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
5.甲、乙两车间各有工人64人和38人,现需从两车间调出相同数量的工人,使甲车间剩余的人数是乙车间剩余的人数的2倍还多3人,问需要从甲、乙两车间各调出多少工人?。
实际问题与一元一次方程(调配、配套、分配问题)

3 5
16x=
×10(66-x)
9
例题展示
2.例3.有一群鸽子和一些鸽笼,如果每个 鸽笼住6只鸽子,则剩余3只鸽子无鸽 笼可住;如果再飞来5只鸽子,连同原 来的鸽子,每个鸽笼刚好住8只鸽 子.原来多少只鸽子和多少个鸽笼?
10
变式
1种一批树,如果每人种10棵,则剩6棵 未种;如果每人种12棵,则缺6棵.有 多少人种树?
11
根据题意,得方程:
解方程得:x = 21
答:调往甲队21人。调往乙队5人。
3
变式 甲车队有50辆汽车,乙车队有41辆汽 车,如果要使乙队汽车数比甲队汽车 数的2倍还多1辆,应从甲队调多少辆 到乙车队?
4
例题展示
例1 某车间42名工人生产螺钉和螺 母,每人每天平均生产螺钉1000个 或螺母2000个,一个螺钉要配一个 螺母.为了使每天的产品刚好配套, 应该分配多少名工人生产螺钉,多 少名工人生产螺母?
1
甲队有32人,乙队有40人,现在从 甲队抽调x人到乙队,使得甲队的人 1 数是乙队人数的 ,依题意得方程 2
2
例题展示
例2.某部队开展支农活动,甲队27人,乙队19 人,现另调26人去支援,使甲队是乙队的2倍, 问应调往甲队、乙队各多少人?
解:设调往甲队x人,则调往乙队(26-x)人
27 x 219 26 x
2 螺钉的总数= 3 螺母的总数 2
1000x=
3
×2000(42-x)
7
趁热打铁
1.某服装加工车间有54人,每人每 天可加工上衣8件或裤子10条,应 怎样分配加工上衣和加工裤子的人 数,才能是每天加工的上衣和裤子 配套?
人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)

在这次教学活动中,我尝试了多种方法引导学生学习《实际问题与一元一次方程》这一章节。首先,通过生活中的实例导入新课,让学生感受到数学与生活的紧密联系。在讲授过程中,我注重理论与实践相结合,让学生在实际问题中感受一元一次方程的魅力。
在教学中,我发现有些学生在从实际问题抽象出一元一次方程时存在困难。为了帮助他们突破这个难点,我采用了案例分析、分组讨论等形式,让学生在互动中加深理解。同时,我特别强调了解方程的基本步骤,引导学生通过对比错误解法和正确解法,掌握解题方法。
人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)
一、教学内容
人教版七年级上册3.4实际问题与一元一次方程-配套问题,主要包括以下内容:
1.理解一元一次方程在解决实际问题中的应用;
2.学会根据实际问题列出一元一次方程;
3.掌握解一元一次方程的方法,如移项、合并同类项、系数化为1等;
4.解决涉及单价、数量、总价等实际问题,如购物问题、行程问题等;
5.通过解决实际问题,提高学生运用养目标
1.提升学生数学抽象、逻辑推理和数学建模的核心素养,使学生能够从实际问题中抽象出一元一次方程,并用方程解决实际问题;
2.培养学生运用数学知识解决实际问题的能力,提高数学应用意识,增强对数学在实际生活中作用的认知;
3.培养学生合作交流、思考问题的习惯,提高学生分析问题、解决问题的能力,培养批判性思维和创新意识;
-难点一:识别实际问题中的关键信息,如购物问题中的单价、数量和总价,学生可能难以把握这些信息之间的关系,需要通过具体实例和图示帮助学生理解。
-难点二:将实际问题转化为方程时,学生可能会对如何选择变量、如何表达数量关系感到困惑。教学中应通过多个示例,指导学生如何进行变量选择和方程构建。
初一七年级数学一元一次方程与实际问题 (2)—调配问题学案

一元一次方程与实际问题(2)——调配问题学案班别:姓名:学号:例1:已知甲原有图书80 本,乙原有图书44 本,要使甲、乙两人的图书一样多,应从甲调给乙多少本图书?基本量:等量关系.解:练习:1. 某校初一甲班有学生60 人,乙班有学生40 人,从甲班调多少人到乙班,两个班的学生人数就相等?2. 甲队有50 人,乙队有40 人,从甲队调出一部分人到乙队后,使乙队的人数是甲队的 2 倍,求应从甲队调往乙队的人数. 例2:陈滴有40 元,陈卓有30 元,爸爸拿出50 元给两兄弟分,为了使陈滴的钱是陈卓的2倍,爸爸应给陈滴、陈卓各多少钱?基本量:等量关系.解:练习:1. 在甲处劳动的工人有27 人,在乙处劳动的工人有19 人,现在另调20 人去支援,使得在甲处的人数为在乙处人数的 2 倍,问应调往甲、乙两处各多少人?2. 某班学生参加义务劳动,原来安排20 人运土,20人挖土,现在需要从中抽调8人做其他工作,使抽调后运土人数是挖土人数的3倍,则应从挖土的人中调出多少人?课后作业:1. 已知甲煤场有煤518 吨,乙煤场有煤106 吨,为了使甲煤场存煤是乙煤场的2 倍,需要从甲煤场运煤多少到吨乙煤场.2. 甲、乙两个仓库共有粮食60 t,甲仓库运进14 t,乙仓库运出10 t后,两个仓库粮食数量相等,两个仓库原来各有多少粮食?3. 某生产队有林场100 公顷,牧场50 公顷,现要栽培一种新的果树,把一部分牧场改为林场,使牧场面积只占林场面积的20%,问改为林场的牧场面积是多少公顷?4. 甲渔场库存鱼30 吨,乙渔场库存鱼40 吨,要再往这两个渔场运送20 吨鱼,使这两个渔场的库存一样,问应往甲、乙两渔场分别运送多少吨鱼?5. 王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg,李丽平均每小时采摘7 kg,采摘结束后,王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?6. 古代有这样一则寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是多少?。
人教版数学七年级上册3.4实际问题与一元一次方程1(劳动力调配与工程问题 )

实际问题与一元一次方程1(配套问题与工程问题)一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典型例题例1:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?针对训练1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。
现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
人教版七年级上册3.4实际问题与一元一次方程(配套问题与工程问题)优秀教学案例
5.作业小结巩固知识与技能:通过布置相关的作业,让学生在课后巩固所学知识,提高解题技巧。作业的设计既能够检验学生对一元一次方程的应用能力,又能够进一步巩固所学知识。
人教版七年级上册3.4实际问题与一元一次方程(配套问题与工程问题)优秀教学案例
一、案例背景
本节课为人教版七年级上册第三单元《实际问题与一元一次方程》中的工程问题部分。通过前面的学习,学生已经掌握了方程的基本概念和一元一次方程的解法,本节课将引导学生将实际问题转化为方程,并运用一元一次方程解决问题。
为了提高学生的学习兴趣和实际应用能力,我设计了一个关于“学校图书馆书籍整理”的案例。案例中,学校图书馆有A、B两个书库,分别有300本和200本书。为了方便学生阅读,学校决定将两个书库的书籍合并在一起,并按照书籍的分类重新整理。已知A书库的书籍数量是B书库的1.5倍,请问合并后,A书库和B书库分别有多少本书?
(三)小组合作
本节课采用小组合作的学习方式,让学生在小组内共同探讨和解决问题。我会将学生分成若干小组,每组成员共同分析问题、讨论解题策略,并共同完成练习题。小组合作不仅能够提高学生的合作意识和团队精神,还能够激发学生的思维碰撞,促进知识的共享和互补。
(四)反思与评价
在教学过程中,我将引导学生进行自我反思和评价。学生需要思考自己在解决问题过程中的优点和不足,总结经验教训,不断提高自己的学习能力。同时,我也会组织学生进行同伴评价,让同学之间相互反馈,共同进步。通过反思与评价,学生能够培养批判性思维和自我调整的能力,为今后的学习奠定坚实的基础。
四、教学内容与过程
(一)导入新课
人教版七年级上册数学实际问题与一元一次方程--配套问题专项练习
人教版七年级上册数学3.4实际问题与一元一次方程--配套问题专项练习一、单选题1.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套设应分配x 人生产甲种零件,则根据题意可得的方程为( )A .1262(23)x x =-B .312223(62)x x ⨯=⨯-C .212323(62)x x ⨯=⨯-D .323(62)125x x ⨯-=2.有一些苹果和苹果箱,若每箱装25千克苹果,则剩余40千克苹果;若每箱装30千克苹果,则余下20个苹果箱;设这些苹果箱有x 个,则可列方程为( ) A .()25403020x x +=- B .()25403020x x -=+ C .25403020x x +=-D .25403020x x -=+3.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-4.一套仪器由两个A 部件和三个B 部件构成.用1立方米钢材可做40个A 部件或240个B 部件.现要用5立方米钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,才能恰好配成这种仪器若设应用x 立方米钢材做A 部件,则可列方程为( ) A .2403240(5)x x ⨯=⨯- B .3402240(5)x x ⨯=⨯- C .40(5)24032x x-= D .40(5)24023x x-= 5.某车间30名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母4500个,一个螺钉要配两个螺母,已知每天生产的产品刚好配套,若设安排x 名工人生产螺钉,则可列方程为( ) A .4500(30-x )=2×1500x B .2×4500(30-x )= 1500x C .4500 x =2×1500(30-x )D .4500 x +2×1500x =306.如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x 名工人生产桌面,则下面所列方程正确的是( )A .()20330024x x =⨯-B .300()32024x x =⨯- C .()32030024x x ⨯=-D .()2030024x x =- 7.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形和长方形铁片能合理地将铁片配套?设安排x 人生产圆形铁片,可以列方程:( )A .120(42﹣x )=2×80xB .80(42﹣x )=120xC .2×80(42﹣x )=120xD .120180(42)2x x =-8.某车间有22名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母20个,现有x 名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按照1:2配套,下列方程正确的是( ) A .12x =20(22﹣x ) B .2×12x =20(22﹣x ) C .2×20x =12(22﹣x )D .12x =2×20(22﹣x )二、填空题9.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排_____名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.10.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x 立方米的木材做桌面,可列方程________.11.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A ,B 两个贫困地区,其中发往A 区的物资比B 区的物资的1.5倍少1000件,则发往A 区的生活物资为___________件.12.某车间每天能生产甲种零件120个或乙种零件100个,甲、乙两种零件分别取2个和1个才能配套,要在80天生产最多的成套产品,甲种零件应该生产________天.13.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生44人,每名学生每小时剪筒身50个或剪筒底120个.要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配_____名学生剪筒身,______名学生剪筒底.14.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得_____.15.某服装厂专门安排160名工人手工缝制衬衣,每件衬衣由2个衣袖、1个衣身组成,如果每人每天能够缝制衣袖10个或衣身15个,那么应安排________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身正好配套.16.某服装厂有工人54人,每人每天可加工上衣8件或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为________人,根据题意,可列方程为_______,解得x=_____.三、解答题17.某工厂工人急需在计划时间内加工一批零件用于机械制造,如果每天加工500个,就比规定任务少80个;如果每天加工550个,则超额20个.求规定加工的零件数和计划加工的天数分别是多少?18.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,一个螺栓配两个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?19.七年级2班共有学生40人,老师组织学生制作圆柱形存钱罐.其中一部分人剪筒底,每人每小时制作40个;剩下的人剪筒身,每人每小时制作60个.要求一个筒身配两个筒底,那么应该如何分配人数,才能使每小时剪出的筒身和筒底恰好配套?(列方程求解)20.甲厂有92名工人,乙厂有48名工人,为了赶制一批产品又调来了100名工人,要使甲厂比乙厂人数的3倍少12人,应往甲、乙两厂调多少人?参考答案:1.C 2.A 3.D 4.B 5.A 6.C 7.C 8.B 9.510.()50x 430010x ⨯=- 11.3200 12.50 13. 24 2014.1000(26﹣x )=2×800x 15.12016. (54-x) 8x =10(54-x) 3017.规定加工零件数为1080个,计划加工天数为2天. 18.应分配12人生产螺栓,则16人生产螺帽 19.10人制作筒身, 30人制作筒底 20.应往甲厂调85人,往乙厂调15人.。
七年级实际问题与一元一次方程-配套调配分配问题
七年级实际问题与一元一次方程-配套调配分配问题【配套问题】1.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配成一套,问应如何安排劳力使生产的产品刚好成套,2、服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装,现有66名工人生产,问应如何分配才能使生产出的上衣和裤子刚好配套 3、某工厂104名工人分别生产甲、乙两种产品,已知每个工人可生产甲种产品8个或乙种产品12个,3个甲种产品与2个乙种产品配成一套,问应分派多少工人生产甲种产品,多少工人生产乙种产品才能使生产出的产品配套,4、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数,5、用白铁皮做罐头盒,每张铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整数套罐头盒, 6、一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂。
7、生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多,8、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套,共能生产多少套,、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或9每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
10、用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶43个,一个瓶身与两个瓶底配成43个,一个瓶身与两个瓶底配成一套,现有150张铝片,用多少张制瓶身多少张制瓶底可以正好制成整套的饮料瓶11、车间有26名工人生产零件甲和零件乙,每人每天平均生产零件甲120个或零件乙180个,为使零件甲和零件乙按3:2配套,则需分配多少工人生产零件甲和零件乙, 12、某机关有三个部门,A部门有公务员84人,B部门有56人,c 部门有60人,如果每个部门按相同的比例裁减人员,使这个机关留下150人,求c 部门留下多少人, 13、有41人参加劳动,有30根扁担,要安排多少人抬,多少人挑,才可使扁担和人数相配不多不少,14、一批宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住,那么这批宿舍有多少间,人有多少个,15、零陵制衣厂某车间计划用10天时间加工一批出口童装和成人装共360件。
人教版数学七年级上册3.4.1实际问题与一元一次方程——配套问题教案
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯3.4实际问题与一元一次方程一、学习目标:会用一元一次方程解决两类问题:1、配套问题;2、工程问题。
二、预习检查:1、1只小鸡2只脚,1只小兔4只脚,那么x小鸡只脚,y只小兔只脚。
2、工程问题中的等量关系:工作总量= 。
3、一件工作,甲单独做x小时完成,乙单独做y小时完成,那么甲、乙的工作效率分别为、;甲、乙合作m天可以完成的工作量为。
三、新课教学:例 1 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?解:设分配x名工人生产螺钉,则(22-x)名工人生产螺母,根据题意,得:2×1200x=2000(22-x)解得x=10,22-x=12.答:所以为了使每天生产的产品刚好配套,应安排10人生产螺钉,12人生产螺母.例2:整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:我们把总工作量看作 1 , 完成下列填空(1)1个人做1小时完成的工作量为(2)由x 人先做4小时,完成的工作量为(3)再增加2人和前一部分人一起做8小时,完成的工作量为(4)题中的相等关系是解:设应先安排x 人工作4小时,依题意得48(2)14040x x ++=去分母,得 4x+8(x+2)=40去括号,得 4x+8x+16=40移项,得 4x+8x=40-16合并,得 12x=24系数化为1,得 x=2答:应先安排2名工人工作4小时.四、小组合作:小组合作1:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?小组合作2:抗洪抢险中修补一段大堤,甲队单独施工12天完成,乙队单独施工8天完成;现在由甲队先工作两天,剩下的由两队合作完成,还需几天才能完成?五、当堂检测:检测1:用铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底刚好配套?检测2:一件工作,甲单独做需50天才能完成,乙独做需要45天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【配套问题】
例:某车间22 名工人生产螺钉和螺母,每人每天平均生产螺钉1200 个或螺母2000 个,一个螺钉要配两
个螺母。
为了使每天生产的产品刚好配套,应该配多少名工人生产螺钉,多少名工人生产螺母?
练习 1. 某车间有工人85 人,平均每人每天可加工大齿轮16 个或小齿轮10 人,又知二个大齿轮和三个小齿轮配成一套,问应如何安排劳力使生产的产品刚好成套?
2、服装厂的工人每人每天可以生产 4 件上衣或7 条裤子,一件上衣和一条裤子为一套服装,现有66 名工
人生产,问应如何分配才能使生产出的上衣和裤子刚好配套
3、某工厂104 名工人分别生产甲、乙两种产品,已知每个工人可生产甲种产品8 个或乙种产品12 个,3 个甲种产品与 2 个乙种产品配成一套,问应分派多少工人生产甲种产品,多少工人生产乙种产品才能使生产出的产品配套?
4、某队有55 人,每人每天平均挖土2.5 方或运土3 方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?
5、用白铁皮做罐头盒,每张铁皮可制盒身16 个或盒底43 个,一个盒身与两个盒底配成一套罐头盒,现
有150 张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整数套罐头盒?
6、一张方桌与四张椅子配成一套,如果 5 个工人每天能制11 张椅子,每4 个工人每天能制22 张方桌,
现有工人66 人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂。
提高1、生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90 件;进行第二道工序时,
每人每天可完成120 件。
今有14 名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?
2、红光服装厂要生产某种学生服一批,已知每 3 米长的布料可做上衣2 件或裤子3 条,一件上衣和一条
裤子为一套,计划用600 米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?
3、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2 人每小时可抬泥土14 袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
【调配问题】
例 1 :甲队原有工人68 人,乙队原有工人44 人,现又有42 名工人调入这两队,为了使乙队人数是甲队人数的
3/4 ,应调往甲乙两队各多少人?
2、甲车队有50 辆汽车,乙车队有41 辆汽车,如果要使乙队汽车数比甲队汽车数的2 倍还多1 辆,应从甲队调多少辆到乙车队?
练习1、某厂甲车间有工人32 人,乙车间有62人,现在从厂外招聘新工人98 名分配到两个车间,问应该如何分配才能使乙车间的人数是甲车间人数的 3 倍?
2、甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?
4、某个小组中的男女生共15 人,若女生减少3人则男生的人数是女生的人数的2 倍,问这个小组男女生的人数各为多少?
5、甲仓库有煤200 吨,乙仓库有煤80 吨,如果甲仓库每天运出15 吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等?
6、甲、乙两池共存水40 吨,甲池注水4 吨,乙池出水8 吨后,两池水恰好相等,求甲、乙两池原有多少吨水?
提高1、甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
2
2、某班女生人数比男生的2还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数
3
的7,那问男、女生各多少人?
9
3、有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊就是你的2倍。
”乙回答说:“最好还是把你的羊给我1只,我们的羊就一样多了” ,两个牧童各有多少只羊?
4、有一些相同的房间需要粉刷墙面。
一天3名一级技工去粉刷同样时间内5名二级技工粉刷了10个房间之外,还多刷了另外的天多粉刷10m i墙面,求每个房间需要粉刷的墙面面积。
8个房间,结果其中有50卅未来得及刷; 40m i墙面。
每名一级技工比二级技工一
【分配问题】
例:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。
则这个班有多少学生?
练习1、种一批树苗,如果每人种
人种树?
10棵,则剩6棵树苗未种;如果每人种12棵,则缺6棵树苗。
有多少
2、学校分配学生住宿,如果每室住
个数和学生的人数。
8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的
3、小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
4、学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有
一辆车还可以坐12人,问共有多少学生,多少汽车?
5、学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的5,丙班分到
7
的比乙班少20本,问共有多少练习本?
6、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.原有多少只鸽子和多少个鸽笼?
提高1、某校七年级举行数学竞赛,80人参加,总平均成绩63分,及格学生平均成绩为72分,不及格学
生平均48分,问及格学生有多少人?
2、某工人按原计划每天生产20个零件,到预定期限还有100个零件不能完成,若提高工作效率百分之
十五,到期将超额完成50个,问预定期限是多少天?
3、景山中学组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客
车,则可少租1辆,并且剩余15个座位.
(1) 求参加春游的人数?
(2) 已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算?。