过程控制实验(液位控制)

合集下载

液位检测与控制实验 浙江大学 过程控制基础及实验

液位检测与控制实验 浙江大学 过程控制基础及实验

液位检测与控制实验一、实验目的1.通过实验了解液位测量的基本方法、工作原理及使用与校验方法2.仪表误差分析方法3.了解差压变送器ST3000的工作原理及使用方法4.了解零点迁移、满度调校等基本概念5.了解工业触摸屏的工作原理6.熟悉一阶对象的数学模型及其阶跃响应曲线7.根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定模型参数二、实验器材CS1000液位检测实验装置、差压变送器 ST3000、AI808智能调节仪、工业触摸屏三、实验原理C S1000型液位检测实验装置对象系统包含有:有机玻璃上水箱、不锈钢储水箱。

系统动力支路:由循环水泵、电动调节阀组成;装置检测变送和执行元件有:差压变送器ST3000、Y-100压力表、电动调节阀等。

本次实验使用ST3000差压变送器来检测液位高度,并与实际液位标尺值进行比较,求出ST3000差压变送器的测量精度等性能指标。

差压变送器的工作原理:当被测介质(液体)的压力作用于传感器时,压力传感器将压力信号转换成电信号,经归一化差分放大和输V/A 电压、电流转换器,转换成与被测介质(液体)的液位压力成线性对应关系的4~20mA 标准电流输出信号。

接线如图1所示。

CS1000装置的控制系统采用的是具有人工智能算法及通讯接口的AI808智能调节仪,上位机选择的是MCGS 触摸屏。

上位机MCGS 触摸屏通过RS232/485转换装置同AI808仪表侧部的RS485串行接口进行通讯。

学生可以直接通过AI808控制器面板上的操作按钮直接设定SV 、PID 等调节参数,也可以通过上位机MCGS 触摸屏远程控制AI808控制器,修改AI808控制器的控制参数。

通过运行触摸屏组态文件还可以观察被控参数的实时曲线、历史曲线,SV 设定值、PV 测量值、OP 输出值、各实验都设有动态流程图、及被测参数动态显示及变化棒图显示系统流程图。

触摸屏的组态文件可以根据实际需要自行编辑、下载,非常方便。

液体混合控制实验报告

液体混合控制实验报告

一、实验目的1. 了解液体混合装置的结构和工作原理;2. 掌握PLC控制系统的基本原理和应用;3. 学会使用PLC技术实现对液体混合过程的自动化控制;4. 提高动手能力和实验技能。

二、实验原理液体混合装置主要用于将两种或多种液体按照一定比例进行混合。

实验中,我们采用PLC控制系统实现对液体混合过程的自动化控制。

PLC(可编程逻辑控制器)是一种广泛应用于工业控制领域的电子设备,具有可靠性高、抗干扰能力强、编程灵活等优点。

实验原理如下:1. 通过传感器采集液体混合装置的液位、温度等参数;2. 将传感器采集的信号传输至PLC控制器;3. PLC控制器根据预设的控制程序,对电磁阀、搅拌机等执行机构进行控制,实现对液体混合过程的自动化控制;4. 通过人机界面实时显示液体混合装置的运行状态。

三、实验设备1. PLC控制器(如S7-200系列);2. 传感器(如液位传感器、温度传感器);3. 电磁阀、搅拌机等执行机构;4. 实验装置(含液体混合容器、连接导线等);5. 编程软件(如STEP 7-Micro/WIN);6. 计算机等辅助设备。

四、实验步骤1. 连接实验装置,确保各部件连接正确;2. 在PLC控制器中编写控制程序,实现对液体混合过程的自动化控制;3. 通过编程软件将控制程序下载至PLC控制器;4. 设置PLC控制器的运行参数,如液位、温度等;5. 启动实验装置,观察液体混合过程;6. 调整控制参数,优化液体混合效果;7. 记录实验数据,分析实验结果。

五、实验结果与分析1. 液体混合装置的液位传感器能够准确采集液位信息,并将信号传输至PLC控制器;2. PLC控制器根据预设的控制程序,对电磁阀、搅拌机等执行机构进行控制,实现了液体混合过程的自动化控制;3. 实验过程中,通过调整控制参数,优化了液体混合效果;4. 实验结果表明,PLC控制系统在液体混合过程中具有较好的控制性能。

六、实验总结1. 通过本次实验,我们了解了液体混合装置的结构和工作原理;2. 掌握了PLC控制系统的基本原理和应用;3. 学会了使用PLC技术实现对液体混合过程的自动化控制;4. 提高了动手能力和实验技能。

过程控制实验报告3(液位单闭环实验)

过程控制实验报告3(液位单闭环实验)

班级:082班座号:姓名成绩:
课程名称:过程控制工程实验项目:液位单闭环实验
一、实验目的:
通过实验掌握单回路控制系统的构成。

学生可自行设计,构成单回路单容液位,并采用临界比例度法、阶跃反应曲线法和整定单回路控制系统的PID参数,熟悉PID参数对控制系统质量指标的影响,用计算机进行PID参数的调整和自动控制的投运。

二、实验设备:
水泵、变频器、压力变送器、主回路调节阀、上水箱、上水箱液位变送器、牛顿模块(输入、输出)。

表4-13 阶跃反应曲线整定参数表
4、将计算所得的PID参数值置于计算机中。

5、使水泵Ⅰ在恒压供水状态下工作。

观察计算机上液位曲线的变化。

6、待系统稳定后,给定加个阶跃信号,观察其液位变化曲线。

7、再等系统稳定后,给系统加个干扰信号,观察液位变化曲线。

8、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果于表格4.12中。

五、试验报告:
根据试验结果编写实验报告,并根据K、T、τ平均值写出广义的传递函数。

MCGS水位控制系统实验

MCGS水位控制系统实验

实验1 建立一个新工程1.1建立工程通过一个水位控制系统的组态过程,介绍如何应用MCGS组态软件完成一个工程。

通过本讲及后续几讲学习,您将会应用MCGS组态软件建立一个比较简单的水位控制系统。

本样例工程中涉及到动画制作、控制流程的编写、模拟设备的连接、报警输出、报表曲线显示与打印等多项组态操作。

水位控制需要采集二个模拟数据:液位1(最大值10米)液位2(最大值6米)三个开关数据:水泵、调节阀、出水阀。

工程效果图工程组态好后,最终效果图如下:在菜单“文件”中选择“新建工程”菜单项,如果MCGS安装在D:根目录下,则会在D:\MCGS\WORK\下自动生成新建工程,默认的工程名为新建工程X.MCG(X表示新建工程的顺序号,如:0、1、2等)。

如下图:您可以在菜单“文件”中选择“工程另存为”选项,把新建工程存为:D:\MCGS\WORK\水位控制系统。

祝贺您,已经成功地建立了自己的工程!1.2 设计画面流程建立新画面在MCGS组态平台上,单击“用户窗口”,在“用户窗口”中单击“新建窗口”按钮,则产生新“窗口0”,即:选中“窗口0”,单击“窗口属性”,进入“用户窗口属性设置”,将“窗口名称”改为:水位控制;将“窗口标题”改为:水位控制;在“窗口位置”中选中“最大化显示”,其它不变,单击“确认”。

选中刚创建的“水位控制”用户窗口,单击“动画组态”,进入动画制作窗口。

工具箱单击工具条中的“工具箱”按钮,则打开动画工具箱,图标对应于选择器,用于在编辑图形时选取用户窗口中指定的图形对象;图标用于打开和关闭常用图符工具箱,常用图符工具箱包括27种常用的图符对象。

图形对象放置在用户窗口中,是构成用户应用系统图形界面的最小单元,MCGS中的图形对象包括图元对象、图符对象和动画构件三种类型,不同类型的图形对象有不同的属性,所能完成的功能也各不相同。

为了快速构图和组态,MCGS系统内部提供了常用的图元、图符、动画构件对象,称为系统图形对象。

液位控制实训总结报告范文

液位控制实训总结报告范文

一、引言随着工业自动化程度的不断提高,液位控制作为过程控制中的一个重要环节,在化工、食品、饮料等行业中发挥着至关重要的作用。

为了提高学生的实践操作能力和理论应用能力,本学期我们开展了液位控制实训课程。

通过本次实训,我们深入了解了液位控制的基本原理、常用设备和控制策略,并掌握了实际操作技能。

以下是本次实训的总结报告。

二、实训内容1. 液位控制原理首先,我们对液位控制的基本原理进行了学习。

液位控制是指通过调节流入或流出系统的流量,使容器内的液位保持在一个设定的范围内。

液位控制的基本原理包括液位、流量、压力和温度等参数的测量、信号传输、处理和执行机构控制。

2. 液位控制设备在实训过程中,我们学习了液位控制中常用的设备,如压力变送器、差压变送器、液位变送器、调节阀等。

这些设备在液位控制系统中起着关键作用,能够实时测量液位、流量等参数,并将信号传输至控制系统。

3. 液位控制策略液位控制策略是液位控制系统中的核心部分。

我们学习了常用的液位控制策略,如单回路控制、串级控制、前馈控制等。

这些控制策略能够根据液位变化及时调整控制参数,使液位保持稳定。

4. 实训项目本次实训主要分为以下三个项目:(1)液位控制系统的搭建与调试:根据实验要求,搭建液位控制系统,并进行参数调试,使系统达到预定的控制效果。

(2)液位控制系统的性能分析:对搭建的液位控制系统进行性能分析,包括系统稳定性、响应速度、控制精度等。

(3)液位控制系统的优化:针对实验中出现的问题,对液位控制系统进行优化,提高控制效果。

三、实训过程1. 前期准备在实训开始前,我们首先对实训内容进行了详细的了解,并准备了所需的实验器材和工具。

2. 搭建液位控制系统在指导老师的指导下,我们按照实验要求搭建了液位控制系统。

在搭建过程中,我们学习了各种设备的安装、接线方法和调试技巧。

3. 调试与优化在系统搭建完成后,我们对液位控制系统进行了调试和优化。

通过调整参数,使系统达到预定的控制效果。

过程控制实验指导书

过程控制实验指导书

过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。

2、掌握压力变送器的使用方法。

3、掌握实验装置的基本操作与变送器仪表的调整方法。

二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。

并将挂件的三芯蓝插头插于相应的插座中。

2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。

3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。

4)、关闭各个挂件的电源进行连线。

2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。

2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。

3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。

对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告一、实验目的1、了解单容水箱液位控制系统的结构与组成。

2、掌握单容水箱液位控制系统调节器参数的整定方法。

3、研究调节器相关参数的变化对系统静、动态性能的影响。

4、了解PID调节器对液位、水压控制的作用。

二、单容水箱系统模型图12.1液位控制的实现本实验采用计算机PID算法控制。

首先由差压传感器检测出水箱水位,水位实际值通过A/D转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值经过D/A模块转换成模拟信号,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。

2.2 被控对象本实验是单容水箱的液位控制。

被控对象为图1中的上水箱,控制量为流入水箱的流量,执行机构为调节阀。

由图1所示可以知道,单容水箱的流量特性:水箱的出水量与水压有关,而水压又与水位高度近乎成正比。

这样,当水箱水位升高时,其出水量也在不断增大。

所以,若阀开度适当,在不溢出的情况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。

由此可见,单容水箱系统是一个自衡系统。

三、电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。

电动调节阀接受调节器输出4~20mADC的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S的大小。

图2为电动调节阀与管道的连接图。

图2图中:u----来自调节器的控制信号(4~20mADC)θ----阀的相对开度s----阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q的关系是非线性的。

四、单容水箱系统PID控制规律及整定方法数字PID控制是在实验研究和生产过程中采用最普遍的一种控制方法,在液位控制系统中也有着极其重要的控制作用。

本章主要介绍PID控制的基本原理,液位控制系统中用到的数字PID控制算法及其具体应用。

基于过程控制的单回路系统液位实验研究

基于过程控制的单回路系统液位实验研究
[]S 7 0 —0 8流 动 式 起 重 机 型式 试 验 细 则 [] 5T G Q 0 52 0 , S.
作 者 简 介 : 张 洪 n 16 年 一)  ̄(9 8 ,男 ,高 级 工 程师 ,长 期 从 事 特 种 设 备 检 验 检测 工 作 。

譬叠
曾■
e ‘ = .
制 方 式 , 通过 液 位 趋 势 图 ,总 结 控 制 规律 。
关键 词:过程控制 ;PD I 控制器 :单回路:液位 控制
中 图分 类 号 :T 2 35 文献 标 识 码 :A 文 章 编 号 : P 7
HG - K 1型 过 程 控 制 实验 平 台是基 于工 业 过
模 拟输 入模 块插 孔相 连 , 以取 得输入 信 号 。从 总 监 测 台界面 观察 各过 程控 制量 的设 定值 、当前 值
[】 2尹献德. 浅谈架桥机 安装验收检验项 目的设置与要求[ 起重运输机械,0 03:912 2 1() —0 9 []S 7 1-0 8 3T G Q 0 52 0 , 起重机械定期检验规 则[】 S. [] BT19 22 0 , 4G / 7 9 .08集装箱正面 吊运起重机 安全规程[】 s.
行给 定值 、PD各参 数 的设定 。首先 将积分 常数 、 I
微 分常 数 设为 0 ,调 节 比例 系数 的大 小,点击 液 位 趋势 图观 察液 位 当前值 的变 化情 况 、及 稳 定后
的效果 。
在取 得较 好 的 比例 控 制 的情 况 下 ,保 持 比例 系数 不变 ,改变 积分 常数 的大 小 ,经过反 复实验 ,
《 电技术 》2 1 年第 4期 机 00
特种设备及检验检测
结构 特 点进行 分析 ,依据 起重 机械 的国家和 行业 相关 法规 、标准 ,从保证 正面 吊 自身安 全角度 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、思考题
1、在控制过程中遇到了哪些问题,你是如何解决的?为了提高控制效果,你在 控制算法上还采取了哪些措施?
答:在实验中,我们组的液位传感器的测量有较大误差,机内转换高度与实测值
相差大约在 30mm,所以对液位传感器的测量值进行误差补偿。由于我们先前学
习的是计算机语言室 C++,本次编程用的是 C 语言,我们实验过程中遇到一些
过程控制实验报告 实验二 传感器、执行器实验
一、实验目的 了解传感器、执行器的工作原理,掌握它们在实际过程控制中的应用。
二、实验要求 编程实现系统液位、温度、流量等模拟量的数据采集以及比例阀开度的控制。
三、实验步骤
1、液位传感器的测试
水箱内按要求注入不同高度的纯净水,测量数据填表如下:
高度 输出
250 mm 200 mm 150 mm 100 mm
其中水箱的截面积 A 190mm175mm 。
W(S)
200
6650000S 1
四、思考题
1、分析可能造成模型不准确的原因。
答:造成模型不准确的原因有可能有:液位传感器的准确度不高;流量传感 器
的准确度不高;为简化模型进行线性化处理带来的误差等。
实验四 液位单回路控制系统的设计及参数整定
一、实验目的
由①、②,消去中间变量 QO ,再求拉氏变换得 单容液位过程的传递函数为:
W (S) H (S) R2 K

Qi (S) R2 AS 1 TS 1
⑶ 关闭所有出水阀,向水箱内注水至 260mm 左右,然后按图 3-1 将出水 阀旋开至适当位置,测量给定液位高度所对应的流量值,填入下表。并根据 式③求液位对象的模型。
万用表测量值(伏) 2.77
2.09
1.48
0.89
50 mm 0.30
A/D 口测量值 (伏)
2.87
2.19
1.41
0.83
0.36
机内转换高度(mm) 221.5
175.4
112.9
66.8
28.9
相对误差(%)
11.4
12.3
24.7
33.2
42.2
2、温度传感器的测试数据如下表:
温度计(度)
0.00
2.50
相对误差(%)

0
5
7.5
10
5.01
7.52
10.03
0.2
0.27
0.3
四、思考题 1、用传感器测量过程变量的准确性如何?如果有误差,可以采取什么方法进行
修正? 答:用传感器测量过程变量中,液位测量的数值误差较大;流量传感器的测量值 由于没有理论值相比较,所以不知道传感器的测量准确性如何;温度传感器 的 测量结果与实际温度相差不大。用 PCL-812PG 板卡的 D/A 口向比例阀输出的控 制电压值与实际测量的误差很小。
8m40s
10
4m8s
15
5m
7.8
2m52s
7.3
4m20s
7
2
0.5
0.2
8.3
3m57s
对于选择调节器参数 KC 、 TI 和 TD 值,对比上面多次实验结果,当 KC =2, TI =0.5,TD =0.1 时,控制效果最佳。
对比 1、2、3 组实验数据,比例系数 KC 越大,控制作用越强,抑制超调量, 缩短调节时间。但是 KC 过大,容易引起被控量的振荡,使闭环系统部稳定。
对比 3、4、5 组实验数据,发现随着积分时间常数TI 减小,积分控制作用有 利于减小误差,减小超调量,缩短控制时间。但是积分时间常数TI 不宜过小,否 则系统稳定性有所下降。
对比 5、6、7 组实验数据,没有明显看出积分控制作用对系统性能的影响。 书本上说微分是按偏差的变化控制的,能够提高系统的稳定性,抑制超调。
编程语言方面的问题,在同学和老师的帮助下解决了。 为了提高控制效果,我们小组采用了增量式PID控制算法。可以适当减 小
超调量,提高系统的稳定性,增量只与最近几采样值有关,容易获得较好的控制
效 果 。 另 外 , 采 用 了 过 限 削 弱 积 分 法 , 及 当 u(k) 10 时 , u(k) 10 , 当
h (mm)
QO (l/min)
120
2.67
160
2.84
200
3.05
240
3.28
R2 (240 200 ) /(3.28 3.05) 173.9(mm min/ l) R2 (200 160) /(3.05 2.84) 190.5(mm min/ l) R2 (160 120) /(2.84 2.67) 235.3(mm min/ l) R2 200 (mm min/ l)
计算机
进水
LT
FT
x
出水
图 3-1 利用液位—输出流量关系建立模型的实验原理图
⑵ 原理
对于液位系统,根据动态物料平衡关系有
Qi
QO
A dh dt

式中: Qi —输入流量; QO —输出流量;
h —液位高度; A—水箱截面积;
Qi 、 QO 、 h 分别为偏离某一平衡状态 Qi0 、 QO0 、 h0 的增量。
15
传感器输出电压(伏)
0.77
A/D 口测量电压 (伏)
0.78
机内转换温度(度)
15.6
相对误差(%)
4
3、流量传感器的测试数据如下表:
脉冲数(个/秒)
278
274
264
256
270
流量(l/min)
3.74
3.68
3.57
3.47
3.64
4、比例阀的控制实验数据如下表:
控制量(伏)
0
2.5
测量值(伏)
液位设定值 —
液位调节器
流量阀
水箱
实际液位值
液位检测变送器
3、根据液位对象的数学模型,选择系统的采样周期
TS 0.5s 4、运用经验法确定数字调节器的参数
实验次数
调节器参数
KC
TI
TD
1
0.5
1
0.1
2
1
1
0.1
3
2
1
0.1
4
2
2
0.1
5
2
0.5
0.1
6
2
0.5
0.5
性能指标
0 0
tS
21
12m
16
u(k) 0时,u(k) 0 。
在静态时, Qi
QO

dh dt
0 ,当 Qi
变化时, h 、 QO
也将发生变化,由
流体力学可知,流体在紊流情况下, h 与流量之间为非线性关系,为简化起
见,作线性化处理。近似认为 QO 与 h 在工作点附近成正比,而与出水阀的阻
力 R2 (称为液阻)成反比,即
h QO R2

h R2 Q0

掌握过程计算机控制系统的单回路控制方式。 二、实验要求
设计单容水箱的液位单回路控制系统,实现液位的定值控制,并对系统进行 参数整定。 三、实验内容
1、按照图 4-1,在组合式实验装置上通过选择管路,构造液位单回路控制系 统。
计算机
进水
M
LI
出水
图 4-1 液位单回路控制系统原理图
2、画出液位单回路控制系统方框图。
如果有误差,在后续中,我们人为的对误差进行补偿。分析高度传感器测量 的结果,比实际液位高度低大约 30cm。
实验三 系统动态特性的测试
一、实验目的
学习单容对象动态特性的实验测定方法。
二、实验要求ຫໍສະໝຸດ 通过实验的方法建立液位对象的过程数学模型。
三、实验步骤
利用液位对象的液位与输出流量的关系建立其模型
⑴ 测试系统结构如图 3-1 所示。
相关文档
最新文档