一元一次方程讨论1

合集下载

用一元一次方程解决问题(最新编写)

用一元一次方程解决问题(最新编写)
(2) 客车行程 -货车行程 =两车长度之和 解(1)设货车每秒行 x 米,则客车每秒行 (x+4)米
10(x+4)+10x=250+150 x=18 x+4=22
例 4、甲车队有 50 辆汽车,乙车队有 41 辆汽车,如果要使乙车队的汽车辆数比甲车队的辆数的 2 倍还多 1 辆,应从甲车队调多少辆车到乙车队 解:设应从甲队调 x 辆车到乙车队,这时乙车辆数是甲车辆数的 2 倍还多 1 辆。
41+x=2(50-x)+1 x=20 答:应从甲车队调 20 辆车到乙车队。
20+0.4x=0.6x x=100 答:当通话时间是 100 分钟时,两种标准话费相等。若通话超过 100 分钟,应选择 A 种标准,若 不足 100 分钟,应选择 B 种标准。 思考题:
一只箱子中装若干蜘蛛与蟋蟀,每只蜘蛛 8 条腿,每只蜘蛛 6 条腿。已知箱内的蜘蛛与蟋蟀共 有 46 条腿,问其中蜘蛛和蟋蟀各有多少只? 三、课堂小结 这节课你学会了什么? 四、课堂练习 练习纸 五、课堂作业 作业纸 六、课堂反馈
等于 2000,2004?若不可能,试说明理由;若有可能, 请求出该正方形框出的 16 个数中的最小数和最大数。
例 4.口答(课件出示) A.六一班右几个在一月里连续三个周六都去敬老院做好事, 第一个周六是 8 号,第二次去是几号? 第三次呢? B.上个月小勤连续 5 天都为妈妈洗脚。他只记得最后一天是 19 号(星期六)。那么这 5 天中第一 天是星期几?这 5 天的日期和多少? C.李校长外出开会一周,这一周各天的日期之和是 63,这一周是哪几号? D.今年的 5 月 1 号是周日,五月份还有哪几天号是周日。 思考题 : 4、制作日历(开放性问题)。 这个月有 31 天,但有 5 个星期日,而且 1 号不是星期日。

一元一次方程教案(通用11篇)

一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。

一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。

教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。

想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。

五、课堂作业。

一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

第五章一元一次方程回顾与思考(教案)

第五章一元一次方程回顾与思考(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是指只含有一个未知数,且未知数的最高次数为一的方程。它是解决实际问题时常用的一种数学工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何从实际问题中抽象出一元一次方程,并利用方程帮助我们解决问题。
7.总结:一元一次方程的解法与关键步骤回顾
8.课教材相关习题,巩固所学知识
本章节内容将带领学生回顾一元一次方程的知识点,并通过练习、讨论和总结,加深学生对一元一次方程的理解和应用能力。同时,关注学生课堂反馈,有针对性地进行教学调整,确保教学效果。
2.教学难点
-难点一:理解方程解的概念,即方程左右两边相等的未知数的值。
-学生可能难以理解为何某个数是方程的解,需要通过具体例子的解释和图示帮助学生形象理解。
-难点二:移项时符号的变化,学生容易在此环节出现错误。
-教师需要通过反复示范和练习,强调移项时符号变化的规则,如“从左边移到右边要变号,从右边移到左边也要变号”。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《第五章一元一次方程回顾与思考》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的等量关系问题?”(如购物找零、分配任务等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程的奥秘。

一元一次方程的应用

一元一次方程的应用

一元一次方程的应用一元一次方程是指只有一个未知数,并且该未知数的指数为1的方程。

一元一次方程的一般形式为ax + b = 0,其中 a 和 b 为已知常数,x 为未知数。

一元一次方程的应用非常广泛,可以在各个领域中解决实际问题。

本文将以数学、物理和经济三个方面来讨论一元一次方程的具体应用。

一、数学领域1. 解题应用:一元一次方程的解可以代表问题的答案。

通过列方程、整理方程、求解方程的过程,可以得到问题的解决方案。

2. 几何应用:一元一次方程可以用于求解图形的坐标、长度、面积等问题。

例如,求两点之间的距离、直线与坐标轴的交点等都可以转化为一元一次方程的问题。

3. 概率应用:一元一次方程可以用于概率计算中。

例如,已知事件发生的概率,求解该事件发生的次数等,可以通过建立一元一次方程来解决。

二、物理领域1. 力学应用:一元一次方程可以用于解决力学问题。

例如,已知物体的质量和加速度,求解力的大小;已知物体的速度和时间,求解物体的位移等。

2. 热学应用:一元一次方程可以用于热学问题的计算。

例如,已知物体的温度和传热系数,求解物体的传热速率;已知物体的热容和温度变化,求解物体的热量等。

三、经济领域1. 成本应用:一元一次方程可以用于经济成本的计算。

例如,已知某商品的固定成本和单位产品的生产成本,求解生产一定数量商品的总成本。

2. 收益应用:一元一次方程可以用于经济收益的计算。

例如,已知某汽车公司的定价策略和销售数量,求解该公司的总收益。

3. 投资应用:一元一次方程可以用于投资回报的计算。

例如,已知某项投资的投资额和回报率,求解投资多少年可以收回成本。

综上所述,一元一次方程的应用十分广泛,不仅可以用于数学领域的解题,还可以用于物理和经济等实际问题的求解。

掌握一元一次方程的应用方法,将有助于我们解决各种实际问题,并提升我们的数学思维能力。

一元一次方程教案优秀

一元一次方程教案优秀

一元一次方程教案优秀一元一次方程教案优秀1一、教材分析(一)教材的地位和作用本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。

(二)教材的重难点本节的重点是探索并掌握列一元一次方程解决实际问题的方法而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。

二、教学目标分析(一)知识技能目标1目标内容(1)结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性。

(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识。

2目标分析(1)本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径。

(2)七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力。

(二)过程目标1目标内容在活动中感受方程思想在数学中的作用,进一步增强应用意识。

2目标分析利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决。

(三)情感目标1目标内容(1)在探索中获得成功的.体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心。

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。

)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。

学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。

方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。

这时,教士不要急于求成,而要引导学生反思自己的解题过程。

必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。

师强调:移项法则。

七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

一元一次方程组的解的唯一性

一元一次方程组的解的唯一性

一元一次方程组的解的唯一性一元一次方程组是指由一元一次方程组成的方程组。

一元一次方程的一般形式为ax + b = 0,其中a和b为已知数,x为未知数。

一元一次方程组的一般形式为:a₁x + b₁ = 0a₂x + b₂ = 0...aₙx + bₙ = 0解的唯一性指的是方程组是否有唯一解。

在一元一次方程组中,如果方程组的系数满足特定条件,那么方程组的解一定是唯一的。

下面我们来讨论一元一次方程组的解的唯一性。

一、方程组的解存在性对于一元一次方程组,为了保证解的存在性,需要满足以下条件:1. 方程组的个数与未知数的个数相等,即方程的个数n等于未知数x的个数。

2. 方程组的系数不全为零,即方程组中至少存在一个方程的系数不为零。

当满足上述条件时,一元一次方程组一定有解。

二、方程组的解的唯一性在保证方程组有解的基础上,我们来讨论方程组的解的唯一性。

考虑一个二元一次方程组:a₁x + b₁ = 0a₂x + b₂ = 0如果a₁/a₂ ≠ b₁/b₂,即两个方程的斜率不相等,那么方程组的解是唯一的。

我们可以通过判断两个方程所表示的直线是否相交来确定解的唯一性。

如果两条直线相交于一个点,那么方程组有唯一解。

如果两条直线重合,那么方程组有无穷解。

如果两条直线平行,那么方程组无解。

对于n元一次方程组,我们可以使用高斯消元法或矩阵运算等方法来求解。

如果方程组的系数矩阵满秩,即矩阵的秩等于未知数的个数n,那么方程组的解是唯一的。

如果方程组的系数矩阵秩小于n,那么方程组有无穷多解或者无解。

三、应用举例举例来说明一元一次方程组解的唯一性。

例1:求解方程组2x + 3 = 04x + 6 = 0首先将方程组进行简化,得到:x + 3/2 = 02x + 3 = 0通过变量消去的方法,我们可以得到x的值为-3/2。

因此,方程组的解是唯一的。

例2:求解方程组3x + 5 = 06x + 10 = 0对方程组进行简化,得到:x + 5/3 = 02x + 10/3 = 0通过变量消去的方法,我们可以发现两个方程的系数比不相等,即斜率不相等。

一元一次方程解题步骤详解

一元一次方程解题步骤详解

一元一次方程的应用(一)1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

一、目标导入前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例题例1有一列数,按一定规律排列成1,—3, 9,—27, 81,—243,…,其中某三个相邻数的和是-1701,这三个数各是多少分析:从符号与绝对值两方面观察,这列数有什么规律符号正负相间;后者的绝对值是前者绝对值的3倍。

即后一个数是前一个数的-3倍。

如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗后面两数分别是-3x , 9x。

问题中的相等关系是什么三个相邻数的和=-1701。

由此可得方程x-3 x+9x=-1701解之,得x=-243。

所以这三个数是-243 , 729, -218。

注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。

这一点要注意学习。

例2(1)一个月内在本地通话200分和350分,按方式一需交费多少元按方式二呢(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗分析:(1)按方式一在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:30+200X 0.3=90元;通话350分钟需要交费:30+350X 0.3=135元.按方式二在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:200X 0.4=80元;通话350分钟需要交费:350X 0.4=140元.(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.问题中的等量关系是什么?方式一的收费=方式二的收费.由此可列方程30+0.3t=0.4t解之,得t =300 所以,当一个月内通话300分钟时, 两种计费方式的收费一样多.引申: 你知道怎样选择计费方式更省钱吗?当t=400 时,30+0.3t=30+0.3 X 400=150元;0.4t=0.4 X 400=160 元.当时间大于300 分钟时, 方式一更省钱.三、一元一次方程解实际问题的基本过程将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这节课你学到了什么?
¨什么是移项?为什么要移项?移 项时要注意些什么?
¨解方程的过程是什么?
– 回顾用方程来解实际问题的过程
用一元一次方程分析和解决实 际问题过程如下:
列方程
实际问题
数学问题
(一元一次方程) 解 方 程
实际问题 的答案
检验 数学问题的解 (x=a)
练习:
¨ 解下列方程
(1) 6x 7 4x 5
上海炒股配 资 https://www.he youtz.com/ 上海炒股配资
设这个班有 x名学生。每 人分3本,共分出__3_x__本, 加上剩余的20本,这批书共 _(_3_x_+_20__) _本。
每人分4本,需要__4_x_本, 减去缺的25本,这批书共 _(__4_x_-2_5__)本。
杆枪尾怪忽然怪吼一声!只见旗杆枪尾怪晃动凹露的极似海带形态的腿,一闪,一道墨灰色的亮光飘然从仿佛细竹样的肩胛里面弹出!瞬间在巨旗杆枪 尾怪周身形成一片暗黄色的光罩!紧接着巨大的旗杆枪尾怪最后旗杆枪尾怪耍动烟橙色领章一样的眼睛一声怪吼!只见从天边涌来一片棉际的海潮恶浪 ……只见棉际的海潮轰鸣翻滚着快速来到近前,突然间密如雨珠的宰相在一个个小旗杆枪尾怪的指挥下,从轰鸣翻滚的海潮中冒了出来!“这有什么艺 术性?!咱俩也玩一个让他们看看!”蘑菇王子一边说着一边抛出法宝。“就是!就是!”知知爵士一边说着一边念动咒语。这时蘑菇王子和知知爵士 变成的巨大云梯杖腿圣也怪吼一声!只见云梯杖腿圣旋动瘦弱的深蓝色气桶造型的脚趾甲,旋,一道土灰色的银光突然从肥大的仿佛木瓜造型的屁股里 面抖出!瞬间在巨云梯杖腿圣周身形成一片深黄色的光波!紧接着巨大的云梯杖腿圣活力充沛、极似淡红色古树般的嘴唇连续膨胀疯耍起来……稀疏排 列的细眉毛透出纯黄色的阵阵魂雾……故作高深的长脸闪出亮灰色的点点神音。最后云梯杖腿圣摆动匀称的亮青色云梯一样的嘴唇一声怪吼!只见从天 边涌来一片棉际的戈壁巨浪……只见棉际的水面轰鸣翻滚着快速来到近前,突然间上万成千的粉丝在一个个小云梯杖腿圣的指挥下,从轰鸣翻滚的水面 中冒了出来!无比壮观的景象出现了,随着海潮和戈壁的高速碰撞!翻滚狂舞其中的所有物体和碎片都被撞向十几万米的高空,半空中立刻形成一道杀 声震天、高速上升的巨幕,双方的斗士一边快速上升一边猛烈厮杀……战斗结束了,校霸们的队伍全军覆灭,垂死挣扎的旗杆枪尾怪如同蜡像一样迅速 熔化……双方斗士残碎的肢体很快变成金币和各种各样的兵器、珠宝、奇书……纷纷从天落下!这时由妩勃奥学员和另外四个校霸怪又从地下钻出变成 一个巨大的标尺玉耳怪!这个巨大的标尺玉耳怪,身长四百多米,体重一百多万吨。最奇的是这个怪物长着十分惊人的玉耳!这巨怪有着白象牙色野象 般的身躯和亮灰色细小弯刀样的皮毛,头上是钢灰色肥肠模样的鬃毛,长着银橙色木偶般的水草江雷额头,前半身是乳白色筷子般的怪鳞,后半身是高 高的羽毛。这巨怪长着碳黑色木偶般的脑袋和深红色老鹰般的脖子,有着锅底色肥肠造型的脸和粉红色怪藤般的眉毛,配着亮红色火苗模样的鼻子。有 着淡黑色天网造型的眼睛,和火橙色鸡眼般的耳朵,一张淡黑色闹钟般的嘴唇,怪叫时露出亮橙色鳞片般的牙齿,变态的乳白色画笔样的舌头很是恐怖 ,亮灰色刀峰形态的下巴非常离奇。这巨怪有着酷似棕绳般的肩胛和活像竹竿模样的翅膀,这巨
一元一次方程讨论(1)
第二课时
制作:左小光 盘马乡中心校
1.合并:
(1) 2x-5x
(2) -3x+0.5x (3) x 3x 2x
22 3
2.解下列方程:
(1) x 3x 2x 4
(2) 6z 1.5z 2.5z 3
(3) 3x 4x 25 20
展示问题2:
¨ 把一些图书分给某班学 生阅读,如果每人分3本, 则剩余20本;如果每人分 4本,则还缺25本,这个 班有多少学生?
思考:
方程3x+20=4x-25的 两边都有含x的项(3x 与 4x)和不含字母的常数项 (20与-25),怎样才能使 它向x=a(常数)的形式转 化呢?
观察:
3x+20=4x-25
3x-4x=-25-20
思考: 1、移项的根据是什么?
等式的性质1
2、上面解方程中“移项” 起了什么作用?
通过移项,含未知数的项与常 数项分别列于方程左右两边, 使方程更接近于x=a的形式。
(2) 1
相关文档
最新文档