2012年九年级上.畅优新课堂.数学参考答案
2012年九中三模数学试卷及答案

A BC D 第4题图2012年初三年级模拟考试数学试卷本卷满分:120分 考试时间:120分钟一 选择题(本大题共12小题,1~6题每小题2分,7~12题每小题3分,共30分) 1. 2-的3倍是 ( ) A.5- B.1 C 、6 D 、6-2.计算a 3·a 4的结果是 ( ) A .a 5 B .a 7 C .a 8 D .a 123. 如图, 点A 、B 、C 在⊙O 上, 若∠C =40︒, 则∠AOB 的度数为 ( )A .20︒B .40︒C .80︒D .100︒第3题图4.如图:矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和为 ( )A .14B .16C .20D .284-2a +4b 5.已知a -2b =-2,值是则的 ( ) A .0 B.2 C.4 D.86.如图,平行四边形ABCD 中,CE AB ⊥,E 为垂足.若125A =∠,则BCE =∠ A.55B.35C.25D.307.某市环保检测中心网站公布的2012年3月31日的PM2.5研究性检测部分数据如下表:时间0:004:008:0012:0016:0020:00PM2.5(mg/m 3) 0.027 0.035 0.032 0.014 0.016 0.032 则该日这6个时刻的PM2.5的众数和中位数分别是 ( )A. 0.032, 0.0295B. 0.026, 0.0295C. 0.026, 0.032D. 0.032, 0.027CBAOA E BCD6题图y 1y x2O -1 y 248.如图,在△ABC 中,∠C =90︒, 点D 在CB 上,DE ⊥AB 于E ,若DE=2, CA=4,则DBAB的值为 ( )A .41B .31C .12D .329. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( ) A.203525-=x x B.x x 352025=-C.203525+=x x D.xx 352025=+ 10.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是 ( )A .1 3B .512C .112D .1 211.根据图象,判断下列说法错误的是( )A .函数2y 的最大值等于4B .当x >2 时, 1y >2yC .当-1<x <3时,2y >1yD .当x 为-1或2时,1y = 2y12.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ) A . B . C . D .ED C BAE PC’A DBCO5yxO5yxOxy5O5y x2012年初三年级模拟考试数学试卷答题纸二 填空题(每题3分,共18分) 13. 分解因式:x 3 - 4x = .14. 如果一个正多边形的一个外角是60°,那么这个正多边形的边数是 .15. 不等式组 ⎪⎩⎪⎨⎧〉-〉+010121x x 的解集为 .16.已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =____ __. 17.、某计算装置有一数据入口A 和运算结果输出口B ,下表是小明输入的一些数据和经该装置后输出的相应数据结果:A 0.5 1 1.5 3 …B6321…根据计算装置的计算规律,若输入的数是x ,输出的数是y , 则y 与x 之间的函数关系式为___________.18.在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第2012次到达的顶点是 . 三 解答题19.(1)(本题满分8分) 计算:已知a = -2,1-=b ,求2221a b a ab --+÷1a 的值.A输 入 B 输 出A D C B电视机月销量扇形统计图第一个月15% 第二个月30%第三个月 25%第四个月图①20.(本题满分8分)在平面直角坐标系中,△ABC 的顶点坐标分别是 A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1) E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.21. (本题满分8分)某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图①和如图②. (1)第四个月销量占总销量的百分比是 ; (2)在图②中补全表示B 品牌电视机月销量的折线; (3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同, 请你结合折线的走势进行简要分析,判断该商店应经销 哪个品牌的电视机.时间/月10 20 30 50 40 60 图②销量/台 第一 第二 第三 第四 电视机月销量折线统计图A 品牌B 品牌80 7022.(本题满分8分)某厂家新开发一种摩托车如图所示,它的大灯A 射出的光线AB 、AC 与地面MN 的夹角分别为8°和10°,大灯A 与地面距离1 m .(1)该车大灯照亮地面的宽度BC 约是多少m ?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s ,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km /h 的速度驾驶该车,突然遇到危险情况,立即刹车直到摩托车停止,在这过程中刹车距离是314m ,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:2548sin ≈ ,718tan ≈ ,50910sin ≈ ,28510tan ≈ )23.(本题满分9分)已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ; (2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.M B C N ADCB AEMMEABCD24.(本题满分9分)今年4月18日,我国铁路第六次大提速,在甲、乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:(1)点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发车时间 h,点B的纵坐标300的意义是。
新课程课堂同步练习册(九年级数学上册人教版)答案-12页精选文档

《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案 第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤4. 1 三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >3 2. 3.(1; 4. 6三、1.(1) (2) 2.(1)87(2)5(3)213.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, , 73.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 6+, 3. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+= §22.1一元二次方程(二)一、1.C 2.D 3.C 二、1. 1(答案不唯一) 2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==- (4)1222x x ==- 2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)x =(3)1x =-± (4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得 2403840x x -+=, 解得 1216,24x x == ∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y ==3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1. 9m 4≤2. 243. 0三、1.(1)121x x 12==, (2)12x x ==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0 ∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x == (6)19x =-,22x =2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4) 12x 7x 2==-, 2.∵ 221=+x x ∴ 2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0 ∴ m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2 三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅ ∴1k -=- ∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30° 5 . 三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90° ∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴21)2AGH ABH S S cm ∆∆===由122GH ⨯GH在Rt △AGH 中,根据勾股定理得:2AH GH ==∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4-- 画图如下: 3.画图如下:§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB ' ∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形 §23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y += 解得1x =-,2y =∴()221x y +=⨯-B′B3.(1)D的坐标为(3,-4)或(-7,-4)或(-1,8)(2)C的坐标为(-1,-2),D的坐标为(4,-2),画图如图:§23.3 课题学习图案设计一、1.D 2.C二、1.72° 2.基本图案绕(2)的O点依次旋转60°、120°、180°、240°、300°而得到.三、1.(略)2.如图3.(1)是,6条(2)是(3)60°、120°、180°、240°、300°第二十四章圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数经过这一点的直径 2. 30 3. 半径圆上三、1.提示:证对角线互相平分且相等 2.提示:证明:OCDOAB∠=∠§24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分弧 2. 3≤OM≤53.三、1. 120 2. (1)、图略(2)、10cm§24.1.3 弧、弦、圆心角一、1. D 2. C 3. C二、1.(1) ∠AOB=∠COD, = (2) ∠AOB=∠COD, AB=CD (3) =, AB=CD2. 15°3. 2三、1. 略2.(1)连结OM、ON,在Rt△OCM和Rt△ODN中OM=ON,OA=OB,∵AC=DB,∴OC=OD,∴Rt△OCM≌Rt△ODN,∴∠AOM=∠BON,∴AM=BN§24.1.4圆周角一、1.B 2. B 3.C二、1.28 2. 4 3.60°或120°三、1.90o 提示:连接AD 2.提示:连接AD§24.2.1点和圆的位置关系一、1.B 2.C 3. B二、1.d<r d r= ,d>r 2. OP>6 3. 内部, 斜边上的中点, 外部三、1.略 2. 5cm§24.2.2直线与圆的位置关系(一)一、1. B 2. D 3. A二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切⌒⌒§24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.3、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o 10cm 3. 1﹕2 三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D二、1. 相交 2. 83. 2 3 10三、1.提示:分别连接1212,,O O O B O B ;可得1216030OO O O B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点3. 2a π三、1. 22. 边长为4,面积为32 §24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434-3.83π三、1. 10.5 2. 112π(2cm ) §24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cmπ3. 2π三、1. (1)20π (2)220 2. S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16 三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2. 72 3. 51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.3652. 1613.214.31三、1.(1)12;(2)树状图为:两位女生同时当选正、副班长的概率是21126=. 2.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分. 3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23=(2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是 P (和为偶数)13=, ∵2133≠, ∴不公平.(1,2) (1,3) (1,4) 23 4 1(2,1) (2,3) (2,4) 1 3 4 2(3,1) (3,2) (3,4) 1 2 4 3(4,1) (4,2) (4,3) 1 2 3 4第一次 摸球 第二次 摸球§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白, (2)92 3. 9 4. 13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5 次,7出现6次,故P (和为6)536=,P (和为7)636=. ∴P (和为6)<P (和为7),∴小红获胜的概率大. 2.(1)31 (2)31 (3)31. 3.(1)树状图为: (2)由图可知评委给出A选手所有可能的结果有8种.对于A 选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A 选手“只有甲、乙两位评委给出相同结论”的概率是14. §25.3利用频率估计概率(一)一、1. B 2. C二、1. 常数 2. 2501 3. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%.3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31(3)0.31§25.3利用频率估计概率(二)一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1. (1)92 (2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c §25.4 课题学习通过 通过待定 待定通过 通过 待定 通过待定通过 待定通过 待定 甲 乙丙一、1.D 2. B二、1.概率 2.Z 3.31 三、1.(1) 91 (2) 31 (3) 32 2.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。
人教版九年级数学上册课本练习题答案

第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。
】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为 xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为 x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约 1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴ AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则 AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=± 1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2) x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2(4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50整理,得x2-10x+25=0解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75整理,得x2-20x+75=0解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80∙x∙2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s (2)设小球滚动5m用了x s·(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:x ... -2 -1 0 1 2 ...y=4x2... 16 4 0 4 16 ...y=-4x2... -16 -4 0 -4 -16 ...y=(1/4)x2... 1 1/4 0 1/4 1 ... 描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3 ∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t 又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0 习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x-x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D复习题第4题答案(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略复习题第5题答案解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬 ,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\'B\\\\\'C\\\\\'D\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第1题答案练习第2题答案练习第3题答案。
人教版九年级上册新初三暑假衔接课程圆第一、二课时含习题和答案

人教版九年级上册新初三暑期连接课程圆第一、二课时含习题和答案新初三暑期数学连接导教案圆的相关观点问题1察看以下图形,你能从中找出它们的共同特点吗?问题2察看以下画圆的过程,你能由此说出圆的形成过程吗?研究新知圆的定义:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。
圆心:固定的端点叫作圆心。
半径:线段OA的长度叫作这个圆的半径。
圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”。
同时从圆的定义中概括:1)圆上各点到定点(圆心)的距离都等于定长(半径);2)到定点的距离等于定长的点都在同一个圆上。
圆的第二定义:全部到定点的距离等于定长的点构成的图形叫作圆。
1/29人教版九年级上册新初三暑期连接课程圆第一、二课时含习题和答案问题3察看以下图形,你能说出弦、直径、弧、半圆的定义吗?弦:连结圆上随意两点的线段叫作弦;C 直径:经过圆心的弦叫作直径;B弧:圆上随意两点间的部分叫作圆弧,简称弧;OA弧的表示方法:以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”;半圆:圆的随意一条直径的两个端点把圆分红两条弧,每一条弧都叫作半圆。
优弧:大于半圆的弧叫作优弧,用三个字母表示,如上图中的弧ABC;劣弧:小于半圆的弧叫作劣弧,如上图中的弧AB。
应用新知例1:议论,车轮为何做成圆形?假如做成正方形会有什么结果?剖析:如图,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上转动时,车轮中心与平面的距离保持不变,所以当车辆在平展的路上行驶时,坐车的人会感觉到特别安稳;假如做成其余图形,比方正方形,正方形的中心(对角线的交点)距离地面的距离跟着正方形的滚动而改变,因其中心到地面的距离就不是保持不变,所以不稳固。
2/29例2:矩形的四个极点可否在同一个圆上?假如不在,说明原因;假如存在,指出这个圆的圆心和半径。
解:如图,连结AC、BD交与点O,在矩形ABCD中,∵OA=OC=1AC,OB=OD=122BD,AC=BD,OA=OB=OC=OD,A、B、C、D者这四个点在以点O为圆心,OA为半径的同一个圆上。
最新九年级上册数学课本练习题答案人教版名师优秀教案

最新九年级上册数学课本练习题答案人教版名师优秀教案九年级上册数学课本练习题答案人教版精品文档九年级上册数学课本练习题答案人教版筋阳得头流树润然,展着,)a?ba?bB(22a?ba?b或C( D(a?b或a?b210,已知二次函数y?ax2?bx?c的图象过点A,B,C(若点M,N,K也在二次函数y?ax2?bx?c的图象上,则下列结论正确的是A(y1,y2,y B(y2,y1,y C(y3,y1,y D(y1,y3,y2二、填空题 A( 11,一元二次方程?2x2?1化为一般形式为。
12,方程kx2?9x?8?0的一个根为1,则k=.13,如图6,在Rt?ABC中,?C=90?,CA=CB=2。
分别以A、B、C为圆心,以弧,三条弧与边AB所围成的阴影部分的面积是______.1AC为半径画2图614,袋子中有2个红球,2个黄球,4个紫球,从中任取一个球是白球,这个事件是事件,是白球的概率为。
1 / 5精品文档15,有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给个人。
16,已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1 =,则圆O1与圆O2的位置关系是 .17、如图,四边形ABCD是长方形,以BC为直径的半圆与AD边只有一个交点,且AB,x,则阴影部分的面积为___________(18,如图,是一个半径为6cm,面积为12?cm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于cm. 三、解答题: 19、解方程:+2x,0x2-4x+1=020、不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,,其中白球1有两个,黄球有1个,现从中任意摸出一个球是白球的概率为。
2试求袋中蓝球的个数第一次任意摸出一个球,第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次2 / 5精品文档摸到的球都是白球的概率。
部编数学九年级上册第02讲解一元二次方程(解析版)含答案

(1)依据平方根的意义,将形如2x p =的一元二次方程“降次”转化为两个一元一次方程.(2)步骤:①将方程转化为2x p =(或()2mx n p +=)的形式;②分三种情况降次求解:(ⅰ)当0p >时,1x =2x =;(ⅱ)当0p =时,120x x ==;(ⅲ)当0p <时,方程无实数根.典型例题例题1.(2022·江苏宿迁·九年级期末)一元二次方程x 2=4的解是( )A .x =±4B .x =2C .x =±2D .x =﹣2【答案】C【详解】解:∵x 2=4,∴x =±2.故选C .点评:例题1是简单的一元二次方程,可根据数的开方直接解,也可通过观察法求出其解.例题2.(2022·江苏·九年级)用直接开平方法解方程(x ﹣3)2=8,得方程的根为( )A .x =B .x =3﹣C .x =D .x =【答案】D【详解】解:方程两边开平方得:x ﹣3=,解得:x 1=x 2=3﹣,故选:D .点评:例题2主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.例题3.(2022·全国·九年级单元测试)小明用直接降次法解方程()()22452x x -=-时,得出一元一次方程452x x -=-,则他漏掉的另一个方程为____.【答案】x -4=-(5-2x )【详解】解:开平方,得x -4=±(5-2x ),∴x -4=5-2x 或x -4=-(5-2x ),∴他漏掉的另一个方程为x -4=-(5-2x ),故答案为:x -4=-(5-2x ).点评:例题2、3主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.同类题型演练1.(2022·江苏·九年级专题练习)一元二次方程x 2﹣25=0的解为( )A .x 1=x 2=5B .x 1=5,x 2=﹣5C .x 1=x 2=﹣5D .x 1=x 2=25【答案】B【详解】解:x 2﹣25=0,则x 2=25,解得:x 1=5,x 2=﹣5,故选:B .2.(2022·全国·九年级)若方程(x ﹣1)2=m +1有解,则m 的取值范围是( )A .m ≤﹣1B .m ≥﹣1C .m 为任意实数D .m >0【答案】B【详解】解:∵关于x 的方程(x ﹣1)2=m +1有解,∴m +1≥0,∴m ≥﹣1.故选:B .3.(2022·河南平顶山·九年级期末)方程()234-=x 的根为( )A .125x x ==B .15=x ,21x =C .121x x ==D .17x =,21x =-【答案】B【详解】解:由()234x -=,得-32x =±,解得125,1x x ==;故选:B .4.(2022·全国·九年级课时练习)解一元二次方程的基本思想是降次,即把二次方程化成一次方程求解.一元二次方程()2325x =+可以化为两个一元一次方程,其中一个一元一次方程是x +3=5,则另一个一元一次方程是________.【答案】35x +=-【详解】解:()2325x =+Q ,35x \+=或35x +=-,故答案为:35x +=-.5.(2022··23(21)0x --=的解是_______.【答案】12x x 【详解】解:23(21)0x --=即()2213x -=21x \-21x -=12x x \故答案为:1x 类型二:用配方法解一元二次方程1.通过配成完全平方形式来解一元二次方程的方法,叫做配方法.2.利用配方法解一元二次方程的一般步骤:(1)把常数项移到等号的右边,使方程左边为二次项和一次项,右边为常数项;(2)方程两边同时除以二次项系数,使二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方,把原方程化为(x ±m )2=n 的形式;(4)用直接开平方解变形后的方程.解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.典型例题例题1.(2022·四川宜宾·九年级期末)方程221x x +=的左边配成完全平方后所得方程为( )A .()2x 11+=B .()212x -=C .()212x +=D .()211x -=【答案】C【详解】∵x 2+2x = 1∴x 2+2x +1= 2∴(x +1)2= 2故选: C .点评:例题1考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.例题2.(2022·四川宜宾·九年级期末)将方程280x mx -+=用配方法化为23)x n -=(,则m n +的值是_______.【答案】7【详解】解:∵23)x n -=(,∴x 2-6x +9-n =0,∵280x mx -+=,∴-m =-6,9-n =8,则m =6,n =1.∴m +n =6+1=7故答案为:7.点评:例题2考查了用配方法解一元二次方程和求代数式的值,能够把完全平方式化成一般式是解此题的关键.例题3.(2022·江苏·九年级专题练习)解方程:2x 2﹣4x ﹣1=0(用配方法)【答案】x 1=1,x 2=1【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0x 2﹣2x +112=+1(x ﹣1)232=∴x 1=1x 2=11.(2022·江苏·九年级阶段练习)将方程x 2−4x +1=0化成(x +m )2=n 的形式是( )A .(x −1)2=12B .(2x −1)2=12C .(x −1)2=0D .(x −2)2=3【答案】D【详解】解:x 2-4x +1=0,x 2-4x =-1,配方,得x 2-4x +4=-1+4,即(x -2)2=3,故选:D .2.(2022·全国·九年级单元测试)用配方法解下列一元二次方程,其中应在方程两边同时加上16的是( )A .x 2+32x =3B .x 2﹣4x =5C .x 2+8x =1D .x 2﹣16x =4【答案】C【详解】解:A .用配方法解一元二次方程x 2+32x =3时,应当在方程的两边同时加上256,不合题意;B .用配方法解一元二次方程x 2−4x =5时,应当在方程的两边同时加上4,不合题意;C .用配方法解一元二次方程x 2+8x =1时,应当在方程的两边同时加上16,符合题意;D .用配方法解一元二次方程x 2−16x =4时,应当在方程的两边同时加上64,不合题意;故选:C .3.(2022·江苏·九年级专题练习)用配方法将方程2230x x --=变为2()x a b -=的形式,则a b +=________.【答案】5【详解】解:方程2230x x --=,变形得:x 2−2x =3,配方得:x 2−2x +1=4,即(x −1)2=4,∴a =1,b =4,∴a +b =5故答案为:5.4.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=.【答案】11x =-,213x =【详解】解:原方程可化为:22133x x +=22221113333x x æöæö++=+ç÷ç÷èøèø21439x æö+=ç÷èø1233x +=±,11x =-,213x =.5.(2022·江苏·九年级课时练习)下面是小明同学解一元二次方程的过程,请认真阅读并完成相应任务.23830x x +-=解:28103x x +-= 第一步22841033x x æö++-=ç÷èø 第二步24103x æö+-=ç÷èø 第三步2413x æö+=ç÷èø 第四步413x +=± 第五步所以,1217,33x x =-=- 第六步任务一:填空:上述小明同学解此一元二次方程的方法是________,依据的一个数学公式是________;第________步开始出现错误;任务二:请你直接写出该方程的正确解.【答案】任务一:配方法;完全平方公式,二;任务二,13x =-,213x =【详解】解:任务一:由题意可知,上述小明同学解此一元二次方程的方法是配方法,依据的一个数学公式是完全平方公式,在第二步配方时,根据等式的基本性质,方程两边都应加上243æöç÷èø,∴第二步开始出现错误,故答案是:配方法,完全平方公式,二;任务二:解:23830x x +-=,∴28103x x +-=,∴2228441333x x æöæö++-=ç÷ç÷èøèø,∴242539x æö+=ç÷èø,∴4533x +=±,∴13x =-,213x =.类型三:用公式法解一元二次方程1.一元二次方程根的判别式:一般地,式子24b ac -叫做方程()200ax bx c a ++=¹根的判别式,通常用希腊字母D 表示,即24b ac D =-.(1)当D >0时,方程()200ax bx c a ++=¹有两个不相等的实数根,即x =.(2)当D =0时,方程()200ax bx c a ++=¹有两个相等的实数根,即122b x x a==-.(3)当D <0时,方程()200ax bx c a ++=¹没有实数根.2.求根公式:当0D ³时,方程()200ax bx c a ++=¹的实数根可写为x =的形式,这个式子叫做一元二次方程()200ax bx c a ++=¹的求根公式.3.公式法解一元二次方程的步骤:(1)把方程化为一般形式;(2)确定a 、b 、c 的值;(3)计算24b ac -的值;(4)当240b ac -³时,把a 、b 、c 的值代入一元二次方程的求根公式,求得方程的根;当240b ac -<时,方程没有实数根.典型例题例题1.(2021·广西桂林·九年级阶段练习)若关于x 的一元二次方程2240x x m --=有两个相等的实数根,那么m 的值是( )A .2-B .2C .1D .1-【答案】A【详解】解:∵关于x 的一元二次方程2240x x m --=有两个相等的实数根,∴()()24420m --´´-=△=,∴2m =-.故选:A .点评:例题1考查根的判别式.一元二次方程()200++=¹ax bx c a 根的情况与根的判别式(24b ac =-△)有如下关系:①当0>V 时,方程有两个不相等的两个实数根;②当0=V 时,方程有两个相等的两个实数根;③当0<V 时,方程无实数根.上面的结论反过来也成立.解题的关键是熟练运用根的判别式.例题2.(2021·河北保定·九年级期末)如果关于x 的一元二次方程240x x k --=有两个不相等的实数根,则k 的取值范围是( )A .4k <-B .4k >-C .4k <且0k ¹D .4k >-且0k ¹【答案】B【详解】解:∵一元二次方程240x x k --=有两个不相等的实数根,∴Δ=2b −4ac =16+4k >0,解得4k >-.故选:B .点评:例题2考查了根的判别式:一元二次方程2ax +bx +c =0(a≠0)的根与△=2b −4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.例题3.(2022·河南三门峡·九年级期末)如果关于x 的方程250x x k -+=没有实数根,那么k 的取值范围是_________.【答案】254k >【详解】解:由题意得,D <0240b ac \-<2540k \-<\254k >故答案为:254k >.点评:例题3考查一元二次方程根的判别式,是重要考点,掌握相关知识是解题关键.例题4.(2021·陕西渭南·九年级阶段练习)解方程:2390x x --=.【答案】1x =,2x =【详解】解:∵1a =,3b =-,9b =-,∴93645D =+=>0,∴x ==∴1x 点评:例题4主要考查解一元二次方程,掌握解方程的方法是解题的关键.例题5.(2022·全国·九年级课时练习)已知关于x 的一元二次方程x 2﹣(2m +1)x +(m ﹣1)=0有两个不相等的实数根.(1)求m 的取值范围;(2)若该一元二次方程的一个根为x =1,求m 的值.【答案】(1)全体实数(2)m =﹣1【详解】(1)∵关于x 的一元二次方程x 2﹣(2m +1)x +(m ﹣1)=0有实数根,∴Δ=b 2﹣4ac =(2m +1)2﹣4×1×(m ﹣1)=4m 2+5>0,∴m 的取值范围是全体实数.(2)将x =1代入原方程,1﹣(2m +1)+(m ﹣1)=0,解得:m =﹣1.点评:例题5考查了根的判别式、一元二次方程的解,熟练掌握“当一元二次方程有实数根时,根的判别式Δ=b2-4ac≥0”是解题的关键.同类题型演练1.(2022·全国·九年级单元测试)一元二次方程 210x x -+= 的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .有一个实数根【答案】A【详解】解:∵一元二次方程 210x x -+=中,1,1,1a b c ==-=∴241430b ac D =-=-=-<,\该方程没有实数根,故选A .2.(2021·广西玉林·九年级阶段练习)若关于x 的一元二次方程ax 2+2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a <1B .a ≤1C .a ≠0D .a <1且a ≠0【答案】D【详解】解:根据题意得a ≠0且Δ=22﹣4a >0,所以a <1且a ≠0.故选:D .3.(2022·上海·中考真题)已知x 2-+m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】m <3【详解】解:∵x -+m =0有两个不相等的实数根,∴Δ2-4m >0解得:m <3,故答案为: m <3.4.(2021·西藏·柳梧初级中学九年级期末)解方程(1)23840x x -+=(2)()()22213x x -=-【答案】(1)1222,3==x x(2)124,-23x x ==【详解】(1)Q 3,8,4a b c ==-=,∴x =∴1222,3==x x ;(2)原方程可化为: 23280x x +-=,∵3,2,-8a b c ===,∴x =∴124,-23x x ==5.(2022·江苏·九年级课时练习)已知关于x 的一元二次方程x 2﹣(m +3)x +3m =0.(1)求证:无论m 取任何实数,方程总有实数根;(2)若等腰三角形的其中一边为4,另两边是这个方程的两根,求m 的值.【答案】(1)见解析(2)m 的值为4或3【解析】(1)证明:Δ=[﹣(m +3)]2﹣4×1×3m =m 2﹣6m +9=(m ﹣3)2.∵(m ﹣3)2≥0,即Δ≥0,∴无论m 取任何实数,方程总有实数根;(2)解:当腰为4时,把x =4代入x 2﹣(m +3)x +3m =0,得,16﹣4m ﹣12+3m =0,解得m =4;当底为4时,则程x 2﹣(m +3)x +3m =0有两相等的实数根,∴Δ=0,∴(m ﹣3)2=0,∴m =3,综上所述,m 的值为4或3.类型四:用因式分解法解一元二次方程1.当方程缺少一次项时,可考虑用平方差公式分解因式.2.当方程缺少常数项时,可考虑用提公因式法分解因式,且方程一定有一根为0.3.当方程中含有括号时,不要急于去括号,应观察是否能看作整体,直接因式分解.典型例题例题1.(2021·河南南阳·九年级期中)方程()()236x x -+=-的解是( )A .2x =B .3x =-C .12x =,23x =-D .10x =,21x =-【答案】D【详解】解:()()236x x -+=-20x x +=()10x x +=10x =,21x =- .故选D .点评:例题1考查用因式分解法解一元二次方程,掌握运用因式分解法解一元二次方程是解答本题的关键.例题2.(2022·广西河池·九年级期末)方程()()353x x x -=-的解是______.【答案】13x =,25x =【详解】解:原方程可化为:(x -3)(x -5)=0,∴x -3=0或x -5=0,解的:x 1=3,x 2=5.点评:例题2考查解一元二次方程,熟练掌握并灵活运用一元二次方程的解法是解答的关键.例题3.(2022·全国·九年级单元测试)用适当的方法解下列方程:(1)2(3)(21)(3)x x x -=--;(2)23202x x --=.【答案】(1)3x =,2x =-(2)1x =1x =【详解】(1)解:2(3)(21)(3)x x x -=--原方程可化为2(3)(21)(3)0x x x ----=(3)[(x 3)(2x 1)]0x ----=(3)(2)0x x ---=∴13x =,22x =-;(2)23202x x --=原方程可化为23240x x --=a =3,b =-2,c =-424b acD =-2(2)43(4)=--´´-.1.(2020·海南省直辖县级单位·九年级期末)一元二次方程29x x =的根是( )A .10x =,29x =B .3x =C .0x =D .13x =,23x =-【答案】A【详解】解:∵29x x =,∴290,x x -=∴()90,x x -=∴0x =或90,x -=解得:120,9.x x ==故选:A .2.(2022·河北承德·九年级期末)下列各数:4-,3-,2-,3,4,6,其中是一元二次方程2120x x +-=的解是( )A .2-,6B .3-,4C .3,4D .4-,3【答案】D【详解】解:∵2120x x +-=,∴(4)(3)0x x +-=,∴14x =-,23x =,故选:D3.(2022·全国·九年级课时练习)解方程:1+22x -3x 2=25解得 ____.【答案】1246,3x x ==【详解】解:1+22x -3x 2=252322240-+=x x ()()6340x x --=解得:1246,3x x ==;故答案为1246,3x x ==.4.(2022·河北承德·九年级期末)解方程(1)220x x -=(2)2430x x -+=【答案】(1)1x =0,2x =2;(2)1x =3,2x =1【详解】(1)解:2x −2x =0,x (x −2)=0,x =0或x −2=0,所以1x =0,2x =2;(2)2x −4x +3=0,(x −3)(x −1)=0,x −3=0或x −1=0,所以1x =3,2x =1.5.(2022·河北保定·九年级期末)对于实数a b 、定义运算“☆”如下:2a b ab ab =-☆,例如23336222´-´==☆,如果有方程12x =☆,请你求出这个方程的解.【答案】x =2,或x =﹣1【详解】解:根据题意由方程1☆x =2得:22x x -=整理得:220x x --=(x -2)(x +1)=0x -2=0或x +1=0解得:x =2,或x =﹣1类型五:一元二次方程的根与系数的关系1.根与系数的关系:如果方程()200ax bx c a ++=¹有两个实数根1x ,2x ,那么12b x x a +=-,12c x x a×=.2.推导过程:在()200ax bx c a ++=¹中,当240b ac -³时,由求根公式可得1x =2x =所以12b x x a+==-,()()2212244b b ac c x x a a---×===.3.涉及两根的代数式的重要变形:(1)()2221212122x x x x x x +=+-;(2)()()221212124x x x x x x -=+-;(3)12121211x x x x x x ++=;(4)()212121221122x x x x x x x x x x +-+=.典型例题例题1.(2022·全国·九年级单元测试)若一元二次方程x 2-2x =0的两根分别为x 1和x 2,则x 1x 2的值为( )A .2-B .1C .2D .0【答案】D【详解】解:∵x 2-2x =0的两根分别为x 1和x 2,∴x 1x 2=0,故选:D .点评:本题考查了根与系数的关系,牢记两根之积等于c a 是解题的关键.例题2.(2022·黑龙江牡丹江·九年级期末)若,m n 是220200x x --=的两个实数根,则22m m n ++的值为________.【答案】2022【详解】∵m 、n 是方程x 2+2x -1=0的两个实数根∴220200m m --=,m +n =1,∴m 2=2020+m ,∴222020220202()2022m m n m m n m n ++=+++=++=,故答案为:2022.点评:例题3考查一元二次方程的根及3根与系数的关系,解题的关键是掌握解的定义和韦达定理.例题3.(2022·全国·九年级单元测试)已知关于x 的一元二次方程()220x m x m +++=,(1)求证:无论m 取何值,原方程总有两个不相等的实数根.(2)若1x ,2x 是原方程的两根,且12112x x +=-,求m 的值.【答案】(1)见解析(2)2m =【详解】(1)证明:∵()22242440b ac m m m D >=-=+-=+,∴无论m 取何值,原方程总有两个不相等的实数根;(2)解:由题可知,()122m x x =-++,12x x m =,∴()1212122112m x x x x x x m-+++===-,解得2m =,经检验m =2有意义.1.(2022·江苏·九年级专题练习)已知1x ,2x 是一元二次方程210x x --=的两根,则212x x +的值为( )A .0B .2C .1D .-1【答案】B 【详解】解:∵x 1,x 2是一元二次方程x 2−x −1=0的两个根,∴x 1+x 2=1,x 12−x 1−1=0,两式相加得:x 12−x 1−1+ x 1+x 2=1移项得:x 12 +x 2=2故选 B2.(2022·江苏·九年级单元测试)已知一元二次方程x 2-4x -2=0的两根分别为x 1,x 2,则1211+x x 的值为( )A .2B .-1C .12-D .-2【答案】D【详解】解:根据根与系数的关系得,x 1+x 2=4,x 1·x 2=-2∴1211+x x 1212x x x x +=·42=- =-2.故选D .3.(2020·山东威海·二模)已知a ,b 是方程240x x --=的两个实数根,则222020a a b --+=_________.【答案】2023【详解】解:根据题意得a +b =1.ab =-4,把x =a 代入x 2-x -4=0,得a 2-a =4,∴a 2-2a -b +2020=a 2-a -a -b +2020=4-1+2020=2023.故答案为:20234.(2022·河北保定·九年级期末)已知关于x 的一元二次方程250x x m -+=的一个根是2,则另一个根为________,m 的值是________.【答案】 3 6【详解】解:设方程另一个根为t ,则2+t =5,2t =m ,所以t =3,m =6,方程的另一个根为3,即m 的值为6;故答案为3,6.5.(2022·广西玉林·二模)关于x 的一元二次方程2(3)220x k x k ---+=.(1)求证:方程总有两个实数根;(2)若方程的两根分为1x 、2x ,且22121219x x x x ++=,求k 的值.【答案】(1)见解析;(2)k =7或k =-3.【解析】(1)∵b 2-4ac =[-(k -3)]2-4×1×(-2k +2)=k 2+2k +1=(k +1)2≥0,∴方程总有两个实数根;(2)由根与系数关系得x 1+x 2=k -3,x 1x 2=-2k +2,∵22121219x x x x ++=,∴()2121219x x x x +-=,∴()232219k k ---+=(),即24210k k --=,解得:k =7或k =-3.。
九上数学同步练习册参考答案解析

《新课程课堂同步练习册·数学(华东版九年级上)》参考答案 第22章二次根式§22.1 二次根式(一)一、1. D 2. C 3. D 4. C二、1. 12+x 2. x <-7 3. x ≤3 4. 1 5. x ≥2y三、1. x ≥212. x >-13. x =0 §22.1 二次根式(二)一、1. B 2. B 3. D 4. B二、1.(1)3 (2)8 (3)4x 22. x-23. 42或(-4)227)(或27)(- 4. 1 5. 3a三、1. (1) 1.5 (2) 73(3) 25 (4) 20 2. 原式=(x -1)+(3-x )=23. 原式=-a -b +b -a =-2 a §22.2 二次根式的乘除法(一) 一、1. D 2. B二、1. 14,a 15 2. 30 3. 112-=-n n ·1+n (n ≥3,且n 为正整数)三、1. (1)15 (2)32 (3) -108 2. 1021 cm 2§22.2 二次根式的乘除法(二) 一、1. A 2. C 3. B 4. D二、1. 53 b b 2 2. a 32 72 3. 5三、1. (1) 52 (2) 26 (3) 22 (4) b a 234 2. 14cm §22.2 二次根式的乘除法(三)一、1. D 2. A 3. A 4. C二、1.33, 210 2. x =2 3. 6 三、1.(1) 232(2) 3-22 (3) 10 (4) 2 2. 258528=÷nn ,因此是2倍. 3. (1) 不正确,9494)9(4⨯=⨯=-⨯-;(2) 不正确,574251122512425124==+=. §22.3 二次根式的加减法一、1. A 2. C 3. D 4. B二、1. 52 53-(答案不唯一) 2. 1 3. 3<x <334. 10255+5. 33 三、1.(1)34 (2)33(3) 1 (4)3-25 (5)25-23 (6)3a -2 2. 因为25.45232284242324321824≈=⨯=++=++)()(>45所以王师傅的钢材不够用. 3. 2322)26(-=-第23章一元二次方程§23.1 一元二次方程一、1.C 2.A 3. C二、1. ≠1 2. 3y 2-y +3=0,3,-1,3 3.-1三、1. (1) x 2-7x -12=0,二次项系数是1,一次项系数是-7,常数项是-12(2) 6x 2-5x +3=0,二次项系数是6,一次项系数是-5,常数项是3 2. 设长是xm ,根据题意,列出方程x (x -10)=375 3. 设彩纸的宽度为x 米,根据题意得(30+2x )(20+2x )=2×20×30(或2(20+2x )x +2×30x =30×20或2×30x +2×20x +4x 2=30×20)§23.2 一元二次方程的解法(一)一、1.C 2.D 3.C 4. C 5. C 二、1. x =0 2. x 1=0,x 2=2 3. x 1=2,x 2=21-4. x 1=-22,x 2=22 三、1. (1) x 1=-3,x 2=3; (2) x 1=0,x 2=1;(3) x 1=0,x 2=6; (4) x 1=32-, x 2=1 2. 11米 §23.2 一元二次方程的解法(二) 一、1.D 2. D 3. B二、1. x 1=3,x 2=-1 2. x 1=3+3,x 2=3-3; 3.直接开平方法,移项,因式分解,x 1=3,x 2=1 三、1.(1) x 1=3,x 2=0 (2) x 1=3,x 2=-5(3) x 1=-1+22,x 2=-1-22 (4)x 1=27,x 2=45 2. x=1或x=31-§23.2 一元二次方程的解法(三) 一、1.D 2.A 3. D二、1. 9,3;3191,; 2. 移项,1 3.3或7 三、1. (1)x 1=1,x 2=-5;(2) x 1=2135+,x 2=2135-;(3)x 1=7,x 2=-1;(4)x 1=1,x 2=-9.2. x=2175+或x=2175-.3. x 1=242q p p -+-,x 2=242qp p ---.§23.2 一元二次方程的解法(四)一、1.B 2.D 二、1. 3x 2+5x=-2,3,32352-=+x x ,(65)2,222)65(32)65(35+-=++x x ,65+x ,361,x 1=32-,x 2=-1 2. 41,1625 3. 4三、1.(1)222±=x ; (2)4173±-=x ; (3)a ac b b x 242-±-=.2. 原式变形为2(x -45)2+87,因为2452)(-x ≥0,且87>0, 所以2x 2-5x -4的值总是正数,当x=45时,代数式2x 2-5x +4最小值是87.§23.2 一元二次方程的解法(五)一、1.A 2.D二、1. x 2+3x -40=0,169,x 1=5,x 2=-8; 2. b 2-4ac >0,两个不相等的;3. x 1=251+- ,x 2=251-- 三、1.-1或-5; 2. 222±=x ; 3. 3102±=x ; 4.2979±-§23.2 一元二次方程的解法(六)一、1.A 2.B 3. D 4. A二、1. 公式法;x 1=0,x 2=-2.5 2. x 1=0,x 2=6 3. 1 4. 2三、1. x 1=2155+,x 2=2155-; 2. x 1=4+42,x 2=4-42 ;3. y 1=3+6,y 2=3-64. y 1=0,y 2=-21; 5. x 1=21,x 2=-21(提示:提取公因式(2x -1),用因式分解法) 6. x 1=1,x 2=-31§23.2 一元二次方程的解法(七) 一、1.D 2.B二、1. 90 2. 7三、1. 4m ; 2. 道路宽应为1m §23.2 一元二次方程的解法(八)一、1.B 2. B 3.C二、1. 500+500(1+x )+500(1+x )2=20000, 2. 30% 三、1. 20万元; 2. 10% §23.3 实践与探索(一) 一、1.D 2.A二、1. x (60-2x )=450 2. 50 3. 700元( 提示:设这种箱子底部宽为x 米,则长为(x +2)米,依题意得x (x +2)×1=15,解得x 1=-5,(舍),x 2=3.这种箱子底部长为5米、宽为3米.所以要购买矩形铁皮面积为(5+2)×(3+2)=35(米2),做一个这样的箱子要花35×20=700元钱).三、1. (1)1800 (2)2592 2. 5元3.设道路的宽为xm ,依题意,得(20-x )(32-x )=540 整理,得x 2-52x +100=0解这个方程,得x 1=2,x 2=50(不合题意舍去).答:道路的宽为2m .§23.3 实践与探索(二) 一、1.B 2.D二、1. 8, 2. 50+50(1+x )+50(1+x )2=182 三、1.73%; 2. 20%3.(1)(i )设经过x 秒后,△PCQ 的面积等于4厘米2,此时,PC=5-x ,CQ=2x .由题意,得21(5-x )2x=4,整理,得x 2-5x +4=0. 解得x 1=1,x 2=4.当x=4时,2x=8>7,此时点Q 越过A 点,不合题意,舍去. 即经过1秒后,△PCQ 的面积等于4厘米2.(ii )设经过t 秒后PQ 的长度等于5厘米. 由勾股定理,得(5-t )2+(2t )2=52.整理,得t 2-2t=0. 解得t 1=2,t 2=0(不合题意,舍去). 答:经过2秒后PQ 的长度等于5厘米.(2)设经过m 秒后,四边形ABPQ 的面积等于11厘米2.由题意,得21(5-m ) ×2m=21×5×7-11,整理得m 2-5m +6.5=0,因为15.614)5(422-=⨯⨯--=-ac b <0,所以此方程无实数解. 所以在P 、Q 两点在运动过程中,四边形ABPQ 的面积不能等于11厘米2.. §23.3 实践与探索(三)一、1.C 2.A 3. C二、1. 1,-2, 2. 7, 3. 1,2 4.(x -1)(x +3) 三、1.3; 2. 32-=q .3. k 的值是1或-2. 当k =1时,方程是一元一次方程,只有-1这一个根;当k =-2时,方程另一个根为-31.第24章图形的相似§24.1 相似的图形1.(2)(3)(4) 2. 略 3. 略 §24.2 相似图形的性质(一)一、1.D 2.C 3. A 4. D二、1. 23, 38 2.22221=(或22221=……等) 3.57三、1. 51 2. 5113. 95§24.2 相似图形的性质(二)一、1.A 2.D 3. C二、1. 1:40 000 2. 5 3.180 4.③⑤ 三、1. ∠β=81°,∠α=83°,x =28.2.(1)由已知,得MN =AB ,MD =21AD =21BC . ∵ 矩形DMNC 与矩形ABCD 相似,DM MN AB BC =,∴21AD 2=AB 2,∴ 由AB =4得,AD =42(2)矩形DMNC 与矩形ABCD 的相似比为DM AB =§24.3 相似三角形(一)一、1.D 2.B二、1. AB ,BD ,AC 2. 21 3.45 ,31三、1.x =6,y =3.5 2.略§24.3 相似三角形(二)一、1.B 2.A 3. A 4. B二、1. 310 2. 6 3.答案不唯一(如:∠1=∠B 或∠2=∠C 或AD :AB=AE :AC 等)4.28三、1. 因为∠A =∠E =47°,75==ED AC EF AB ,所以△ABC ∽△EFD . 2.CD=213.(1)① △ABE ∽△GCE ,② △ABE ∽△GDA .① 证明:∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,∴ ∠ABE=∠GCE ,∠BAE=∠CGE ,∴ △ABE ∽△GCE .② 证明:∵ 四边形ABCD 是平行四边形,∴ ∠ABE=∠GDA , AD ∥BE ,∴ ∠E=∠DAG ,∴ △ABE ∽△GDA . (2)32.4.(1)正确的结论有①,②,③; (2)证明第①个结论:∵ MN 是AB 的中垂线,∴DA =DB ,则∠A =∠ABD =36°,又等腰三角形ABC 中AB =AC ,∠A =36°,∴ ∠C =∠ABC =72°,∴ ∠DBC =36°, ∴ BD 是∠ABC 的平分线.§24.3 相似三角形(三)一、1.B 2.D 3. C二、1. 3:2, 3:2, 9:4 2. 18 3.2:5 4. 答案不唯一.(如:△ABC ∽△DAC ,5:4或△BAD ∽△BCA ,3:5 或△ABD ∽△CAD ,3:4) 三、1.(1)31,(2)54cm 2.2. 提示:设正方形的边长为x cm.由PN ∥BC ,得△APN ∽△ABC ,BC PN AD AE =, 1288x x =-,解得x =4.8cm.3.(1)8,(2)1:4. §24.3 相似三角形(四) 一、1.B 2.A二、1. 1.75 2. 100 3.10 4. 712或2三、1.过E 作EF ⊥BD ,∵∠AEF =∠CEF ,∴∠AEB =∠CED .又∵∠ABE =∠CDE =90°,∴ △ABE ∽△CDE ,∴DE BE CD AB = ,即1850.050.16=⨯=⨯=DE CD BE AB (米).2.(1)△CDP ∽△PAE .证明:∵ 四边形ABCD 是矩形,∴ ∠D=∠A=90°,∴ ∠PCD +∠DPC=90°.又∵ ∠CPE=90°,∴ ∠EPA +∠DPC=90°,∴ ∠PCD=∠EPA . ∴ △CDP ∽△PAE .(2)在Rt △PCD 中,CD=AB=6,由tan ∠PCD =CDPD .∴ PD=CD •tan ∠PCD=6•tan 30°=6×33=23. ∴ AP=AD -PD=11-23.解法1:由△CDP ∽△PAE 知APCD AE PD =, ∴ AE=233116)3211(32-=-⨯=⋅CD AP PD解法2:由△CDP ∽△PAE 知∠EPA =∠PCD =30°,∴ AE=AP •tan ∠EAP=(11-23)•tan 30°=23311-.(3)假设存在满足条件的点P ,设DP=x ,则AP=11-x由△CDP ∽△PAE 知2=AP CD ,∴ 2116=-x,解得x=8,∴ DP=8.§24.4 中位线(一)一、1.D 2.C 3.C二、1. 26 2. 2.5 3.25 4. 12 三、1.(1)提示:证明四边形ADEF 是平行四边形; (2)AC =AB ; (3)△ABC 是直角三角形(∠BAC =90°);(4)△ABC 是等腰直角三角形(∠BAC =90°,AC =AB ) 2. 提示:∵ DC =AC ,CE ⊥AD ,∴ 点E 是AD 的中点. §24.4 中位线(二) 一、1.D 2.D二、1. 7.5 2. 2 3.15 三、1.ab 21 2.2§24.5 画相似图形一、1.D 2.B二、1. 4,画图略 2. P 3. 略 三、1.略 2.略 §24.6 图形与坐标(一) 一、1.D 2.B 二、1.(-2, 1) 2.(7,4) 三、1.略 2.略 §24.6 图形与坐标(二)一、1.C 2.C 3. C 二、1.(1,2) 2.x 轴,横,纵 3.(-a ,b ) 三、1.略 2.略3.(1)平移,P 1(a -5,b +3).(2)如图所示. A 2(-8,2), B 2(-2,4),C 2(-4,0),P 2(2a -10,2b +6).第25章解直角三角形§25.1 测量 一、1. B 2.C 二、1.30 2.200 三、1.13.5m§25.2 锐角三角函数(一)一、1.C 2.B 3.C 4.A 二、1.53 2.21 3.54三、1. sinB =53,cosB =54,tanB =43,cotB =34 2.sinA =55,cosA =552,tanA =21,cotA =2§25.2 锐角三角函数(二)一、1. A . 2. C 3. A 4.A 5.C 6.C 二、1. 1 2. 1 3.70三、1.计算:(1(2)-3 (3)0 (4)-12.(1)在Rt △ADC 中55sin =α, 552cos =α, tan α=21,cot α=2(2)在Rt △ABC 中,BC =AC ·cot α=2×2=4,∴BD =BC -CD =4-1=3. §25.2 用计算器求锐角三角函数(三) 一、1. A 2. B二、1. 0.7344 2. 0.464 3. > 三、1.(1)0.9943 (2)0.4188 (3)1.76172.(1)17°18′ (2)57°38′ (3)78°23′ 3. 6.21§25.3 解直角三角形(一) 一、1.A 2.C二、1. .5 3.三、1.答案不唯一. 2.10 §25.3 解直角三角形(二) 一、1.D 2.B二、1.20sin α 2. 520cos 50°(或520sin 40°) 3.1.66 三、1. 3.93米.2. 作CD ⊥AE 交AB 于D ,则∠CAB =27°,在Rt △ACD 中,CD =AC ·tan ∠CAB =4×0.51=2.04(米) 所以小敏不会有碰头危险,姚明则会有碰头危险.§25.3 解直角三角形(三) 一、1. B 2. B二、1. 103 2. 263 3. 30三、1.15米2.如图,由已知,可得∠ACB =60°,∠ADB =45°. ∴在Rt△ABD 中,BD=AB .又在Rt△ABC 中,tan 60AB BC =, 3AB BC∴=, 即3BC AB =.BD BC CD =+, 3AB AB CD ∴=+.∴ CD =AB -33AB =180-180×33=180-603(米). 答:小岛C ,D 间的距离为(180603-)米.3.有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°. ∴ BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴ x .xAD 330tan =︒=∵ AD =AB +BD , ∴ x .x +=123∴ )13(61312+=-=x .∵ ,<18)13(6+∴ 渔船不改变航线继续向东航行,有触礁危险.§25.3 解直角三角形(四)一、1.C 2.A二、1. 30° 2.2+23 3.34 三、1. 作AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,在Rt △ABE 中,tan AE B BE =,∴ tan AE BE B ==6tan55. ∴6221624.4tan55BC BE AD =+=⨯+≈(cm ). 答:燕尾槽的里口宽BC 约为24.4cm .2.如图所示,过点A 、D 分别作BC 的垂线AE 、所以△ABE 、△CDF 均为Rt △, 又因为CD =14,∠DCF =30°, 所以DF =7=AE ,且FC =73=12.1,西东PACBN M 60° 45° D A45°30°D6m 14m ABC D 60°45°所以BC =7+6+12.1=25.1m . 3.延长CD 交PB 于F ,则DF ⊥PB . ∴ DF =BD ·sin 15°≈50×0.26=13.0. ∴ CE =BF =BD ·cos 15°≈50×0.97=48.5. ∴ AE =CE ·tan 10°≈48.5×0.18=8.73. ∴ AB =AE +CD +DF =8.73+1.5+13 =23.2. 答:树高约为23.2米.3.(1)在Rt △BCD 中,CD =BCsin 12°≈10×0.21=2.1(米) (2)在Rt △BCD 中,BD =BCcos 12°≈10×0.98=9.8(米)在Rt △ACD 中,︒=5tan CD AD ≈09.01.2≈23.33(米), AB =AD -BD ≈23.33-9.8=13.53≈13.5(米) 答:(1)坡高2.1米,(2)斜坡新起点与原起点的距离为13.5米.第26章 随机事件的概率§26.1 概率的预测——什么是概率(一)一、1. D 2. B 3. C 4. A 5. B 二、1. 20,30 2. 0.18 3.124. 0.2 三、1.(1)2583,5839,8396,3964,9641,6417 (2)62. ①—D ②—C ③—A ④—B ⑤—E §26.1 概率的预测——什么是概率(二) 一、1. B 2. C3. C4. A 二、1.25 2. 35 3.(1)14(2)113 (3)413 4. 1三、1.不公平,红色向上概率对于甲骰子是31,而其他色向上的概率是61 2. 提示:任意将其中6个单个的小扇形涂黑即可.3. 24个球分别为4个红球、8个白球、12个黄球.§26.1 概率的预测——在复杂情况下列举所有机会均等的结果 一、1. A 2. C 二、1.13 2. 34 3. 12 4.(1)32;(2)61;(3)21三、1. 树形图:第一张卡片上的整式 x x -1 2F第二张卡片上的整式 x-1 2 x2 x x-1 所有可能出现的结果 1x x - 2x 1x x - 12x - 2x 21x - 所以P (能组成分式)4263==. 2.(1)设绿球的个数为x .由题意,得21212x =++.解得x=1.经检验x=1是所列方程的根,所以绿球有1个. (2)根据题意,画树状图:由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿), (绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红1,红2),(红2,红1)∴ P (两次摸到红球)21126==.或根据题意,画表格:第一次 第二次红2 黄 绿 红1 黄 绿 红1 红2 绿 红1 红2 红1 红2 黄 绿 开始 第二次摸球 第一次摸球 黄由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种.∴ P (两次都摸到红球)21126==. 3. 这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表)土口木土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土) (木,口) (木,木)(树状图)总共有9种结果,每种结果出现的可能性相同, 其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏”.()49P =小敏获胜∴,()59P =小慧获胜,∵()P <小敏获胜()P 小慧获胜.∴ 游戏对小慧有利§26.2 模拟实验——用替代物做模拟实验土口 木 开始 土(土,土) 口(土,口) 木(土,木) 土(口,土) 口(口,口) 木(口,木) 土(木,土)口(木,口) 木(木,木)一、1. A 2. C二、1.两张分别标有0、1的纸片 2. 三张纸片进行抽签,两张写“1”一张写“2”.3.合理三、1. 略 2. 14,后者答案不唯一3. 点数和为偶数与点数和为奇数的机会各占50%,替代物不唯一§26.2 模拟实验——用计算器做模拟实验一、1. B 2. B二、1.1 6 6 2.1 30 13三、1.(1)0.6;(2)0.6;(3)16、242.(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,故甲摸出“石头”的概率为31 155=.(2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84 147=.(3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出.若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71 142=;若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42 147=;若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63 147=;若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为5 14.故甲先摸出“锤子”获胜的可能性最大.3.(1)填18,0.55 ;(2)画出正确图形;(3)给出猜想的概率的大小为0.55±0.1均为正确.。
数学答案

2012年九年级学优生学业发展水平调研测试数学参考答案及评分标准一、选择题(每题4分,共24分)1D 2C 3A 4C 5B 6B二、填空题(每小题4分,共24分)7、)43)(2(+-x x 8、-100 9、910)1(9-=+-n n n10、9 11、25-<k 12、)4)(1(3++x x 三、解答题13、解:由x kx -=4得:4)1(=+x k ………………………1分①当01=+k 时,方程无解 ………………………3分②当01≠+k 时,14+=k x ∵x 是自然数,∴1+k 是4的正约数∴1+k 等于1,2,4 ………………………6分∴k 的值为0,1,3 ………………………7分14、解:设x a a =-1 ………………………2分 则212-+=a a x ∵61=+aa ∴42=x ∴2±=x ………………………5分又∵0<a <1 ∴0<a <1,11>a∴2=x 舍去 21-=-aa ………………………7分 15、(本题满分8分)解:在Rt △BDE 中,BD=522=+BE DE ………………………1分 连接AD ,∵AB 是⊙O 的直径∴∠ADB=90°,∠ADB=∠E ………………………2分 又∠EDB=∠DAB ∴△BDE ∽△BAD∴∠DBA=∠DBE BEBD BD AB = ∴AB=4252=BE BD ………………………5分 43tan ==∠BE DE DBE ∴43tan =∠DBA在Rt △ABC 中,AC=AB·tan ∠CBA=167543·425= ………………………8分 16、(本题满分8分)解:设每个检票口每分钟检票x 人,检票开始后每分钟新增y 人排队等候检票,同时开放三个检票口需要t 分钟才能使排队旅客全部检票完毕,则由题意得:分③②①538220⋯⋯⋯⋯⋯⋯⋯⋯⋯⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-t y x a y x a y x a 由①得a y x =-)(20,由②得:a y x =-)2(8∴)2(8)(20y x y x -=-∴y x 3= ………………………6分∴y y y y x a 40)3(20)(20=-=-= ∴)(59403分钟=-=-=yy y y x a t ………………………7分 答:同时开放三个检票口时,需要5分钟才能将排队等候检票的旅客全部检票完毕。