图形的平移和旋转培优题
苏教版四年级数学下册第一单元 平移、旋转和轴对称专项试卷附答案

苏教版四年级数学下册单元培优测试卷第一单元平移、旋转和轴对称一、填空。
(每空1分,共32分)1.欣赏下面图形,它们分别是通过什么变换得到的?(填“平移”或“旋转”)( ) ( ) ( ) ( )2.钟面上的分针从3:30到3:45,按( )时针方向旋转了( )°。
3.正方形有( )条对称轴,长方形有( )条对称轴,圆有( )条对称轴。
4.寓意深远的汉字文化中也蕴含着数学的美,在“昌、日、比、台、正、全”这些汉字中,有( )个轴对称的字。
5.如图中,五角星向( )平移了( )格;六边形向( )平移了( )格;长方形向( )平移了( )格。
6.观察上图中①绕点O顺时针旋转90°到图形( )所在的位置,( )绕点O( )时针旋转90°到图形③所在的位置。
7.如果把上图中这串葡萄从托盘中取出来,指针会( )时针旋转( )°。
8.体育课上,当老师喊“立正,向左转”时,你的身体( )时针旋转( )°;当老师喊“立正,向右转”时,你的身体( )时针旋转( )°。
9.右图中:(1)图形B向下平移可以得到图形( )。
(2)与图形C可以组成轴对称图形的是图形( )、( )和( )。
(3)图形A绕点M顺时针旋转90°得到图形( )。
(4)图形E绕点M逆时针旋转90°得到图形( )。
(5)图形F绕点N逆时针旋转180°得到图形( )。
二、选择。
(将正确答案的字母填在括号里)(每小题2分,共12分)1.每年的12月2日是全国交通安全日。
下列交通标志中,是轴对称图形的有( )个。
禁止驶入禁止直行两侧变窄T形交叉直行注意行人A.2 B.3 C.4 D.5 2.这是一个电风扇开关,数字表示风速档。
现在风扇在“1”档运行,如果要关闭,可将旋钮( )。
A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°3.把任意一个图形绕任意点顺时针旋转( ),又回到了原来的位置。
平移与旋转练习题

平移与旋转练习题一、选择题1. 平移变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置2. 旋转变换不改变图形的:A. 形状B. 大小C. 方向D. 颜色3. 平移后的图形与原图形:A. 形状不同B. 大小不同C. 位置相同D. 位置不同4. 旋转后的图形与原图形:A. 方向相同B. 方向不同C. 形状相同D. 形状不同5. 一个图形进行平移后,下列说法正确的是:A. 图形的面积不变B. 图形的周长不变C. 图形的对称性改变D. 图形的旋转角度改变二、填空题6. 平移是将一个图形整体沿某一直线方向移动,图形的________不变。
7. 旋转是将一个图形绕一点按一定角度进行旋转,图形的________不变。
8. 平移后图形的位置发生变化,但图形的________和________都不变。
9. 旋转后图形的方向发生变化,但图形的________和________都不变。
10. 若一个图形绕原点顺时针旋转90°,则图形的________发生了变化。
三、判断题11. 平移和旋转都是图形变换的一种形式。
()12. 平移后的图形与原图形全等。
()13. 旋转后的图形与原图形相似。
()14. 平移和旋转都不改变图形的形状和大小。
()15. 旋转变换可以改变图形的位置。
()四、简答题16. 描述平移变换和旋转变换的区别。
17. 举例说明如何通过平移变换改变一个正方形的位置。
18. 举例说明如何通过旋转变换改变一个等边三角形的方向。
五、计算题19. 如图所示,一个长方形ABCD的长为5厘米,宽为3厘米,若将长方形沿x轴正方向平移2厘米,求平移后长方形A'B'C'D'的四个顶点坐标。
20. 如图所示,一个圆心在原点的圆,半径为4厘米,若将该圆绕原点顺时针旋转30°,求旋转后圆上任意一点P(x, y)的新坐标。
六、应用题21. 某工厂的机器需要进行位置调整,原位置为(2, 3),需要将其平移至新位置(5, 6),请计算平移的距离和方向。
培优专题5 平移与旋转 (含解答)-

培优专题5 平移与旋转平移是几何变换中最常用的变换之一,用它可以将一些不在同一三角形中要证的两条线段或两角,进行“搬家”,把它们搬到同一个三角形(或平行四边形)中,再利用图形的性质与题设条件,找到解(或比)的途径.平移法能把分散的条件集中起来,收到事半功倍的效果.旋转也是几何变换中较常用的变换之一,在解决问题中主要应用在以下两个方面:一是在题设条件和结论间联系不易沟通或条件不易集中利用的情形下,通过旋转起到铺路架桥作用;二是图形错综复杂,但图形中的量与量之间的关系多,这时也可以看能否使用旋转的办法,移动部分图形,使题目中隐蔽着的关系明朗起来,从而找到解题途径.平移、旋转两种变换在使用中,一定要善于观察变换前后哪些量变了,哪些量没变.只有这样,我们才能充分发挥两种变换的功能,达到有效解决相关问题的目的.例1如图,在△ABC中,D、E是BC边上两点,BD=CE,试说明AB+AC>AD+AE.分析利用平移变换,•将图中已知条件转化为梯形的对角线之和大于两腰之和.解:把△ABD作平移,使BD与EC重合,分别过点E作AB的平行线,过点A作BC•的平行线,两线交于点F,连结CF.再连结EF交AC于O.则AB=EF,∠ABD=∠FEC.∵BD=CE,∴△ABD≌△FEC.∴AD=CF.在梯形AECF中,AO+OE>AE,FO+OC>CF,∴AO+OE+FO+OC>AE+CF.即AC+EF>AE+CF.∴AB+AC>AD+AE.练习11.如图,梯形ABCD中,AD∥BC,已知AD+BC=3,AC=3,BD=6,求此梯形的面积.2.如图,长方形花园ABCD中,AB=a,AD=b,花园中建有一条长方形道路LMPQ•及一条平行四边形道路RSTK,若LM=RS=c,求花园中可绿化部分的面积.3.如图,△ABC中,E、F分别为AB、AC边上的点,且BE=CF,试说明EF<BC.例2 如图,△ABC中,∠ACB=90°,M是AB的中点,∠PMQ=90°,请说明PQ2=•AP2+BQ2.分析本题中PQ、AP、BQ不在同一个三角形中,•如果将它们平移,•使PQ、BQ分别转化为PD、AD,将三线段转化在同一三角形中,巧妙运用直角三角形中的勾股定理求解.解:将BQ平移到AD,连结PD、MD.∵BQ∥AD,∴∠BAD=∠ABC.∵MA=MB,BQ=AD,∴△AMD≌△BMQ,∴∠AMD=∠BMQ.而∠AMQ+∠BMQ=180°,∴∠AMQ+∠AMD=180°.∴D、M、Q三点共线.∴∠PMD=∠PMQ=90°,MD=MQ.∴PQ=PD.∵∠PAD=∠BAC+∠BAD=∠BAC+∠ABC=90°.∴△PAD为直角三角形,PD2=AP2+AD2.∴PQ2=AP2+BQ2.1.如图,EFGH是正方形ABCD的内接四边形,∠BEG与∠CFH都是锐角,•已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.2.如图,△ABC中,∠B=90°,M、N分别是AB、BC上的点,AN、CM•交于点P,•若BC=AM,BM=CN,求∠APM的度数.3.如图,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,且AB-ED=CD-AF=EF-BC>0,请问,六边形ABCDEF的六个角是否都相等.例3如图,在正方形ABCD的边BC和CD上分别取点M和点K,并且∠BAM=∠MAK.求证:BM+KD=KA.分析把Rt△BAM绕点A顺时针旋转90°到△ADM′,使BM与DN拼成一条线段的KM′,只要证明KM′=KA即可.证明:把Rt△ABM绕点A旋转90°,则点B变为点D,M变为M′,则Rt•△BAM•≌Rt•△ADM′,∴∠M′=∠BMA∴DM′=BM.∵∠BAM=∠MAK,∴∠KAM′=∠MAD.∴∠KAM′=∠M′.∴AK=KM′.∴BM+KD=AM.1.如图,在正方形ABCD中,N是DC的中点,M是AD上异于D•的点,•且∠NMB=∠MBC,求AMAB的值.2.如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,•求以PA、PB、PC之比为边的三角形三内角之比(从小到大).3.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,AH⊥BC,且AH=1,•求四边形ABCD的面积.例4如图,在等腰三角形ABC中,∠CAB=90°,P是△ABC内一点,且PA=1,PB=3,PC=7,求∠APC 的度数.分析本题将△BAP绕点A旋转90°,得到△CAQ,构造直角三角形,利用勾股定理求解解:将△BAP绕点A旋转90°,使AB与AC重合,得△CAQ,则△CAQ≌△BAP.∴AQ=AP=1,CQ=BP=3,∠CAQ=∠PAB,∴∠PAQ=∠PAC+∠CAQ=∠PAC+∠PAB=90°Rt△AQP中,PQ2=AQ2+AP2=2,∴PQ=2,∴∠APQ=45°.在△CPQ中,PQ=2,CQ=3CP=7,CQ2=CP2+PQ2.∴△CPQ是直角三角形,∠CPQ=90°.∴∠APC=∠CPQ+∠APQ=135°.练习41.等边三角形内一点到三个顶点距离分别为3、4、5,则此等边三角形边长的平方为________.2.如图,P是正方形内的点,若PA=1,PB=2,PC=3,求∠APB的度数.3.如图,正方形ABCD的边长为1,AB、AD各有一点P、Q,若△APQ的周长为2,•求∠PCQ.例5 如图,在△ABC中,AB=3,AC=2,以BC为边的三角形BPC是等边三角形,求AP的最大、最小值.分析通过旋转把AP转移到有两条边确定的三角形中,利用三角形的性质求最值.解:把△ABP绕B点顺时针旋转60°得△DBC,则△ABP≌△DBC.∴DC=AP,BD=BA,∠DBA=60°.∴△ABD是等边三角形,AD=AB=3.在△ACD中,有DC<AD+AC=5,当C在DA的延长线上时才有DC=AD+AC=5,说明DC≤5,•即AP≤5.……①在△ACD中,有DC>AD-AC=1时,当C在DA线段上时才有DC=AD-AC=1,说明DC≥1,•即AP≥1.……②由①②得AP最大值为5,最小值为1.练习51.如图,正方形ABCD中,有一个内接三角形AEF,若∠EAF=45°,AB=8,EF=7,•求△EFC的面积.2.如图,在△ABC中,AB=5,AC=13,过BC上的中线AD=6,求BC的长.3.如图,已知△ABC中,AB=AC,D为三角形内一点,∠ADB>∠ADC.试证明:•CD>BD.答案:练习11.解:将BD 平移到CE 交AD 延长线于点E , 则四边形BDEC 为平行四边形∴DE=BC ,CE=BD ,S △BCD =S △CDE ∵△ABC 与△DBC 同底等高, ∴S △ABC = S △BCD = S △CDE∵S 梯形ABCD = S △ABC + S △ACD = S △CDE + S △ACD = S △ACE . 又AE=AD+DE=3=2236AC CE +=+,∴△ACE 为直角三角形,∠ACE=90°. ∴S 梯形ABCD = S △ACE =12·AC·CE=322.2.解:把长方形和平行四边形道路平移,在移动过程中道路面积不变,如图,则四块空白可组成长(b-c ),宽(a-c )的空白长方形,其面积为(b-c )(a-c )=ab-bc-ac+c 2.3.解:将EF 平移为BG ,BF 平移为FG ,作∠CFG 的角平分线交BC 于D ,连结DG ,•则由平移知四边形BEFG 是平行四边形. ∴EF=BG ,BE=FG . ∵BE=CF ,∴FG=CF . ∵∠1=∠2,FD=FD . ∴△FGD ≌△FCD (SAS ). ∴DG=CD .在△BGD 中, ∵BG<BD+DG ,∴EF<BC .练习21.解:过E 、F 、G 、H 分别平移AD 、AB ,交点分别为P 、Q 、R 、T ,则四边形PQRT•为矩形.设正方形边长为a ,PQ=b ,PT=c ,由勾股定理得b= 223a -,c=224a -, ∵S △AEH =S △TEH ,S △BEF =S △PEF , S △CFG =S △QFG , S △DGH =S △RGH 则S 正方形ABCD +S 矩形PQRT =2S 四边形EFGH ∴a 2+b·c=10. 即a 2+223a -·224a -=10.∴5a2=44,a2=445.∴S正方形ABCD=445.2.解:把MC平移,使点M至A点,过A作MC的平行线,过点C作AB的平行线,•两线交于点D,则MC=AD.∠APM=∠NPC=∠NAD……①∵BM=NC,CD=AM=BC,∠DCN=∠CBM=90°,∴△DCN≌△CBM.从而DN=MC,∴DN=DA……②∴∠CMB=∠DNC.∵∠BCM+∠DMB=90°,∴∠BCM+∠DNC=90°.即MC∥AD.∴ND⊥AD.……③由①,②,③得∠APM=45°.3.解:六个角都相等且都等于120°.将AB沿着BC平移到QC,CD沿着DE平移到ER,EF沿着FA平移到AP,∵AB∥ED,BC∥EF,CD∥AF,∴AB=QC,BC=AQ,CD=ER,DE=CR,EF=AP,FA=PE.∵AB-ED=CD-AF=EF-BC,∴QC-CR=ER-PE=AP-AQ.即PQ=PR=QR.∴∠1=∠2=∠3=60°.由平行线性质知:∠A=∠B=∠C=∠D=∠E=∠F=120°.练习31.解:将△BAM绕B点旋转90°,A点变为C点,M点变为P点,连结MP,则△BAM≌△BCP.∴∠BPC=∠BMA=∠CBM=∠NMB.∵BM=BP,∴∠NMP=∠NPM.∴MN=NP=NC+CP=NC+AM.设AB=1,AM=x,在Rt△MND中,则有12+x=221()(1)2x+-.∴x=13.即AMAB=13.2.解:将△ABP绕B点顺时针旋转60°得△BCP′,连结PP′,则△ABP≌△CBP′.∴AP=P′C,BP=BP′,∠APB=∠CP′B.∵∠PBP′=60°,∴△BPP′是等边三角形.∴PP′=BP,∠BPP′=60°=∠BP′P.∵∠APB:∠BPC:∠CAP=5:6:7,又∠APB+∠BPC+∠CPA=360°,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠1=120°-60°=60°,∠2=100°-60°=40°,∠PCP′=180°-60°-40°=80°.由PA=P′C,PP′=PB,∴△PP′C是由PA、PB、PC组成的三角形.∴三内角之比为2:3:4.3.解:将△ABH绕A点旋转90°得△ADP,则△ABH≌△ADP.∴∠APD=∠AHB=90°,AH=AP.∵∠BAD=∠BCD=90°,∠HAP=90°.∴四边形AHCP是正方形.∵AH=1,∴S正方形AHCP=1=S四边形AHCD+S△ADP.S四边形ABCD=S四边形AHCD+S△ABH.又∵S△AOP =S△ABH.∴S四边形ABCD=S正方形AHCP=1.练习41.解:如图,以A为中心将△ACP绕A顺时针旋转60°,则C与B重合,P与P′重合,连结AP′,BP′,PP′则AP′=AP,BP′=CP,∠PAP′=60°.∴△APP′是等边三角形,PP′=3.△BPP′中,BP=4,PP′=3,BP′=CP=5.由32+42=52.∴△BPP′为直角三角形,∠BPP′=90°.∴∠BPA=150°.过B作BE⊥AP,交AP延长线于E.∵∠EPB=180°-150°=30°,在Rt△BEP中,BP=4,BE=2,EP=23,Rt△ABE中,BE=2,AE=23+3,AB2=22+(23+3)2=25+123.2.解:将△ABP绕B点旋转90°,得△CBP′,连结PP′,则△ABP≌△CBP′.∴PB=BP′=2,AP=P′C=1,∠APB=∠CP′B.在Rt△PBP′中,BP=BP′=2,∴PP′=22,∠BP′P=45°.在△PP′C中,PC=3,P′C=1,PP′=22.有PC2=P′C2+P′P2,∴△PP′C是直角三角形,∠PP′C=90°.∴∠APB=∠CP′B=∠BP′P+∠PP′C=135°.3.解:将△CDQ绕C点旋转90°,得△CBM,则△CDO≌△CBM,∠QCM=90°.∵∠D=90°,∠CBA=90°,∴P、B、M在一条直线上.∵QA+AP+QP=2,DQ+AQ+AP+BP=2,∴QP=DQ+BP.∵BM=DQ,PM=PB+BM,∴QP=PM.又CP=CP,CQ=CM.∴△CQP≌△CMP.∴∠QCP=∠PCM.又∠QCP+∠PCM=∠QCM=900∴∠PCQ=45°.练习51.解:把△ADF绕A点旋转到△ABD′的位置.∵∠D和∠ABC均为直角,∴D′、B、E三点在一条直线上,∵∠EAF=45°,∴∠D′AE=45°.在△AD′E和△AEF中,AD′=AF,AE=AE,∠D′AE=∠EAF,∴△AD′E≌△AFE.∴S△D`EF =2S△AD`E =S ABEFD=S正方形ABCD-S△EFC.∴S△EFC =S正方形ABCD-S ABEFD=S正方形ABCD-2S△AD`E =82-2×12×8×7=8.2.解:将△ADC绕D点旋转180°得△BDE.∵BD=CD.- 11 - ∴C 与B 重合,设A 落到E 处,显然A 、D 、E 共线.在△ABE 中,BE=AC=13,AB=5,AE=2AD=12. 则有132=122+52.∴△ABE 为直角三角形,∠BAE=90°. 在Rt △ABD 中,AB=5,AD=6,则有BD=2256 =61.∴BC=2BD=261.3.证明:将△ABD 绕A 点旋转∠BAC 的度数, 得△ACE ,连结DE .由于AB=AC . ∴B 与C 重合,则△ABD ≌△ACE . ∵AD=AE ,∴∠1=∠2.∵∠AEC=∠ADB>∠ADC .∴∠4>∠3,∴CE<DC .∵BD=CE ,∴CD>BD .。
冀教版八年级上16.5 利用图形的平移、旋转和轴对称设计图案 能力培优训练(含答案)

16.5 利用图形的平移、旋转和轴对称设计图案
专题利用图形变换设计图案
1.如图所示,学校有一块正方形空地,要在上面修建一个花园,校方现征集花园设计方案,其要求
是:整个图形可以看做由一个基本图案经过轴对称、平移、旋转得到的,而且是对称图形,既美观,又简练大方.
2.元旦前,市园林部门准备在文化广场摆设直径均为4米的八个圆形花坛,在坛内放置面积相同的
两种颜色的盆栽花草,要求各个花坛内两种花草的摆设不能相同,如图所示的(1)(2),请你再设计出至少四种方案.
状元笔记
【知识要点】
1.设计图案所能应用的变换类型有
平移变换、旋转变换、轴对称变换以及它们的组合.
2.图案设计的过程
(1)首先确定图案要表达的意图;(2)分析进行图案设计的基本图形;(3)对基本图形综合运用平移、旋转和轴对称变换;(4)对图案进行适当修饰.
【温馨提示】
分析图案形成的过程要找准“基本图案”,用平移或旋转或轴对称,叙述要准确,不能遗漏基本要素.
参考答案
1.解:如图所示:(答案不唯一)
2.解:如图所示:(答案不唯一)。
图形的平移与旋转提高题

图形的平移与旋转提高题一.选择题(共17小题)1.如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对2.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数()A.1个B.3个 C.4个 D.5个3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3 B.2 C. D.44.在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为()A.2 B.3 C.4 D.55.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°6.如图,▱ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4 B.5 C.6 D.77.若平行四边形的一边长为7,则它的两条对角线长可以是()A.12和2 B.3和4 C.14和16 D.4和88.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF 9.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1 B.3﹣C.﹣1 D.4﹣210.如图,平行四边形ABCD中,AE⊥BC,AF⊥DC,AB:AD=2:3,∠BAD=2∠ABC,则CF:FD的结果为()A.1:2 B.1:3 C.2:3 D.3:411.如图,O是▱ABCD的对角线交点,E为AB中点,DE交AC于点F,若S▱ABCD=16.则S△DOE的值为()A.1 B.C.2 D.12.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30 B.36 C.54 D.7213.某学校共有3125名学生,一次活动中全体学生被排成一个n排的等腰梯形阵,且这n排学生数按每排都比前一排多一人的规律排列,则当n取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是()A.296 B.221 C.225 D.64114.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S=S△CDE;△ABE=S△CEF.其中正确的是()⑤S△ABEA.①②③B.①②④C.①②⑤D.①③④15.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB 交AC的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个 C.3个 D.4个16.如图,▱ABCD中,∠AEB=36°,BE平分∠ABC,则∠C等于()A.36°B.72°C.108° D.144°17.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二.选择题(共16小题)18.如图,E、F是▱ABCD的边AD上的两点,△EOF的面积为4,△BOC的面积为9,四边形ABOE的面积为7,则图中阴影部分的面积为.19.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68°,则∠CHN=.20.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交=15cm2,S△BQC=25cm2,则阴影部分的面于点P,BF与CE相交于点Q,若S△APD积为cm2.21.如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为.22.如图,等腰梯形ABCD中,AB∥DC,∠A=60°,AD=DC=10,点E,F分别在AD,BC上,且AE=4,BF=x,设四边形DEFC的面积为y,则y关于x的函数关系式是(不必写自变量的取值范围).23.如图,▱ABCD中,AC⊥AB,AB=3cm,BC=5cm,点E为AB上一点,且AE=AB.点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止.则当运动时间为秒时,△BEP为等腰三角形.24.如图,在等腰梯形ABCD中,AD∥BC,AB=AD,BC=()AD,以AD 为边作等边三角形ADE,则∠BEC=.25.如图,在▱ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,以下结论:①BE=DF;②AG=GH=HC;③EG=BG;④S△ABE=3S△AGE.其中,正确的有.26.等腰梯形的周长为60 cm,底角为60°,当梯形腰x=cm时,梯形面积最大,等于cm2.27.已知:如图点O是平行四边形ABCD的对角线的交点,AC=38,BD=24,AD=14,那么△OBC的周长=.28.如图,在▱ABCD中,对角线AC=21cm,BE⊥AC,垂足为E,且BE=5cm,AD=7cm,则AD和BC之间的距离为cm.29.如图,平行四边形中,∠ABC=75°.AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED=°.30.在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1cm2,则平行四边形ABCD的面积为cm2.31.在▱ABCD中,若∠A:∠B=2:1,AD=20cm,AB=16cm,则AD与BC两边间的距离是cm,▱ABCD的面积是cm2.32.在▱ABCD中,AC与BD相交于点O,∠AOB=45°,BD=2,将△ABC沿直线AC翻折后,点B落在点B′处,那么DB′的长为.33.如图,对面积为1的平行四边形ABCD逐次进行以下操作:第一次操作,分别延长AB,BC,CD,DA至点A1,B1,C1,D1,使得A1B=2AB,B1C=2BC,C1D=2CD,D1A=2AD,顺次连接A1,B1,C1,D1,得到平行四边形A1B1C1D1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1D1、D1A1至点A2,B2,C2,D2,使得A2B1=2A1B1,B2C1=2B1C1,C2D1=2C1D1,D2A1=2A1D1,顺次连接A2,B2,C2,D2记其面积为S2;…;按此规律继续下去,可得到平行四边形A5B5C5D5,则其面积S5=.三.解答题(共7小题)34.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.35.理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一=;(2)如图2,当点M 点.(1)如图1:当点M与B重合时,S△DCM=;(3)如图3,当点M在AB(或BA)的与B与A均不重合时,S△DCM=;延长线上时,S△DCM拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行=300m2,S四边形MBQO=400m2,S四边于DC、AD,它们相交于点O,其中S四边形AMOP=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、形NCQOQD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.36.如图,在▱ABCD中,BD为对角线,EF垂直平分BD分别交AD、BC的于点E、F,交BD于点O.(1)试说明:BF=DE;(2)试说明:△ABE≌△CDF;(3)如果在▱ABCD中,AB=5,AD=10,有两动点P、Q分别从B、D两点同时出发,沿△BAE和△DFC各边运动一周,即点P自B→A→E→B停止,点Q自D→F→C→D停止,点P运动的路程是m,点Q运动的路程是n,当四边形BPDQ 是平行四边形时,求m与n满足的数量关系.(画出示意图)37.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)试说明DE=BC;(2)试问AB与DG+FC之间有何数量关系?写出你的结论,并说明理由.38.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB 边向点以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s).(1)当其中一点到达端点时,另一点也随之停止运动.①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形?②当t为何值时,四边形PQCD为等腰梯形?(2)若点P从点A开始沿射线AD运动,当点Q到达点B时,点P也随之停止运动.当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形?39.如图,点E,F是▱ABCD的对角线AC上的两点,且CE=AF.(1)写出图中每一对全等的三角形(不再添加辅助线)(2)请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.40.如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.(1)求FD的长;(2)求△BEC的面积.2017年11月20日135****3978的初中数学组卷参考答案一.选择题(共17小题)1.B;2.D;3.B;4.D;5.D;6.D;7.C;8.D;9.D;10.B;11.C;12.D;13.B;14.C;15.D;16.C;17.B;二.选择题(共16小题)18.10;19.56°;20.40;21.1:3;22.;23.,2,,;24.75°或165°;25.①、②、③、④;26.15;;27.45;28.15;29.65;30.;31.8;160;32.;33.135;三.解答题(共7小题)34.;35.50;50;50;36.;37.;38.;39.;40.;。
人教版 九年级数学 23.1 图形的旋转 培优训练(含答案)

人教版九年级数学23.1 图形的旋转培优训练一、选择题(本大题共8道小题)1. 在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)2. 观察图,其中可以看成是由“基本图案”通过旋转形成的共有()A.1个B.2个C.3个D.4个3. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变换得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④4. 如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB 边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B′的坐标是()A.(-1,2) B.(1,4)C.(3,2) D.(-1,0)5. 如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点顺时针旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(-4,1) B.(-1,2)C.(4,-1) D.(1,-2)6. 如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是()A.(3,-1) B.(1,-3)C.(2,0) D.(3,0)7. 在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为()A.(3,1) B.(3,-1) C.(2,1) D.(0,2)8. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°-αB.αC.180°-αD.2α二、填空题(本大题共8道小题)9. 如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A 在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位长度,则变化后点A的对应点的坐标为________.10. 如图所示,△ABC的顶点都在网格线的交点(格点)上,如果将△ABC绕点C 逆时针旋转90°,那么点B的对应点B′的坐标是________.11. 如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A逆时针旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为________ cm.12. 如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=________.13. 如图,两块完全相同的含30°角的三角尺ABC和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C与AB的交点恰好为AB的中点;②当α=60°时,A′B′恰好经过点B;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.14. 如图,将△ABC 绕点A 逆时针旋转150°,得到△ADE ,这时点B ,C ,D 恰好在同一直线上,则∠B 的度数为________.15. 2018·陕西如图,点O 是平行四边形ABCD 的对称中心,AD >AB ,E ,F是AB 边上的点,且EF =12AB ;G ,H 是BC 边上的点,且GH =13BC.若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是S 1S 2=________.16. 如图,AB ⊥y轴,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去……若点B 的坐标是(0,1),则点O 12的纵坐标为________.三、解答题(本大题共4道小题)17. 如图,在等腰直角三角形ABC 中,∠ACB =90°,点D ,E 在边AB 上,且∠DCE =45°,BE =2,AD =3.将△BCE 绕点C 逆时针旋转90°,画出旋转后的图形,并求DE 的长.18. 将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图①,当点E在BD上时,求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.19. (1)如图(a),在△ABC中,D是BC边的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的数量关系,并加以证明.(2)如图(b),在四边形ABDC中,∠B+∠C=180°,BD=CD,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB,AC于E,F两点,连接EF,探索线段BE,CF,EF之间的数量关系,并加以证明.20. 如图,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1.求∠BPC 的度数和等边三角形ABC的边长.人教版九年级数学23.1 图形的旋转培优训练-答案一、选择题(本大题共8道小题)1. 【答案】A[解析] 点P(-4,2)向右平移7个单位长度得到点P1(3,2),点P1绕原点逆时针旋转90°得到点P2(-2,3).故选A.2. 【答案】D3. 【答案】D[解析] 先将△ABC绕着B′C的中点旋转180°,再将所得的三角形绕着B′C′的中点旋转180°,即可得到△A′B′C′;先将△ABC沿着B′C的垂直平分线翻折,再将所得的三角形沿着B′C′的垂直平分线翻折,即可得到△A′B′C′.故选D.4. 【答案】C5. 【答案】D6. 【答案】A7. 【答案】A[解析] 如图,过点A作AE⊥y轴于点E,过点A′作A′F⊥x轴于点F,∴∠AEO=∠A′FO=90°.∵点A的坐标为(1,3),∴AE=1,OE=3,∴OA=2,∠AOE=30°,由旋转可知∠AOA′=30°,OA′=OA=2,∴∠A′OF=90°-30°-30°=30°,∴A′F=12OA′=1,OF=3,∴A′(3,1).故选A.8. 【答案】C[解析] 由题意可得∠CBD=α,∠C=∠EDB.∵∠EDB+∠ADB=180°,∴∠C+∠ADB=180°.由四边形的内角和定理,得∠CAD+∠CBD=180°.∴∠CAD=180°-∠CBD=180°-α.故选C.二、填空题(本大题共8道小题)9. 【答案】(-2,2)[解析] △ABC绕点C逆时针旋转90°后,点A的对应点的坐标为(1,2),再向左平移3个单位长度,点A的对应点的坐标为(-2,2).10. 【答案】(1,0)11. 【答案】(10-2 6)[解析] 如图,过点A作AG⊥DE于点G.由旋转知,AD =AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,∴∠AFD=∠AED+∠CAE=60°.在Rt△ADG中,AG=DG=AD2=3 2(cm).在Rt△AFG中,GF=AG3=6(cm),AF=2FG=2 6(cm),∴CF=AC-AF=(10-2 6)cm.12. 【答案】13[解析] ∵α+β=∠B,∴∠EAF=∠BAC+∠B=90°,∴△AEF 是直角三角形,且AE=AB=3,AF=AC=2,∴EF=AE2+AF2=13.13. 【答案】①②③14. 【答案】15°[解析] 由旋转的性质可知AB=AD,∠BAD =150°,∴∠B =∠ADB =12×(180°-150°)=15°.15. 【答案】32 [解析] ∵S 1S △AOB =EF AB =12,S 2S △BOC =GH BC =13, ∴S 1=12S △AOB ,S 2=13S △BOC . ∵点O 是▱ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD ,∴S 1S 2=32.16. 【答案】9+33 [解析] 将y =1代入y =-33x ,解得x =- 3.∴AB =3,OA =2,且直线y =-33x 与x 轴所夹的锐角是30°.由图可知,在旋转过程中每3次一循环,其中OO 2=O 2O 4=O 4O 6=O 6O 8=O 8O 10=O 10O 12=2+3+1=3+ 3. ∴OO 12=6×(3+3)=18+6 3. ∴点O 12的纵坐标=12OO 12=9+3 3.三、解答题(本大题共4道小题)17. 【答案】解:如图,将△BCE 绕点C 逆时针旋转90°,得到△ACF ,连接DF.由旋转的性质,得CE =CF ,AF =BE =2,∠ACF =∠BCE ,∠CAF =∠B =45°.∵∠ACB =90°,∠DCE =45°,∴∠DCF =∠ACD +∠ACF =∠ACD +∠BCE =∠ACB -∠DCE =90°-45°=45°,∴∠DCE =∠DCF.在△CDE 和△CDF 中,⎩⎨⎧CE =CF ,∠DCE =∠DCF ,CD =CD ,∴△CDE ≌△CDF(SAS),∴DE =DF.∵∠DAF=∠BAC+∠CAF=45°+45°=90°,∴△ADF是直角三角形,∴DF2=AD2+AF2,∴DE2=AD2+BE2=32+22=13,∴DE=13.18. 【答案】解:(1)证明:连接EG,AF,则EG=AF.由旋转的性质可得EG=BD,∴AF=BD.又∵AD=BC,∴Rt△ADF≌Rt△BCD.∴FD=CD.(2)分两种情况:①若点G位于BC的垂直平分线上,且在BC的右边,如图(a).∵GC=GB,∴∠GCB=∠GBC,∴∠GCD=∠GBA.又CD=BA,∴△GCD≌△GBA,∴DG=AG.又∵AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∴α=60°.②若点G位于BC的垂直平分线上,且在BC的左边,如图(b).同理,△ADG是等边三角形,∴∠DAG=60°.此时α=300°.综上所述,当α为60°或300°时,GC=GB.19. 【答案】解:(1)①证明:如图(a),将△DBE绕点D旋转180°得到△DCG,连接FG,则△DCG≌△DBE.∴DG=DE,CG=BE.又∵DE⊥DF,∴DF 垂直平分线段EG ,∴FG =EF. ∵在△CFG 中,CG +CF >FG , ∴BE +CF >EF. ②BE 2+CF 2=EF 2.证明:∵∠A =90°,∴∠B +∠ACD =90°.由①得,∠FCG =∠FCD +∠DCG =∠FCD +∠B =90°,∴在Rt △CFG 中,由勾股定理,得CG 2+CF 2=FG 2,∴BE 2+CF 2=EF 2.(2)EF =BE +CF.证明:如图(b).∵CD =BD ,∠BDC =120°, ∴将△CDF 绕点D 逆时针旋转120°得到△BDM , ∴△BDM ≌△CDF ,∴DM =DF ,BM =CF ,∠BDM =∠CDF ,∠DBM =∠C. ∵∠ABD +∠C =180°, ∴∠ABD +∠DBM =180°, ∴点A ,B ,M 共线,∴∠EDM =∠EDB +∠BDM =∠EDB +∠CDF =∠BDC -∠EDF =120°-60°=60°=∠EDF.在△DEM 和△DEF 中,⎩⎨⎧DE =DE ,∠EDM =∠EDF ,DM =DF ,∴△DEM ≌△DEF ,∴EF =EM =BE +BM =BE +CF.20. 【答案】解:将△BPC 绕点B 逆时针旋转60°得到△BP′A(如图).连接PP′,由旋转的性质知△BPP′为等边三角形,AP′=PC =1,∴PP′=PB=3,∠BPP′=∠BP′P=60°.在△APP′中,∵AP′2+PP′2=12+(3)2=22=PA2,∴△APP′是直角三角形,且∠AP′P=90°,∴∠BP′A=∠BP′P+∠AP′P=60°+90°=150°,∴∠BPC=∠BP′A=150°.在Rt△APP′中,∵PA=2,AP′=1,∴∠APP′=30°.又∵∠BPP′=60°,∴∠APB=90°,∴在Rt△ABP中,AB=PA2+PB2=22+(3)2=7,即等边三角形ABC的边长为7.。
图形的平移和旋转经典试题

和 ,只改变图形的图形的平移和旋转经典试题1.平移是由_________________________________________所决定。
所决定。
2. 平移不改变图形的 。
3.钟表的分针匀速旋转一周需要60分,它的分,它的旋转中心旋转中心是___________,经过20分,分针旋转___________度。
度。
4.如图,直角.如图,直角梯形梯形ABCD 中,中,AD AD AD∥∥BC BC,,AB AB⊥⊥BC BC,,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE DE,连接,连接AE AE、、CE CE,,△ADE 的面积为3,则BC 的长为的长为 ..5、如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论,其中正确的是_____ ①△AED ≌△AEF ; ②BE DC DE += ③S △ABE +S △ACD >S △AED ; ④222BE DC DE += 1、如图所示:正方形ABCD 中E 为BC 的中点,将面ABE 旋转后得到△CBF.旋转后得到△CBF.(1)指出旋转中心及旋转)指出旋转中心及旋转角度角度.(.(22)判断AE 与CF 的位置关系.的位置关系.(3)如果正方形的面积为18cm 2,△BCF 的面积为4cm 2,问四边形AECD 的面积是多少?的面积是多少?2、如图,E 、F 分别是正方形ABCD 的边BC 、CD 上一点,且BE +DF =EF ,求∠EAF (第8题图)A B C D E F A B C D E 3、如图,已知、如图,已知正方形正方形ABCD 的对角线AC 、BD 相交于O ,E 是AC 上一点,过点A 作AG ⊥EB ,垂足为G ,AG 交BD 于点F ,求证:OE=OF 。
苏教版数学四年级下册第一单元《平移、 旋转和轴对称》培优卷(含答案)

周测培优卷1图形的平移、旋转、轴对称的认识及其应用一、填空。
(每空2分,共42分)1. 从9:00到12:00,时针旋转了()°。
从3时到3时15分,分针旋转了()°。
2. 与时针旋转方向相同的是()旋转,相反的是()旋转。
3. 体育课上,老师的口令是“立正,向左转” 时,你的身体()旋转了()°,口令是“立正,向后转” 时,你的身体()旋转了()°。
4.(1)图形1绕点O 顺时针旋转90°到图形()所在的位置。
(2)图形4绕点O()时针旋转90°到图形3所在的位置。
(3)图形3绕点O逆时针旋转()°到图形1所在的位置。
5.图①先向()移动()格到图②的位置,再向()移动()格可以与图③重合,或者先向()移动()格,再向()移动()格也可以与图③重合。
6. 下图中左边的风车绕点O按()时针方向旋转了()得到右边的风车。
二、判断。
(对的在括号里打“√”,错的打“×”。
每题2分,共8分)1. 正方形是轴对称图形,它有4条对称轴。
()2. 圆不是轴对称图形。
()3. 利用平移、轴对称可以设计许多美丽的图案。
()4. 芳芳晚上10点睡觉,早晨闹钟6点准时响起,则时针在这段时间旋转了60°。
()三、选择。
(将正确答案的字母填在括号里。
每题2分,共10分)1. 把长方形绕O点顺时针旋转90°后,得到的图形是()。
2. 下图中左上方的小旗可以通过()与右下方的小旗重合。
A. 旋转B. 平移C. 对称3. 把一个图形顺时针旋转(),就可以回到原来的位置。
A. 90°B. 180°C. 360°4. 下面说法正确的是()。
A. 旋转改变图形的形状和大小B. 平移改变图形的形状和大小C. 平移和旋转都不改变图形的形状和大小5. 如图,将一张圆形纸对折两次后,在中间打一个正方形孔,并剪去一个小角,展开后的图形是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的平移和旋转一:知识点1 •平移的定义与规律关键:平移不改变图形的形状和大小,也不会改变图形的方向.(1) 平移的规律:经过平移,对应线段、对应角分别相等,?对应点所连的线段平行且相等 (或共线且相等)• (2) 简单作图平移的作图主要关注要点:1 •方向,2•距离•整个平移的作图,就象把整个图案的每个特征点放在一套平 行的轨道上滑动一样,每个特征点滑过的距离是一样的. 2 •旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,?这样的图形运动称为旋转. 关键:旋转不改变图形的大小和形状,但改变图形的方向. (2) 旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连 线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图: 旋转作图关键有两点: ①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋 转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改 变的,即对应点与旋转中心距离相等.二:小试牛刀1 •平移是由 ______________________________________________ 所决定。
2. 平移不改变图形的 ____________和 __________ ,只改变图形的. 3.钟表的分针匀速旋转一周需要 _____ 60分,它的旋转中心是O,经过20分,分针旋度。
90 °①厶 AED N AEF ;② BE DC DE③S ^ ABE + S ^ ACD >SA AED④ BE 2 DC 2DE 2:例题讲解,将△O连接EF ,下列结论,其中正确的是 ADC 绕点A 顺时针旋转90后,得到△ AFB ,1、如图所示:正方形ABCD中E为BC的中点,将面ABE旋转后得到△ CBF.(1)指出旋转中心及旋转角度•(2)判断AE与CF的位置关系.2 2 . .(3)如果正方形的面积为18cm, △ BC啲面积为4cm,问四边形AECD的面积是多少?2、如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE + DF = EF,求/ EAF3、如图,已知正方形图li-4 ABCD的对角线AC、BD相交于O, E是AC上一点,过点A作AG丄EB,垂足为G, AG 交BD于点F,求证:OE=OF。
4.如图,已知正方形ABCD,点E、F分别在BC、CD上,且AE=BE+FD,请说出AF平分/ DAE的理由。
5、如图,有边长为1的等边三角形 ABC 和顶角为120°的等腰△ DBC ?以D 为顶点作/ MDN=60角,两边分别交 AB AC 于 M N 的三角形,连结 MN ( 1)、求证 MN=BM+CN( 2)、试说明△ AMN 的周长为2. ( 3)、若 M,N 分别在 AB,CA 的延长线上,则(1)中结论还成立吗?如果不成立,MN,BM,CNZ 满足什么关系?6、如图,正方形纸片 ABCD 和正方形EFDH 边长都是1,点E 是正方形 ABCD 的中心,在正方形 EFGH 绕着点 E 旋转过程中,(1) 观察两个正方形的重叠部分的面积是否保持不变? (2)如果保持不变,求出它的值;否则,请简要说明理由。
7、操作:在厶ABC 中,AC = BC = 2,Z C = 90°,将一块等腰三角形板的直角顶点放在斜边 AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线 AC 、CB 于D 、E 两点•图①、②、③是旋转三角板得到的图形中的3种情况•研究:(1) 三角板绕点P 旋转,观察线段 PD 和PE 之间有什么数量关系?并结合图②加以证明. (2)三角板绕点 P 旋转,△ PBE 能否为等腰三角形?若能,指出所有情况(即写出厶 PBE 为等腰三角 形时CE 的长);若不能,请说明理由.8、如图,在六边形 ABCDEF 中,已知 AB//DE,AF//CD,BC//FE,AB=DE,AF=CD,BC=FE BD=18cm 你能求出六边形 ABCDE 的面积吗?,对角线 FD 丄 BD,FD=24cm9、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世,著名的大峡谷A和世界级风景保护区星斗山B位于笔直的沪渝高速公路X同侧,AB=50km,A,B到直线X的距离分别为10km, 40km,要在沪渝高速公路旁修建一服务区P,向A,B两景区运送游客。
小民设计了两种方案,方案一:如图一,AP于直线X垂直,垂足为P,P到A,B的距离之和为S i=PA+PB方案二:如图二,点A关于直线X的对称点是D,连接BD交直线X于P,P到A,B距离之和为S=PA+PB.(1)求S,9,并比较大小(2)请说明S2=PA+PB的值最小。
(3)如图三,拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立图形的直角坐标系,B至煩线Y的距离为30km,请你在X旁和Y旁各建一服务区P,Q,使P,A,B,Q组成的四边形的周长最小,并求最小值。
10、如图(1),已知△ ABC是边长为2的等边三角形,D,E,F分别为AB,AC,BC边上的中点,连接DE,DF,EF.将△ ADE 向下平移,使得A点与C点重合,将△ BDF向右平移,使得B点与C点重合,(如图2)。
(1)设厶ADE, △ BDF, △ EFC的面积分别为S1,S2,S3则,S1+S2+S3 _____ 3 .(用>,=,< 填空)(2)如图3,已知/ AOB= / COD= / EOF=60 ,AD=CF=BE=2,设厶ABO, △ CDO, △ EFO的面积分别为S1,S2,S3问:上述结论是否成立?若成立,请给出证明,若不成立,说明理由。
巩固练习〔、△ ABC 平移到△ DEF 的位置,(即点A 与点D,点B 与点E ,点C与点F ,是对应点)有下列说法:①AB=DE ②AD=BE ③BE=CF ④BC=EF 其中说法正确个数有……()2、(2003,河南)把正方形ABCD 沿着对角线 AC 的方向移动到正方形 图1中的阴影部分)的面积是正方形ABCD 面积的一半,?若AC= 2,则正方形移动的距离是 AA'是3. ( 2004,南宁)如图2是两张全等的图案,它们完全重合在叠放在一起按住下面的图案不动,将上面图案绕点 0顺时针旋转,至少旋转 ________ 度角后,?两张图案构成的图形是中心对称图形. 4、 如图,两个全等的正六边形 ABCDEF 、PQRSTU ,其中点P 位于正六边形 ABCDEF 的中心,如果它们的面积均为1,则阴影部分的面积是 ____________ o5、 如图11-2所示,Rt A A ' B ' C '是△ ABC 向右平移3cm 所得,已知/ B = 60°,11、已知,如图△ AB 中,/ ACB=90 ,AC=BC , P 是厶ABC 内一点,且 PA=3 , PB=1 , PC=2,求/ BPCoA.1 个B.2 个C.3个 D.4个A B ' C' D?'的位置,它们的重叠部分 (如B 'C = 5cm ,则/ C '= __________________ , B' C '= __________________ c m .6. 如图所示,直角△ AO 師时针旋转后与△ COD !合,若/ A0= 127 °,则旋转角度是 _________7. _______________________________________________________________________________________________ 如图,把一个长方形纸片沿 EF 折叠后,点D C 分别在D'、C 位置,若/ EFB=65° ,则/ AED = ______________________ &四边形ABCD 为长方形,△ ABC 旋转后能与△ AEF 重合,旋转中心是点 _______________的对应点分别为 C 、D ,则旋转角为 _______________ ,图中除厶ABC 夕卜,还有等边三形是 ______________ 12. 如图11-6, Rt A ABC 中,P 是斜边BC 上一点,以P 为中心,把这个三角形按逆时针 方向旋转90°得到△ DEF ,图中通过旋转得到的三角形还有 _________________ . 13、(青岛市)如图,P 是正三角形 ABC 内的一点,且 PA = 6, PB = 8, PC = 10.若 将厶PAC 绕点A 逆时针旋转后,得到△ P'AB ,则点P 与点P'之间的距离为多少,/ APB ?E 是AD 的中点,F 是BA 延长线上的一点,AF =2A B ,(1)求证:△ ABE ^A ADF 。
(2)阅读下列材料:如图②,把△ ABC 沿直线平移线段BC 的长度,可以变到△ ECD 的位置;如图③,以BC 为轴把△ ABC 翻折180°,可以变到厶DBC 的位置;如图④,以点 A 为中心,把△ ABC 旋转180°,可以变到厶AED 的位置,像这样其中一 个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状 大小的图形变换,叫做三角形的全等变换。
图①图② 團③ 图④9.0是等边△ ABC 内一点,将△ AOB 绕B 点逆时钎旋转,使得 B 、0两点 13、如图①,在正方形 ABCD 中, 旋转了多少度图 11-5, 三角A请回答下列问题:ABE变到△ ADF的位置?<1>在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△<2>指出图①中线段BE与DF之间的关系.。