质粒提取和酶切分析

合集下载

质粒DNA的提取与酶切鉴定

质粒DNA的提取与酶切鉴定

4、加入200L新配制的溶液II, 盖紧管口,快速颠倒离心管, 以混匀 内容物,冰上放置3-5min;
溶液II中的NaOH与SDS可裂解细胞,使DNA变性以及SDS使蛋白变 性并形成交联的网状结构
5、加入150l溶液III, 加盖后颠倒6-7次混匀,冰上放置2~3min; 溶液III为低pH的醋酸钾缓冲液,中和NaOH,以便使部分变性的闭环
试剂: LB培养基 氨苄青霉素贮存液:浓度50-100mg/mL; 溶液I: 50mmol/L葡萄糖,10mmol/L EDTA (pH8.0),
25mmol/L Tris-HCl (pH8.0); 溶液II: 0.2mol/L NaOH, 1%SDS (现配现用); 溶液III: 乙酸钾溶液(3M, pH=4.8)( 60mL的5mol/L KAc, 11.5ml
冰醋酸,28.5mL H2O); RNase A: 10mg/ml; TE缓冲液: 10mmol/L,Tris-HCl, 1mmol/L,EDTA,pH8.0;
5×TBE缓冲液:0.45mol/L Tris-硼酸,0.01 mol/L EDTA, pH 8.0; 10×Loading buffer:1% SDS, 0.05%溴酚兰,50%的甘油; 无水乙醇;70%乙醇; 标准分子量片段; 核酸内切酶 EcoR I (TaKaRa); EcoR I酶解缓冲液(10× buffer H); 琼脂糖; 溴化乙啶(EB)染色液(10mg/ml)。
质粒复性,而细菌染色体DNA不能正确复性
6、12000 g离心6 min,将上清移入另一干净的Ep管中; 7、加2倍上清体积(约1mL)的无水乙醇, 振荡混匀,室温放 置2min. 8、12000g离心10min,弃上清液,再用70%的乙醇洗涤 一次, 12000g离心1min,离心管倒置于吸水纸上扣干, 然后在中空浓缩系统上干燥质粒; 9、加入40L含50 g/mL RNase A的灭菌蒸馏水或TE 缓 冲液溶解提取物,室温放置直到质粒完全溶解(约8min), 存于-20℃或直接用于酶切。

质粒提取及双酶切鉴定内切酶内切重组质粒

质粒提取及双酶切鉴定内切酶内切重组质粒

纯化质粒
通过吸附、洗涤等步骤进一步 纯化质粒DNA。
02 双酶切鉴定
双酶切鉴定的原理
酶切原理
双酶切鉴定基于限制性内切酶对DNA的特异性切割,通过两种不同的限制性内 切酶对质粒进行切割,产生特定的DNA片段。
产物分析
通过电泳分析切割后的DNA片段,判断是否出现预期的酶切产物,从而确定重 组质粒是否正确。
酶切效率计算
通过比较酶切前后的质粒浓度,可以计算出酶切效率。
重组质粒鉴定
通过对比酶切后的质粒片段和预期的重组质粒片段, 可以初步判断重组质粒是否被成功构建。
序列分析
对重组质粒进行序列分析,可以进一步确认重组质粒 的准确性。
实验结果分析注意事项
确保电泳结果的可信度
01
在分析电泳结果时,应排除假阳性或假阴性的可能,确保结果
筛选与鉴定
通过特定的筛选和鉴定方法,如菌落PCR、酶切分析和电泳检测 等,对重组质粒进行筛选和鉴定。
内切酶内切重组质粒的步骤
酶切反应
将重组质粒与适量的内切酶混合,进行酶切 反应。
胶回收
通过凝胶电泳分离酶切产物,并使用胶回收 试剂盒回收目的片段。
连接反应
将两个不同的DNA片段进行连接,形成新的 重组分子。
质粒提取及双酶切鉴定 内切酶内切重组质粒
目录
CONTENTS
• 质粒提取 • 双酶切鉴定 • 内切酶内切重组质粒 • 实验结果分析
01 质粒提取
质粒提取方法
01
02
03
碱裂解法
利用高pH值环境下质粒 DNA与细胞基因组DNA 的变性差异,将二者分离。
煮沸法
通过加热使细胞破裂,释 放质粒DNA,再通过离心 将质粒DNA与其他细胞成 分分离。

质粒提取定量与酶切鉴定

质粒提取定量与酶切鉴定
质粒提取定量与酶切鉴定
三、质粒DNA的酶切分析
• 质粒 DNA: ~3 kb
载体: pMD18-T 2.7kb 基因: CHD5 1.4 kb
质粒提取定量与酶切鉴定
限制性内切酶
• 限制酶特异性地结合于一段被称为限制酶识别序列的 特殊DNA序列之内或其附近的特异位点上,并在此切 割双链DNA。
• 分子克隆中常用的为II型限制酶,其识别位点长度为 4~6个核苷酸的反向重复序列。
质粒提取定量与酶切鉴定
琼脂糖凝胶电泳上样
-
1234
+
每组上2个样品
1:DNA Marker( 5 l ) 2:提取的质粒DNA ( 5 l ) 3:质粒DNA酶切产物 ( 10 l )
质粒提取定量与酶切鉴定
DNA Marker (ladder)
质粒提取定量与酶切鉴定
组成
Loading Buffer 上样缓冲液
实验流程图
一、碱裂解法提取质粒
二、质粒定量
最后做
三、质粒酶切
四、酶切产物的琼脂糖电泳检测
质粒提取定量与酶切鉴定
实验目的
• 掌握碱裂解法提取质粒的方法 • 掌握紫外吸收测定DNA的方法 • 了解质粒酶切鉴定原理 • 掌握琼脂糖凝胶电泳技术
质粒提取定量与酶切鉴定
实验材料
• 大肠杆菌DH5a菌株 • pMD18-T载体 • 易瑞质粒小量提取试剂盒
• EDTA • 甘油 ……………增大溶液密度 • 溴酚蓝…………指示剂 • 二甲苯胺蓝……指示剂
0.5TBE, 0.5-1.4%浓度的胶中,
迁移率
溴酚蓝=300bp
二甲苯胺蓝=4kbp 质粒提取定量与酶切鉴定
➢染色
✓溴化乙锭(Ethidium Bromide,EB) :3,8-二 氨基-5-乙基-6苯基菲啶溴盐,能插入DNA 分子碱基对之间并与之结合,在紫外光照射 下呈现红橙荧光,

基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)

基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)

(2) 挑选单菌落,在无菌条件下放入5 ml LB液体培养基中 (100 g /ml氨苄青霉素),200-300 rpm,37℃过夜培养。 (3) 取1.5 ml菌液(其余菌液加入25%的灭菌甘油,放入对 应编号的1.5 ml离心管中,-70℃ 下作菌种保存),5000 g离心5 min。 (4) 弃上清夜,加入100 l预冷的溶液I,悬浮沉淀,室温 放 置5 min。 (5) 加入200 l 新鲜的溶液II,边加边震荡,但不能剧烈, 冰上放置5 min。 (6) 加入75 l溶液III,震荡混匀,冰上放置5 min。 (7) 12000 g 离心5 min。 (8) 取上清液,加入两倍体积的预冷无水乙醇,12000 g离 心10 min。 (9) 用1 ml 70%的乙醇洗涤沉淀,空气中放置3-5 min。 (10) 用30-50 l TE溶解,用紫外分光光度计进行DNA含量 测定,EB琼脂糖(1.4%)凝胶电泳分析。
实验六 质粒DNA的提取(碱裂解法)及酶分析
(1) 溶液配制: 溶液 I 50 mmol/L 葡萄糖 25 mmol/L Tris-Cl (pH 8.0) 10 mmol/L EDTA (pH 8.0) 溶液 II 0.2 mol/L NaOH 0.5% SDS 溶液 III 3 mol/L KAc (用冰醋酸调 pH值至5.0)
质粒DNA的酶切分析参照相关酶的说明书 操作步骤进行

质粒DNA提取与酶切方法的比较研究

质粒DNA提取与酶切方法的比较研究

结论总的来说,各种质粒DNA提取方法和酶切方法都有其优缺点。在选择方 法时,应根据具体的研究需求和实验条件进行选择。常规提取方法虽然操作繁琐, 但成本低廉且产量高;快速提取方法和生物素法则具有快速、简便和高纯度的优 点,但成本较高。对于酶切方法,单一酶切操作简便但适用范围有限;双酶切和 全酶切则能实现复杂切割,但操作较复杂且成本较高。
(2)双酶切
双酶切是使用两种不同的限制性内切核酸酶对DNA进行切割。该方法可实现 对复杂基因组或多个位点的精确切割,适用范围更广。但是,双酶切操作相对复 杂,需要更多时间进行优化和调整。
(3)全酶切
全酶切是使用一种或多种限制性内切核酸酶以及修饰酶等对DNA进行切割。 该方法可根据实验需求对DNA进行的优点是高度灵活,适用范围广泛。然而,全酶切需要更多的实验设计和操 作技巧,且成本较高。
比较研究
1、操作难易程度及成本
在操作难易程度方面,快速提取方法和生物素法相对简单,而常规提取方法 较为繁琐。在成本方面,生物素法和快速提取方法所需试剂和设备成本较高,而 常规提取方法成本较低。
2、纯度和产量
在纯度方面,生物素法和快速提取方法纯度较高,而常规提取方法纯度相对 较低。在产量方面,常规提取方法和快速提取方法产量较高,而生物素法产量较 低。
质粒DNA提取方法
1、常规提取方法
常规提取方法是一种经典的分步提取方法,包括裂解细胞、分离质粒DNA、 洗涤和纯化等步骤。该方法的主要优点是适用范围广,可从各种细胞中提取质粒 DNA。但是,该方法操作繁琐,提取周期较长,需要使用大量试剂和设备。
2、快速提取方法
快速提取方法是通过优化常规提取方法中的某些步骤,实现快速、简单的质 粒DNA提取。该方法主要优点是操作简便、快速,可减少试剂和设备的使用。但 快速提取方法可能会牺牲一些纯度或产量。

质粒的提取酶切 实验报告

质粒的提取酶切 实验报告

实验一质粒的提取酶切实验目的掌握质粒小量快速提取法。

用琼脂糖凝胶电泳法鉴定其纯度。

实验原理质粒是一种染色体外的稳定遗传因子。

大小在1~200kb之间,具有双链闭合环状结构的DNA分子。

主要发现于细菌、放线菌和真菌细胞中。

质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。

他可独立游离在细胞质内,也可整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能却赋予宿主细胞的某些表型。

采用溶菌酶可破坏菌体细胞壁,十二烷基磺酸钠(SDS)可使细胞壁裂解,经溶菌酶和阴离子去污剂(SDS)处理后,细菌DNA缠绕附着在细胞壁碎片上,离心时易被沉淀出来,而质粒DNA则留在上清液中。

用酒精沉淀洗涤,可得到质粒DNA。

在细胞内,共价闭环DNA(cccDNA)常以超螺旋形式存在。

若两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,这种松弛型的分子叫作开环DNA(ocDNA)。

在电泳时,同一质粒如以cccDNA形式存在,它比其开环和线状DNA的泳动速度都快,因此在本实验中,质粒DNA在电泳凝胶中呈现3条区带。

限制性内切酶是一种工具酶,这类酶的特点是具有能够识别双链DNA分子上的特异核苷酸顺序的能力,能在这个特异性核苷酸序列内,切断DNA的双链,形成一定长度和顺序DNA片段。

EcoR I和Bgl II的识别序列和切口是: EcoR I:G↓AATTCBgl II: A↓GATCTG,A等核苷酸表示酶的识别序列,箭头表示酶切口。

限制性内切酶对环状质粒DNA有多少切口,就能产生多少酶切片段,因此鉴定酶切后的片段在电泳凝胶的区带数,就可以推断酶切口的数目,从片段的迁移率可以大致判断酶切片段大小的差别。

用已知分子量的线状DNA为对照,通过电泳迁移率的比较,就可以粗略推测分子形状相同的未知DNA的分子量。

实验步骤(一)质粒的提取ɑ的大肠杆菌接种于5ml含100μg/ml氨苄青(二)1.培养细菌将带有质粒DH5霉素的1×LB中,37℃培养过夜。

质粒的提取及酶切实验报告

质粒的提取及酶切实验报告

质粒的提取及酶切实验报告
一、实验目标
本实验旨在提取低分子量DNA、质粒,通过酶切实验检测质粒DNA片段长度,并处理实验结果。

二、实验原理
1、质粒DNA提取:使用特定的提取试剂,先提取溶菌酶凝胶中的质粒DNA;
2、质粒DNA酶切:采用酶切的方法,对质粒DNA进行切割,形成小片段;
3、质粒DNA测序:采用测序仪对质粒DNA片段进行测序,从而确定其长度。

三、实验材料
1、提取试剂:主要由蛋白酶、乙腈、缓冲液、EDTA等混合而成;
2、PCR反应液:主要由dNTP、聚合酶、反应缓冲液等组成;
3、酶:主要由DNA内切酶和DNA外切酶组成;
4、测序仪:用于测序质粒DNA的片段长度;
四、实验步骤
1、提取质粒DNA:将实验样品放入提取试剂中,加热30分钟,然后用混合物洗涤一次,最后离心得到清澈的液体,含有提取的质粒DNA;
2、进行PCR反应:将提取的质粒DNA作为反应液™添加到PCR管中,在适当温度下反应10分钟;
3、酶切:将PCR管中的反应液加入内切酶和外切酶中,在规定温度下酶切1小时;
4、离心质粒DNA片段:将酶切后的反应液离心,以得到质粒DNA片段;
5、进行测序:将质粒DNA片段放置于测序仪中,逐一测序后得到结果;
五、实验结果及分析
实验结果:
质粒DNA片段长度:
0.31kbp、0.48kbp、0.51kbp、0.58kbp、0.68kbp等。

质粒DNA的提取酶切及检测

质粒DNA的提取酶切及检测

加入150uL溶液III(轻轻混匀),冰上静置5min质粒DNA复性
12000rpm,离心5min,取上清记录体积到一新管
上清加等体积的酚:氯仿:异戊醇(振荡混匀)
12000rpm,离心15min,取上清记录体积到一新管
(可省略)上清加等体积的氯仿:异戊醇(振荡混匀)
12000rpm,离心2min,取上清记录体积到一新管
醋酸中和NaOH,因为长时间的碱性条 件会打断DNA。
▪ 平衡酚:氯仿(1:1)
作用:酚使蛋白质的变性,但是水饱和酚 的比重略比水重,不利于含质粒的水相的 回收;但加入氯仿后可以增加比重,使得 酚/氯仿始终在下层,方便水相的回收。
▪ 乙醇:除去DNA水化层,使DNA沉淀
▪ TE缓冲液:溶解DNA
Relaxed circle Linearized form Super-coiled form
四、实验结果与讨论
根据观察结果,绘图。 分析自提质粒的情况以及酶切情况。
相关知识
基因工程又称DNA重组技术 外源基因通过体外重组后,导入受体细胞内, 使这个基因能够在受体细胞内复制、转录、翻 译、表达的操作
包括基因的分离、重组、转移、基因在受体细 胞内的保持、转录、翻译表达等全过程
基因工程四要素:目的基因、工具酶、载体、 受体细胞
常用到的工具酶
限制性内切酶 连接酶 聚合酶 逆转录酶 DNA酶和RNA酶
平头末端: II型酶切割方式的另一种是在同一位置 上切割双链,产生平头末端。例如EcoRV 的识别位置是:
5’…… GAT’|ATC …… 3’
3’…… CTA’|TAG …… 5’
切割后形成5’…… GAT和ATC …… 3’、 3’…… CTA和TAG …… 5’。这种末端同 样可以通过DNA连接酶连接起来。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学ppt
16
如Xba1和Nhe1:
5‘…T|CTAGA…3’ 5‘…G|CTAGC…3’
3‘…AGATC|T…5’ 3‘…CGATC|G…5’
5‘…T CTAGA…3’ CTAGC…3’
3‘…AGATC T…5’ G…5’
5‘…G 3‘…CGATC
5‘…TCTAGC…3’ 3‘…AGATCG…5’
杆菌的EcoR I和EcoR II,以及来源于流感嗜血杆菌
(Heamophilus influenzae)的Hind II和Hind III。 这些酶可在特定位点切开DNA,产生可体外连接的基 因片段。研究者很快发现内切酶是研究基因组成、功 能及表达非常有用的工具。
医学ppt
8
1) 寄主控制的限制与修饰现象
医学ppt
19
4) 酶切底物DNA应具备一定的纯度,其溶液中不能含 有迹量酚、氯仿、乙醇,大于10mM的EDTA,SDS以 及过量的盐离子浓度,否则会不同程度地影响限 制酶的活性。
5’…… G|AATTC ……3’
3’…… CTTAA|G …… 5’
在双链上交错切割的位置切割后生成
5’……G
AATTC……3’
3’……CTTAA
G……5’
各有一个单链末端,二条单链是互补的,其断裂的磷 酸二酯键以及氢键可通过DNA连接酶的作用而“粘合”。
医学ppt
13
平头末端:
II型酶切割方式的另一种是在同一 位置上切割双链,产生平头末端。例如
医学ppt
5
医学ppt
6
2. 相关基础知识
限制性核酸内切酶:是一类能识别双链DNA分 子特异性核酸序列的DNA水解酶。它是基因工程中 用于体外剪切基因片段的重要工具酶。
医学ppt
7
上世纪七十年代,当人们在对噬菌体的宿主特异 性的限制-修饰现象进行研究时,首次发现了限制性 内切酶。首批被发现的限制性内切酶包括来源于大肠
❖ 如果一种特殊的寄主菌株,具有几个不同 的限制与修饰酶,则以罗马数字表示,如 HindⅠ, HindⅡ,HindⅢ等。
医学ppt
18
3. 酶切反应的设计一般应注意问题:
1) 大多数限制酶贮存在50%甘油溶液中,以避免在20℃条件下结冰。当最终反应液中甘油浓度大于 12%时,某些限制酶的识别特异性降低,从而抑 制酶活性。因此加入反应的酶体积不超过反应总 体积的10%。
同裂酶差别只在于当识别顺序中有 甲基化的核苷酸时,一种限制性内切酶
可以切割,另一种则不能。例如HpaⅡ和 MspⅠ的识别顺序都是
5’……G|CG G……3’ 3’……G GC|G……5’
医学ppt
15
同尾酶:
有时两种酶切割序列不完全相同,但却 能产生相同的粘性末端,这类酶被称为同尾 酶
同尾酶的切割产物可以通过DNA连接酶将 这类末端连接起来,但原来的酶切位点将被 破坏。
构或克隆基因。这类酶如EcoB、EcoK等。
第三类(III型)限制性内切酶也有专一的识 别顺序,在识别顺序旁边几个核苷酸对的固定位 置上切割双链。但这几个核苷酸对也不是特异性 的。因此,这种限制性内切酶切割后产生的一定 长度DNA片段,具有各种单链末端。因此也不能应 用于基因克隆。
医学ppt
11
第二类(II型)限制性内切酶能识别专一的核苷 酸顺序,并在该顺序内的固定位置上切割双链。由 于这类限制性内切酶的识别和切割的核苷酸都是专 一的。因此,这种限制性内切酶是DNA重组技术中 最常用的工具酶之一。
这种酶识别的专一核苷酸顺序最常见的是4个 或6个核苷酸,少数也有识别5个核苷酸以及7个、8 个、9个、10个和11个核苷酸的。这种酶的切割可 以有两种方式:
医学ppt
12
粘性末端;是交错切割,结果形成两条单链 末端,这种末端的核苷酸顺序是互补的,可形成氢 键,所以称为粘性末端。
如EcoRI的识别顺序为:
质粒提取和酶切分析
中心实验室
医学ppt
1
质粒DNA的限制性内切酶酶切分析
1. 实验目的 学习和掌握限制性内切酶的特性、
掌握对重组质粒进行限制性内切酶酶 切的原理和方法 ,并理解限制性内切 酶是DNA重组技术的关键工具。
医学ppt
2
医学ppt
3
医学ppt
4
Hale Waihona Puke 感受态细胞转化效率=转化子总数 /感受态细胞总数
EcoRV 的识别位置是:
5’…… GAT|ATC …… 3’
3’…… CTA|TAG …… 5’
切割后形成
5’…… GAT ATC …… 3’
3’…… CTA TAG …… 5’
这种末端同样可以通过DNA连接酶连
接起来。
医学ppt
14
3) 同裂酶和同尾酶:
异源同工酶:又称同裂酶有时两
种限制性内切酶的识别核苷酸顺序和切 割位置都相同,这些有相同切点的酶称 为同裂酶(或同切酶)。
2) 反应混合物中基因组DNA底物的浓度不宜太大,小 体积中过高浓度的基因组DNA会形成粘性DNA溶液, 从而抑制酶的扩散,并降低酶活性。建议酶切反 应 的 基 因 组 DNA 浓 度 为 0.1-0.4ug/ul 。 同 时 RNA 应 该尽量消化去除。
3) 当要用两种或两种以上限制酶切割DNA时,必须选 择好通用缓冲液,则两种酶才可同时切割。
医学ppt
9
2)限制性核酸内切酶的类型及特性
按限制酶的亚基组成和切断核酸情况 的不同,分为三类:
Ⅰ型 Ⅱ型* Ⅲ型
医学ppt
10
第一类(I型)限制性内切酶能识别专一 的核苷酸顺序,它们在识别位点很远的地方任 意切割DNA链,但是切割的核苷酸顺序没有专一 性,是随机的。这类限制性内切酶在DNA重组技 术或基因工程中用处不大,无法用于分析DNA结
限制与修饰系统是细菌细胞的一种防卫手段。各 种细菌都能合成一种或几种能够切割DNA双链的核酸内 切酶,它们以此来限制外源DNA存在于自身细胞内,但 合成这种酶的细胞自身的DNA不受影响,因为这种细胞 还合成了一种修饰酶,对自身的DNA进行了修饰,限制 性酶对修饰过的DNA不能起作用。这种现象被称为寄主 控制的限制与修饰现象。
这些粘性末端连医学接ppt后,Xba1和Nhe1酶将 17
4) 限制性核酸内切酶的命名法
❖ 用属名的头一个字母和种名的头两个字母 表示寄主菌的物种名称,如E. coli 用Eco表 示,所以用斜体字。
❖ 用一个字母代表菌株或型,如流感嗜血菌 (Heamophilus influenzae)Rd菌株用d,即Hind。
相关文档
最新文档