九年级数学上册圆的基本性质(2)同步练习
人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1 圆的有关概念(1)圆:平面上到的距离等于的所有点组成的图形.如图所示的圆记做⊙O。
(2)弦与直径:连接任意两点的叫做弦过圆心的叫做直径直径是圆内最长的。
(3)弧:圆上任意两点间的部分叫做小于半圆的弧叫做大于半圆的弧叫做。
(4)圆心角:顶点在的角叫做圆心角。
(5)圆周角:顶点在并且两边都与圆还有一个交点的角叫做圆周角。
(6)弦心距:到弦的距离叫做弦心距。
(7)等圆:能够的两个圆叫做等圆。
(8)等弧:在同圆或等圆中能的弧叫等弧。
考点2垂径定理(1)定理:垂直于弦的直径这条弦并且弦所对的两条弧。
(2)推论:①平分弦(不是直径)的直径于弦并且弦所对的两条弧②弦的垂直平分线经过并且弦所对的两条弧。
(3)延伸:根据圆的对称性如图所示在以下五条结论中:①AC AD=③CE=DE④AB⊥CD⑤AB是直径。
=②BC BD只要满足其中两个另外三个结论一定成立即推二知三。
考点3 弧弦圆心角之间的关系(1)定理:在同圆或等圆中相等的圆心角所对的相等所对的相等。
(2)推论:在同圆或等圆中如果两个圆心角两条弧两条弦中有一组量相等那么它们所对应的其余各组量都分别相等。
考点4圆周角定理及其推论。
(1)定理:一条弧所对的圆周角等于它所对的的一半.如图a=12图a图b图c( 2 )推论:①在同圆或等圆中同弧或等弧所对的圆周角相等.如图b ①A=。
①直径所对的圆周角是直角.如图c=90°。
①圆内接四边形的对角互补.如图a ①A+=180° ①ABC+=180°。
关键点:垂径定理及其运用(1)垂径定理及推论一条直线在下列5条中只要具备其中任意两条作为条件就可以推出其他三条结论.称为知二得三(知二推三)。
①平分弦所对的优弧②平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)③平分弦④垂直于弦⑤过圆心(或是直径)(2)常用的辅助线作垂直于弦的直径或只画弦心距。
人教版九年级上册数学 圆的有关性质 同步练习

24.1圆的有关性质同步练习一.选择题(共8题)1.如图,AB为⊙O的直径,点C,D在⊙O上,若∠CAB=25∘,则∠D的度数为 A.85∘B.105∘C.115∘D.130∘2.如图,△ABC内接于⊙O,⊙O的半径为1,BC=3,则∠A的度数为 A.30∘B.45∘C.60∘D.75∘3.如图,点A,B,C在⊙O上,∠ACB=35∘,则∠AOB的度数是 A.75∘B.70∘C.65∘D.35∘4.如图,点A,B,C都在⊙O上,若∠AOC=140∘,则∠B的度数是 A.70∘B.80∘C.110∘D.140∘5.如图,⊙A过点O0,0,C3,0,D0,1,点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是 A.15∘B.30∘C.45∘D.60∘6.如图,已知⊙O中,半径OC垂直于弦AB,垂足为D,若OD=3,OA=5,则AB的长为 A.2B.4C.6D.87.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M,N,BA,DC的延长线交于点P,连接OP.下列四个说法中:=CD ;②OM=ON;③PA=PC;④∠BPO=∠DPO.正确的个数是 ①ABA.1B.2C.3D.48.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为 A.12.5寸B.13寸C.25寸D.26寸二.填空题(共5题)9.如图,AB为⊙O的直径,C,E在⊙O上,∠BOE=20∘,则∠ACE的度数为.10.如图,⊙O中OA⊥BC,∠CDA=25∘,则∠AOB的度数为度.11.如图,在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,⊙D经过A,B,O,C四点,∠ACO=120∘,AB=4,则圆心D的坐标是.的中点,OC交AB于点D.若AB=8 cm,CD=2 cm,则⊙O 12.如图,AB是⊙O的弦,C是AB的半径为cm.13.如图,在△ABC中,AB为⊙O的直径,∠B=60∘,∠C=70∘,⊙O与边AC相交于点D,连接OD,则∠BOD=.三、解答题(共4题)14.如图,AC是⊙O的直径,弦BD⊥AO于点E,联结BC,过点O作OF⊥BC于点F,BD=8,AE=2.(1)求⊙O的半径;(2)求OF的长度.15.如图,AB,CD是⊙O的两条直径,过点A作AE∥CD交⊙O于点E,连接BD,DE.求证:BD=DE.16.如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与点B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.的中点,点P是直径MN上一个动点,圆O的半径为1.17.如图,点A是圆上的一个三等分点,点B是AN(1)找出当AP+BP最小时,点P的位置;(2)求出AP+BP的最小值.。
人教版数学九年级上册 24.1 圆的有关性质 同步训练习题(含答案)

人教版九年级上册24.1 圆的有关性质同步训练一、选择题1. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为 ()A.1B.2C.3D.42. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°3. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°4. 如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A. 5B. 7C. 9D. 115. 如图,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,则图中的弦有()A .2条B .3条C .4条D .5条6. 如图,在⊙O 中,AB ︵=CD ︵,∠1=45°,则∠2等于( )A .60°B .30°C .45°D .40°7. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 38. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米9. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°10. 如图,量角器的零刻度线与三角尺ABC的斜边AB重合,其中量角器的零刻度线的端点N与点A重合,射线CP从CA处出发按顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是()A.48°B.64°C.96°D.132°二、填空题11. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.12. 如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.13. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.14. 如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=________.15. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.16. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.17. 2018·曲靖如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =________°.18. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题19. 如图,在⊙O中,AB=DE,BC=EF.求证:AC=DF.20. 如图,两个正方形彼此相邻且内接于半圆.若小正方形的面积为16 cm2,求该半圆的半径.21. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.22. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.人教版九年级上册24.1 圆的有关性质同步训练-答案一、选择题1. 【答案】C2. 【答案】A∵=,∴∠CAB=∠DAB=35°.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=55°,故选A.3. 【答案】B4. 【答案】A5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】D9. 【答案】C10. 【答案】C二、填空题11. 【答案】2∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.12. 【答案】50°13. 【答案】10或70由垂径定理得:BC=AB=30 cm.在Rt△OBC中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm时,圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm时,水面上升的高度为:40+30=70(cm).综上可得,水面上升的高度为10 cm或70 cm.故答案为10或70.14. 【答案】 4-715. 【答案】816. 【答案】317. 【答案】n18. 【答案】⎝ ⎛⎭⎪⎫360n m ° 三、解答题19. 【答案】证明:∵AB =DE ,BC =EF , ∴AB ︵=DE ︵,BC ︵=EF ︵, ∴AB ︵+BC ︵=DE ︵+EF ︵, ∴AC ︵=DF ︵,∴AC =DF .20. 【答案】解:如图,连接OA ,OB .根据正方形的面积公式可得小正方形的边长为4 cm. 设大正方形的边长为x cm ,则OD =12x cm.根据勾股定理,得OA 2=OD 2+AD 2,OB 2=OC 2+BC 2. 又∵OA =OB ,∴(12x )2+x 2=(12x +4)2+42,解得x 1=8,x 2=-4(不符合题意,舍去), ∴大正方形的边长为8 cm ,OD =4 cm , ∴OA 2=OD 2+AD 2=42+82=80, ∴OA =80=4 5(cm).故该半圆的半径为4 5 cm.21. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD≌△EGD,∠EBC=∠ECB,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG=45°,β=∠ACB=135°,∴∠ECB=45°,∠CEB=90°,△ECD、△BEC、△ABG 都是等腰直角三角形,由CD的长,可得出BE和CE的长,再由题干条件△ABE 的面积是△ABC的面积的4倍可得出AC的长,利用勾股定理在△ABE中求出AB的长,再利用勾股定理在△ABG求出AG的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)22. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC.又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,解得∠BOD=120°,∴∠BAD=12∠BOD=12×120°=60°,∠OBC=∠ODC=180°-∠BOD=180°-120°=60°.又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=∠ABC+∠ADC-(∠OBC+∠ODC)=180°-(60°+60°)=60°.word 版 初中数学11 /11②如图(b)所示,连接AO .∵OA =OB ,∴∠OBA =∠OAB .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAB =∠OAD +∠BAD , ∴∠OBA =∠ODA +∠BAD =∠ODA +60°.如图(c),同理可得∠ODA =∠OBA +60°.。
人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)

E ,满足 AEC 65 ,连接 AD ,则 BAD
度.
答案: 一、选择题
1.(2020•青岛)如图,BD 是⊙O 的直径,点 A,C 在⊙O 上, = ,AC 交 BD 于点 G.若∠COD=126°,则 ∠AGB 的度数为( )
A.99°
B.108°
解:∵BD 是⊙O 的直径,
∴∠BAD=90°,
度数是( )
A.130°
B.140°
C.150°
解:由题意得到 OA=OB=OC=OD,作出圆 O,如图所示,
∴四边形 ABCD 为圆 O 的内接四边形,
∴∠ABC+∠ADC=180°,
∵∠ABC=40°,
∴∠ADC=140°,
故选:B.
D.160°
6.(2020•眉山)如图,四边形 ABCD 的外接圆为 O , BC CD , DAC 35 , ACD 45 ,则 ADB 的度数 为( )
∴∠OEC=∠OCE=40°+ x,
∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,
∴∠OED<20°+ x,
∴∠CED=∠OEC﹣∠OED>(40°+ x)﹣(20°+ x)=20°,
∵∠CED<∠ABC=40°, ∴20°<∠CED<40° 故选:C. 二、填空题
16.(2020•襄阳)在 O 中,若弦 BC 垂直平分半径 OA ,则弦 BC 所对的圆周角等于 60 或 120 . 解:如图,
上任意一点.则
A.10°
B.20°
C.30°
D.40°
解:连接 OD、OE, ∵OC=OA, ∴△OAC 是等腰三角形, ∵点 D 为弦 AC 的中点, ∴∠DOC=40°,∠BOC=100°, 设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°, ∵OC=OE,∠COE=100°﹣x,
精品 九年级数学上册 圆的基本性质讲义+同步练习题

圆的基本性质知识点圆的定义几何定义:线段OA,绕O点旋转一周得到的图形,叫做圆。
其中,O为圆心,OA为半径。
集合定义:到定点等于定长的所有点的集合。
其中,定点为圆心,定长为半径。
圆的书写格式:圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
与圆有关的线段半径:圆上一点与圆心的连线段。
确定一个圆的要素是圆心和半径。
弦:连结圆上任意两点的线段叫做弦。
直径:经过圆心的弦叫做直径。
弦心距:圆心到弦的垂线段的长。
弧:圆上任意两点间的部分叫做圆弧,简称弧。
劣弧:小于半圆周的圆弧叫做劣弧。
表示方法:优弧:大于半圆周的圆弧叫做优弧。
表示方法:在同圆或等圆中,能够互相重合的弧叫做等弧。
注意:同弧或等弧对应的弦相等。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
注意: 定理中的“垂直于弦的直径”可以是直径,也可以是半径,深圳可以是过圆心的直线或线段;该定理也可以理解为:若一条直线具有两条性质:①过圆心;②垂直于一条弦,则此直线具有另外三条性质:①平分此弦;②平分此弦所对的优弧;③平分此弦所对的劣弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
在下列五个条件中:①CD是直径;②CD⊥AB;③AM=BM;④AC=BC;⑤AD=BD.只要具备其中两个条件,就可推出其余三个结论.注意:(1)在圆中,与已知弦(非直径)相等的弦共有条;共端点且相等的弦共有条。
(2)在圆中,与已知弦(非直径)平行的弦共有条;平行且相等的弦共有条。
例1.如图:OA、OB为⊙O的半径,C、D分别为OA、OB的中点,求证:AD=BC.例2.如图,已知AB是⊙O的直径,弦CD⊥AB,垂足是E,如果AB=10cm,CD=8cm,求AE的长。
人教版 九年级上册数学 24.1 圆的有关性质 同步训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 同步训练一、选择题(本大题共10道小题) 1. 2018·衢州 如图,点A ,B ,C 在⊙O 上,∠ACB =35°,则∠AOB 的度数是( )A .75°B .70°C .65°D .35°2. 如图,AB是⊙O 的直径,弦CD ⊙AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵C .⊙BOC 是等边三角形D .四边形ODBC 是菱形3. 如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点.若∠BAD =105°,则∠DCE 的度数为 ( )A .115°B .105°C .100°D .95°4. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,⊙DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .210 C .211 D .4 35. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,于点D ,连接BD ,BC ,且,,则BD 的长为A .B .4C .D .4.86.⊙⊙⊙⊙O⊙⊙⊙⊙4⊙⊙ABC⊙⊙O⊙⊙⊙⊙⊙⊙⊙⊙⊙OB⊙OC⊙⊙⊙BAC⊙⊙BOC⊙⊙⊙⊙⊙BC⊙⊙⊙( )A . 3 3B . 4 3C . 5 3D . 637. 如图,⊙ABC的内心为I ,连接AI 并延长交⊙ABC 的外接圆于点D ,则线段DI 与DB 的关系是( )A .DI =DB B .DI >DBC .DI <DBD .不确定OD AC ⊥10AB =8AC =⊙⊙⊙⊙⊙⊙ABCD⊙⊙⊙⊙O⊙⊙I⊙⊙ABC⊙⊙⊙⊙⊙AIC⊙124°⊙⊙E⊙AD⊙⊙⊙⊙⊙⊙⊙⊙CDE⊙⊙⊙⊙()A⊙56° B⊙62° C⊙68° D⊙78°9. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70° B.60° C.50° D.40°10. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB上升()A.1分米B.4分米C.3分米D.1分米或7分米二、填空题(本大题共7道小题)11. 如图,C,D两点在以AB为直径的圆上,AB=2,⊙ACD=30°,则AD=________.12. 如图所示,动点C在⊙O的弦AB上运动,AB=23,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为________.13. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.14. 如图,以⊙ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若⊙A=65°,则⊙DOE=________°.15. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.16. 将量角器按图所示的方式放置在三角形纸片上,使顶点C在半圆上,点A,B 的读数分别为100°,150°,则∠ACB的大小为________°.17. 如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,C 为弧BD 的中点.若∠DAB =40°,则∠ABC =________°.三、解答题(本大题共4道小题)18. 如图,在⊙ABC中,∠C =90°,D 是BC 边上一点,以BD 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连接EF. (1)求证:∠1=∠F ;(2)若AC =4,EF =2 5,求CD 的长.19.如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,延长AB 到点E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF.求证:BF =12BD.20. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.21. 2018·牡丹江如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .人教版 九年级数学 24.1 圆的有关性质 同步训练-答案一、选择题(本大题共10道小题) 1. 【答案】B2. 【答案】B[解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的.故选B.3. 【答案】B4. 【答案】C5. 【答案】C【解析】∵AB 为直径,∴,∴, ∵,∴, 在中,.故选C .6.【答案】B⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙CO ⊙⊙O ⊙⊙A ′⊙⊙⊙A ′B .⊙⊙BAC ⊙α⊙⊙⊙BOC ⊙2⊙BAC⊙2α⊙⊙⊙BAC ⊙⊙BOC ⊙180°⊙⊙α⊙2α⊙180°⊙⊙α⊙60°.⊙⊙BA ′C ⊙⊙BAC ⊙60°⊙⊙CA ′⊙⊙⊙⊙⊙⊙A ′BC ⊙90°⊙⊙⊙Rt⊙A ′BC ⊙⊙BC ⊙A ′C ·sin⊙BA ′C ⊙2×4×32⊙4 3.7. 【答案】A[解析] 连接BI ,如图.∵△ABC 的内心为I , ∴∠1=∠2,∠5=∠6. ∵∠3=∠1, ∴∠3=∠2.∵∠4=∠2+∠6,∠DBI =∠3+∠5, ∴∠4=∠DBI ,∴DI =DB. 故选A.8. 【答案】C[解析] ⊙点I 是⊙ABC 的内心,⊙⊙BAC =2⊙IAC ,⊙ACB =2⊙ICA . ⊙⊙AIC =124°,⊙⊙B =180°-(⊙BAC +⊙ACB )=180°-2(⊙IAC +⊙ICA )=180°-2(180°-⊙AIC )90ACB ∠=︒6BC ===OD AC ⊥142CD AD AC ===Rt CBD △BD ===68°.又四边形ABCD 内接于⊙O , ⊙⊙CDE =⊙B =68°.9. 【答案】D[解析] ∵∠BOC =110°,∴∠AOC =70°.∵AD ∥OC ,∴∠A =∠AOC =70°.∵OA =OD ,∴∠D =∠A =70°.在⊙OAD 中,∠AOD =180°-(∠A +∠D)=40°.10. 【答案】D二、填空题(本大题共7道小题)11. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.12. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.13. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.14. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.15. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.16. 【答案】25[解析] 设量角器的中心为O ,由题意可得∠AOB =150°-100°=50°,所以∠ACB =12∠AOB =25°.17. 【答案】70[解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C为弧BD 的中点,∴∠CAB =12∠DAB =20°, ∴∠ABC =70°.三、解答题(本大题共4道小题)18. 【答案】解:(1)证明:如图,连接DE. ∵BD 是⊙O 的直径, ∴∠DEB =90°,即DE ⊥AB. 又∵E 是AB 的中点, ∴AD =BD ,∴∠1=∠B.又∵∠B =∠F ,∴∠1=∠F.(2)∵∠1=∠F ,∴AE =EF =2 5, ∴AB =2AE =4 5.在Rt⊙ABC 中,∵AC =4,∠C =90°, ∴BC =AB2-AC2=8. 设CD =x ,则AD =BD =8-x. 在Rt⊙ACD 中,∵∠C =90°,∴AC2+CD2=AD2,即42+x2=(8-x)2, 解得x =3,即CD =3.19. 【答案】证明:连接AC.∵AB =BE ,F 是EC 的中点, ∴BF 是⊙EAC 的中位线, ∴BF =12AC. ∵AD ︵=BC ︵,∴AD ︵+AB ︵=BC ︵+AB ︵,即BD ︵=AC ︵, ∴BD =AC ,∴BF =12BD.20. 【答案】证明:如图,延长AD 交⊙O 于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD.∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD.21. 【答案】证明:如图,延长AD 交⊙O 于点E , ∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD .∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD .。
精品人教版九年级数学上册24.1 圆的基本性质(2) 同步练习 含答案

24.1 圆(第二课时 )------ 垂径定理知识点1、垂径定理:垂直于弦的直径 ,并且平分弦所对的 。
2、推论:平分弦(不是直径)的直径 ,并且平分弦所对的 。
【特别注意:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用;2、圆中常作的辅助线是过圆心作弦的垂线;3、垂径定理常用作计算,在半径r 、弦a 、弦心d 、和拱高h 中已知两个可求另外两个】 一、选择题1.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是( )A 2.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ). A.2 B.3 C.4 D.53.在半径为5cm 的圆中,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 和CD 的距离是( ). A.7cm B.1cm C.7cm 或4cm D.7cm 或1cm4.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ).B (A )22 (B )32 (C )5(D )535.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( ) A .CM=DM B . CB DBC .∠ACD=∠ADCD .OM =MD6.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.D.7.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.208、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm二、填空题1.如图,AB是⊙O的直径,BC是弦,OD⊥BC,垂足为D,已知OD=5,则弦AC= .2、如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.3、如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.4、如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.Θ与x轴交于O,A 5、如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ的半径为13,则点P的坐标为____________.两点,点A的坐标为(6,0),P6.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.7.如图,AB是⊙O的弦,OC⊥AB于C.若0C=1,则半径OB的长为.8.如图,⊙O 的半径为5,P 为圆内一点,P 到圆心O 的距离为4,则过P 点的弦长的最小值是.9.如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是 m.D10.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .三、解答题1.如图,AB 和CD 是⊙O 的弦,且AB=CD , E 、F 分别为弦AB 、CD 的中点, 证明:OE=OF 。
人教版九年级数学上册24.1圆的有关性质同步练习 附答案解析(二)

24.1圆的有关性质同步练习(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列结论正确的是().A. 过圆心的线段是直径B. 半圆是弧C. 弧是半圆D. 弦是直径2、如图,是的外接圆,,则的度数等于()A.B.C.D.3、给出下列命题:垂直于弦的直线平分弦;平分弦的直径必垂直于弦,并且平分弦所对的两条弧;平分弦的直线必过圆心;弦所对的两条弧的中点连线垂直平分弦,其中正确的命题有个.A.B.C.D.4、如图,是的直径,是垂直于的半径,过上的一点作弦,分别交和与点且,那么与的数量关系是()A.B.C.D.5、下列命题正确的是()A. 若两弧的度数相等,则两条弧是等弧B. 若两弧不等,则大弧所对的圆心角较大C. 若弦长等于半径,则弦所对的劣弧的度数为D. 若两弦相等,则它们所对的弧相等6、如图,正方形内接于圆点,在弧上,( ).A.B.C.D.7、图中的五个半圆,邻近的两半圆相切,若两只小虫同时出发,以相同的速度从点到点,甲虫沿、、、路线爬行,乙虫沿路线爬行,则下列结论正确的是()A. 无法确定B. 甲、乙同时到C. 乙先到点D. 甲先到点8、如图,已知点平面直角坐标系内三点、、,经过点、、,则点的坐标为()A.B.C.D.9、如图,是的外接圆的直径,为上一点,,垂足为,,,则的长为()A.B.C.D.10、给定下列图形可以确定一个圆的是()A. 已知圆心B. 已知半径C. 已知直径D. 三个点11、如图,在中,,,为上的任意一点,、、、是上的四个点,则的角度为()A.B.C.D.12、如图,是的直径,,则的度数为()A.B.C.D.13、如图,是的直径,,,则的度数是()A.B.C.D.14、如图,在中,弦,于点,于点,若,,则的半径的长为()A.B.C.D.15、已知如图,是的直径,弦于,,,则的直径为()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,是的直径,点在上,,点在线段上运动,设,则的取值范围是____.17、如图,在四边形中,、、三点在以为圆心的圆周上,延长交于点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册圆的基本性质(2)同步练习
------ 垂径定理
知识点
1
﹨垂径定理:垂直于弦的直径 ,并且平分弦所对的 。
2﹨推论:平分弦(不是直径)的直径 ,并且平分弦所对的 。
【特别注意:1﹨垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用;2﹨圆中常作的辅助线是过圆心作弦的垂线;3﹨垂径定理常用作计算,在半径r ﹨弦a ﹨弦心d ﹨和拱高h 中已知两个可求另外两个】 一﹨选择题
1.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是( )
A .
B .
C .
D .
2.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ). A.2 B.3 C.4 D.5
3.在半径为5cm 的圆中,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 和CD 的距离是( ). A.7cm B.1cm C.7cm 或4cm D.7cm 或1cm
4.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ).B (A )22 (B )32 (C )5 (D )53 B
O
A
5.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( ) A .CM=DM B . CB DB C .∠ACD=∠ADC D .OM =MD
·
A
O M
B
6.如图,在半径为5的⊙O中,AB﹨CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()
A.3 B.4 C.32
D.42
7.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为(
)
A.8 B.10 C.16 D.20
8﹨如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()
A.3cm B.4cm C.5cm D.6cm
二﹨填空题
1.如图,AB是⊙O的直径,BC是弦,OD⊥BC,垂足为D,已知OD=5,则弦AC= .
2﹨如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.A ·
C
O
D
3﹨如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.
4﹨如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.
Θ与x轴交于O,A 5﹨如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,P
Θ的半径为13,则点P的坐标为____________.
两点,点A的坐标为(6,0),P
6.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.
7.如图,AB是⊙O的弦,OC⊥AB于C.若3,0C=1,则半径OB的长为.
B
A C
E D
O
F
C
8.如图,⊙O 的半径为5,P 为圆内一点,P 到圆心O 的距离为4,则过P 点的弦长的最小值是 .
O
P
9.如图,一条公路的转弯处是一段圆弧(图中的AB ︵
),点O 是这段弧的圆心,C 是AB ︵
上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是 m.
D
10.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .
三﹨解答题
1.如图,AB 和CD 是⊙O 的弦,且AB=CD , E ﹨F 分别为弦AB ﹨CD 的中点, 证明:OE=OF 。
2.如图,在⊙O 中,AB ,AC 为互相垂直且相等的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,
求证:四边形ADOE是正方形.
3.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD 的上方,求AB和CD的距离.
4.某机械传动装置在静止时如图,连杆PB与点B运动所形成的⊙O交于点A,测得P A=4cm,AB=6cm,⊙O半径为5cm,求点P到圆心O的距离.
24.1 圆(第二课时 )
------ 垂径定理 知识点
1.平分弦 两条弧
2.垂直于弦 两条弧 一﹨选择题
1.B ;
2.A;
3.D;
4.B;
5.D;
6.C;
7.D;
8.C. 二﹨填空题 1.10 2﹨48° 3﹨
174
4﹨23 5﹨(3,2) 6.5 7.2 8.6 9.250 10. 23 三﹨解答题
11
AB,OE AE
2
1
CD,OF CD
2AB CD AE CF
t OAE t OCF AE CF OA OC
t OAE t OCF OE OF
∴⊥∴⊥=∴==⎧⎨
=⎩∴∴=、证明:连接OA 、OC E 是AB 的中点
AE=F 是CD 的中点
CF=在R 和R 中R ≌R
1
AD AB,ODA 902OE AC
1
AE AC,OEA 902
AB AC EAD 90AB AC
AD AE
︒
︒
︒
⊥∴=∠=⊥∴=∠=⊥∴∠=∴=∴=
∴2、证明:OD
AB 四边形ADOE 是矩形四边形ADOE 是正方形
31
CD 8
2
OE 15AB CD OF AB 1
AE AB 152
OE 8OF OE 1587cm AB 7cm
⊥∴=∴===∴⊥∴=
=∴===∴-=-=∴、解:连接OA 、OC
过O 作OF CD 于F,与AB 交于点E CF=和CD 的距离为
4.某机械传动装置在静止时如图,连杆PB 与点B 运动所形成的⊙O 交于点A ,测得
PA=4cm ,AB=6cm ,⊙O 半径为
5cm ,求点P 到圆心O
的距离.
41
AB 3
2
PD PA AD 437AOD 4
⊥=∴=+=+=∴==∴==、解:连接OA ,过O 作OD AB 于D
则AD=BD=在Rt 中,OA=5
在Rt OPD 中。