第六章 麦斯韦电磁场理论 电磁波 电磁单位制 习题
电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,BE t ∂∇⨯=-∂,0B ∇=,D ρ∇=2静电场的基本方程积分形式为:CE dl =⎰S D ds ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H 4线性且各向同性媒质的本构关系方程是: 4.D E ε=,B H μ=,J E σ= 5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂6电位满足的泊松方程为2ρϕε∇=-; 》在两种完纯介质分界面上电位满足的边界 。
12ϕϕ=1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E 的单位是V/m ,电位移D的单位是C/m2 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是( 0B ∇= )2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。
8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。
电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为0000()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
电磁学练习题

第六章 静电场1一、选择题1、下列几个叙述中哪一个是正确的? [ ](A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由E =F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F为试验电荷所受的电场力。
(D )以上说法都不正确。
2、一均匀带电球面,电荷面密度为 ,球面内电场强度处处为零,球面上面元dS 带有dS的电荷,该电荷在球面内各点产生的电场强度为 [ ] (A) 处处为零; (B) 不一定都为零; (C) 处处不为零; (D) 无法判断。
3、如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 [ ](A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变;(C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
4、 关于高斯定理的理解有下面几种说法,其中正确的是 [(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
5、 两个均匀带电的同心球面,半径分别为R 1、R2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布[ ](A) (B) (C) (D)12121221二、填空题1、 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为方向 。
2、在场强为E的均匀电场中,有一半径为R 长为L 的圆柱面,其轴线与E的方向垂直,在通过轴线并垂直E方向将此柱面切去一半,如图所示,则穿过剩下的半圆柱面的电场强度通量等于 。
电磁场与电磁波习题及答案

11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
(完整word版)电磁场与电磁波试题及答案.,推荐文档

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D BH J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂v vv v v v v ,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=v v g 、20n E ⨯=vv 、2s n H J ⨯=vv v 、20n B =v v g )1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=v v v ;动态矢量位A E t ϕ∂=-∇-∂v v 或AE tϕ∂+=-∇∂vv 。
库仑规范与洛仑兹规范的作用都是限制A v 的散度,从而使A v的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义2.sA ds φ=⋅⎰⎰v v Ò 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z xy z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭r rr r r r r r3x y zx y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂r r由此说明了矢量场的散度与坐标的选择无关。
电磁场练习题

电磁场练习题一、选择题1. 电磁波是一种:A. 机械波B. 电磁场的传播C. 粒子流D. 声波2. 麦克斯韦方程组中描述电场和磁场变化关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 安培定律D. 洛伦兹力定律3. 以下哪个不是电磁波的特性:A. 波长B. 频率C. 质量D. 速度4. 电磁波的传播不需要:A. 介质B. 真空C. 电荷D. 磁场5. 根据洛伦兹力定律,一个带正电的粒子在磁场中运动时,其受力方向:A. 与速度和磁场垂直B. 与速度方向相同C. 与磁场方向相同D. 与速度和磁场平行二、填空题6. 电磁波的传播速度在真空中等于______。
7. 麦克斯韦方程组包括高斯定律、高斯磁定律、法拉第电磁感应定律和______。
8. 当电磁波的频率增加时,其波长会______。
9. 电磁波的频率与波长的关系可以用公式______表示。
10. 在电磁波的传播过程中,电场和磁场的能量是相互______的。
三、简答题11. 简述麦克斯韦方程组的物理意义。
12. 描述电磁波在介质中的传播与在真空中的传播有何不同。
13. 解释为什么电磁波可以穿透某些物质,而不能穿透另一些物质。
四、计算题14. 假设一个电磁波在真空中的频率为10GHz,求其波长。
15. 已知一个带电粒子在均匀磁场中以速度v=3×10^7 m/s运动,磁场强度B=0.5T,求该粒子受到的洛伦兹力的大小和方向。
五、论述题16. 论述电磁波在现代通信技术中的应用及其重要性。
17. 讨论电磁波的产生机制以及它们在自然界和人工环境中的表现形式。
六、实验题18. 设计一个实验来验证电磁波的反射和折射现象。
19. 利用示波器观察电磁波的传播,并记录其波形,分析其特点。
20. 通过实验演示电磁波的干涉和衍射现象,并解释其物理原理。
以上练习题涵盖了电磁场的基本概念、电磁波的性质、麦克斯韦方程组的应用以及电磁波在现代科技中的应用等多个方面,旨在帮助学习者全面理解和掌握电磁场的相关知识。
电磁场与电磁波第6章习题答案

第6章习题答案6-1 在1=r μ、4=r ε、0=σ的媒质中,有一个均匀平面波,电场强度是)3sin(),(πω+-=kz t E t z E m若已知MHz 150=f ,波在任意点的平均功率流密度为2μw/m 265.0,试求:(1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η (2)0=t ,0=z 的电场?)0,0(=E(3)时间经过μs 1.0之后电场)0,0(E 值在什么地方?(4)时间在0=t 时刻之前μs 1.0,电场)0,0(E 值在什么地方? 解:(1))rad/m (22πεπμεω===r cfk )m/s (105.1/8⨯==r p c v ε)m (12==kπλ )Ω(60120πεμπη=rr=(2)∵ 6200210265.02121-⨯===m rm av E E S εεμη∴ (V/m)1000.12-⨯=m E)V/m (1066.83sin)0,0(3-⨯==πm E E(3) 往右移m 15=∆=∆t v z p(4) 在O 点左边m 15处6-8微波炉利用磁控管输出的2.45GHz 频率的微波加热食品,在该频率上,牛排的等效复介电常数)j 3.01(40~-=rε。
求: (1)微波传入牛排的穿透深度δ,在牛排内8mm 处的微波场强是表面处的百分之几?(2)微波炉中盛牛排的盘子是发泡聚苯乙烯制成的,其等效复介电常数=r ε~ )103.0j 1(03.14-⨯-。
说明为何用微波加热时,牛排被烧熟而盘子并没有被毁。
解:(1)20.8mm m 0208.011211212==⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+==-ωεσμεωαδ%688.20/8/0===--e e E E z δ(2)发泡聚苯乙烯的穿透深度(m)1028.103.1103.01045.22103212213498⨯=⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛===-πμεωεσωμεσαδ可见其穿透深度很大,意味着微波在其中传播的热损耗极小,所以不会被烧毁。
电磁场与电磁波习题及答案

11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 麦克斯韦电磁场理论 电磁波 电磁单位制 习题
一、判断
1、在真空中,只有当电荷作加速运动时,它才可能发射电磁波。
√
2、振动偶极子辐射的电磁波,具有一定方向性,在沿振动偶极子轴线方向辐射最强,而与偶极子轴线垂直的方向没有辐射。
×
3、一个正在充电的圆形平板电容器,若不计边缘效应,电磁场输入的功率是⎪⎪⎭⎫ ⎝⎛=•=⎰⎰C q dt d A d S P 22ρϖ。
(式中C 是电容,q 是极板上的电量,dA 是柱例面上取的面元)。
√
二 选择
1.一个匀速直线运动的负电荷,能在周围空间产生:
A .静电场,静磁场
B .库仑场,运动电荷的磁场
C .库仑场,运动电荷的磁场,感应电场
D .库仑场,运动电荷的磁场,感应电场,感应磁场
2.一平行板电容器的两极半径是5.0cm 的圆导体片,在充电时,其中电场强度的变化率为2.0×1012V/m·s 。
则两极板间的位移电流I D 为:
A .2.0×1012V/m·s
B .17.7A/m 2
C .1.4×106T
D .1.4×10-1A
3.一平行板电容器的两极板都是半径为5.0cm 的原导体片,在充电时,其中电场强度的变化率为1.0x1012V/m·s 。
则极板边缘的磁感应强度为:
A .2.8×10-7T
B .4.0×106T
C.3.54×10-2T
D.0
4.半径为R 的半圆平行板电容器接在角频率为ω的简谐交流电路中,电路中的传导电流为i=I 0 sin(ωt+φ)。
则电容器极板间的位移电流I 0 为(忽略边缘效应):
A
B
C
D
5 半径为R的圆形平行板电容器接在角频率为ω的简谐交流电路中,电路中的传导电流ⅰ=I 0 sin(ωt+φ)。
则电容器极板间磁场强度的分布为;
A
B
C
D
6 由两个圆形金属板组成的平行板电容器,其极板面积为A,将该接于一交流电源时,极板上的电荷随时间变化,即q=q m sinωt,则电容器内的位移电流密度为;
A
B
C
D
7 由两个圆形金属板组成的平行板电容器,其极板面积为A,将该接于一交流电源时,极板上的电荷随时间变化,即q=q m sinωt,则两板间的磁感应强度分布为:
A
B
C
D
8 极板为圆的平行板电容器接上交变电源,已知板内电场E=720sin105πtV/m,则当时电容器内距轴线r=10-2m的一点P的磁场强度H为:
A.3.6×105πε 0 A/m
B.3.6×105πA/m
C.3.6×105ε 0 A/m
D.0
9 电容器由相距r的两个半径为A的圆导体板构成。
略去边缘效应。
对电容器充电时,流入电容器的能量速率为:
A.B.
C.D.
10 一个正在充电的圆形平行板电容器,设边缘效应可以忽略。
则电容器内的玻印廷失量S:
A.处处与极板间圆柱形空间的侧面垂直且背离轴线
B.处处与极板间圆柱形空间的侧面垂直且指向轴线
C.处处与极板间原柱形空间侧面平行
D.处处等于0
三 计算题
1:圆片平板电容器
t q q ωsin 0= 求:(1)板间D j 、D I
(2))(R r <处的
H 、B 、w
解:(1)t D j D ∂∂=,20
sin R t q S q D πωσ===,t D j D ∂∂==20cos R t q πωω S d j I S D D ρρ⋅=⎰=dS j S
D θcos ⎰=S j D =t q ωωcos 0 (2)⎰=⋅L D I l d H ρρ,22r j r H D ππ==22
0cos r R t q ππωω
r R t q H 202cos πωω=,r R
t q H B 20002cos πωωμμ== 20022
1212121H D H B E D w με+=⋅+⋅=ρρρρ =)cos 41(sin 222200240220t r t R q ωωμεωεπ+ 2:q +以速率V 朝O 点运动 t 时刻q +与O 点相距x 求:(1)通过圆面的D I (2)圆周上的B ρ 解:(1)⎰⋅=ΦS D S d D ρρ=⎰S dS D θcos =⎰++S y x x y x q
π)(42222 =⎰+R y x ydy qx 02/322)(21=0)1(2122R y x qx +- =)1(2122R x x q +-
a
=Φ=Φ=dt dx dx d dt d I D D D 2/3222)
(21R x R qV +,(dt dx V -=) (2)⎰=⋅L D I l d H ρρ,=R H π22
/3222
)(21R x R qV + 2/322)(4R x qVR H +=π,2/32200)(4R x qVR H B +==πμμ r
R =αsin ,22R x r += 20sin 4r
qV B απμ=,304r r V q B ρρρ⨯=πμ。