阻力估算及Cp法

合集下载

求阻力的物理公式

求阻力的物理公式

求阻力的物理公式求解阻力的物理公式是力学中的一个重要内容,它描述了物体在流体介质中运动时所受到的阻力大小。

阻力是物体运动时所受到的阻碍力,它的大小与物体的速度、物体形状以及流体介质的性质有关。

在流体介质中,物体受到的阻力可以分为粘性阻力和湍流阻力两种。

粘性阻力是由于流体黏性而产生的,主要影响低速运动的物体。

湍流阻力是由于流体的湍流而产生的,主要影响高速运动的物体。

对于低速运动的物体,可以使用斯托克斯定律来计算粘性阻力。

斯托克斯定律指出,物体在粘性流体中匀速直线运动时,其受到的粘性阻力与物体的速度成正比。

具体公式为:阻力 F = 6πηrv,其中η为流体的黏性系数,r为物体的半径,v为物体的速度。

这个公式适用于小球在粘性流体中的运动,如沉没在水中的小球。

对于高速运动的物体,可以使用空气动力学的原理来计算湍流阻力。

根据空气动力学的原理,湍流阻力与物体的速度的平方成正比,与物体的形状有关。

具体公式为:阻力 F = 0.5ρCDAv²,其中ρ为流体的密度,CD为物体的阻力系数,A为物体的截面积,v为物体的速度。

这个公式适用于空气中的运动物体,如飞机在空中飞行时所受到的阻力。

除了上述两种常见的阻力计算公式外,还有其他一些特殊情况下的阻力计算方法。

例如,当物体在液体中做旋转运动时,阻力受到的影响会更加复杂。

此时可以使用斯托克斯定律的变种公式来计算阻力。

另外,当物体在流体中做周期性振动时,也会受到一定的阻力。

这时可以使用振荡阻尼公式来计算阻力。

这些特殊情况下的阻力计算方法需要根据具体情况进行推导和计算。

求解阻力的物理公式是力学中的重要内容。

通过合理选择适用的阻力公式,可以准确计算物体在流体介质中运动时所受到的阻力大小。

阻力的计算有助于我们理解物体在流体中的运动规律,对于设计和优化运动装置、飞行器等具有重要意义。

2015-船舶阻力(7)-阻力的近似估算方法1

2015-船舶阻力(7)-阻力的近似估算方法1

③ ④ ⑤Байду номын сангаас
根据
s
S C r 如果Cp>0.8且L/B≠6.5,由图7-6对 Am 进行修正。
计算Cr—Rr——Rt B/T≠2.4 修正 △Rt=±10(B/T-2.4)×0.5%Rt 2.4<B/T<3.0 取正;其他取负。 总阻力=Rt+ △Rt
S Cr C p L 的值,查 Am
7.3 母型船数据估算法
• 早期的泰勒系列试验图谱:单位排水量剩余阻力等值线的形式,英制单位。 • 1954年盖特勒对泰勒标准阻力数据进行了重新分析整理: 无量纲的剩余阻力系数图表。(不同排水体积系数(∨/L3),Cr—V/L0.5关 系曲线)——设计船的剩余阻力系数; 无量纲的湿表面积系数图谱——船体湿表面积,并记入一定的粗糙度补贴, 桑海公式——摩擦阻力系数。该系列图谱亦称为泰勒-盖特勒系列图谱。
2.泰勒-盖特勒系列阻力估算的具体步骤
e、计算总阻力Rt、有效功率Pe值。
总阻力系数:Cts=Cr`+Cf+ △Cf
总阻力 : Rts=Cts*0.5v 2S`
有效功率:Pe=Rts v/1000
(N)
(kw)
不同V—重复上述计算—v-Pe曲线
母型—巡洋舰 —适用航速较高船型较瘦(双桨) —普通货船结果偏低
扩展的泰勒系列图谱估算法
剩余比阻力Rr/△图谱的函数关系:
B Rr / f1 , C , C p , Fr T
当B/T、C▽一定时,该函数关系可表示为:
Rr / f 2 C p , Fr
图谱形式是:对每一组B/T,以不同的C▽给出不同的图谱,每张图谱中以
无型线图 — 查Cs图谱 — 插值计算得Cs

风管阻力计算方法介绍

风管阻力计算方法介绍

风管阻力计算方法介绍☆风管阻力计算方法送风机静压Ps〔Pa〕按下式计算P S = P D + P A式中:P D——风管阻力〔Pa〕,P D = RL〔1 + K〕说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。

引荐的风管压力损失分配〔按局部阻力和磨擦阻力之比〕P D = R〔L + Le〕式中Le为一切局部阻力的当量长度。

PA——空气过滤器、冷热盘管等空调装置的阻力之和〔Pa〕☆引荐的风管压力损失分配〔按送风与回风管之阻力〕☆低速风管系统的引荐和最大流速m/s☆低速风管系统的最大允许流速m/s☆引荐的送风口流速m/s☆以噪声规范控制的允许送风流速m/s☆回作风栅的引荐流速m/s依据YORK公司产品手册整理2004年4月3日常用单位换算公式集合大全常用单位换算公式集合大全换算公式面积换算1平方公里〔km2〕=100公顷〔ha〕=247.1英亩〔acre〕=0.386平方英里〔mile2〕1平方米〔m2〕=10.764平方英尺〔ft2〕1平方英寸〔in2〕=6.452平方厘米〔cm2〕1公顷〔ha〕=10000平方米〔m2〕=2.471英亩〔acre〕1英亩〔acre〕=0.4047公顷〔ha〕=4.047×10-3平方公里〔km2〕=4047平方米〔m2〕1英亩〔acre〕=0.4047公顷〔ha〕=4.047×10-3平方公里〔km2〕=4047平方米〔m2〕1平方英尺〔ft2〕=0.093平方米(m2)1平方米〔m2〕=10.764平方英尺〔ft2〕1平方码〔yd2〕=0.8361平方米〔m2〕1平方英里〔mile2〕=2.590平方公里〔km2〕体积换算1美吉耳〔gi〕=0.118升〔1〕1美品脱〔pt〕=0.473升〔1〕1美夸脱〔qt〕=0.946升〔1〕1美加仑〔gal〕=3.785升〔1〕1桶〔bbl〕=0.159立方米〔m3〕=42美加仑〔gal〕1英亩·英尺=1234立方米〔m3〕1立方英寸〔in3〕=16.3871立方厘米〔cm3〕1英加仑〔gal〕=4.546升〔1〕10亿立方英尺〔bcf〕=2831.7万立方米〔m3〕1万亿立方英尺〔tcf〕=283.17亿立方米〔m3〕1百万立方英尺〔MMcf〕=2.8317万立方米〔m3〕1千立方英尺〔mcf〕=28.317立方米〔m3〕1立方英尺〔ft3〕=0.0283立方米〔m3〕=28.317升〔liter〕1立方米〔m3〕=1000升〔liter〕=35.315立方英尺〔ft3〕=6.29桶〔bbl〕长度换算1千米〔km〕=0.621英里〔mile〕1米〔m〕=3.281英尺〔ft〕=1.094码〔yd〕1厘米〔cm〕=0.394英寸〔in〕1英寸〔in〕=2.54厘米〔cm〕1海里〔n mile〕=1.852千米〔km〕1英寻〔fm〕=1.829〔m〕1码〔yd〕=3英尺〔ft〕1杆〔rad〕=16.5英尺〔ft〕1英里〔mile〕=1.609千米〔km〕1英尺〔ft〕=12英寸〔in〕1英里〔mile〕=5280英尺〔ft〕1海里〔n mile〕=1.1516英里〔mile〕质量换算1长吨〔long ton〕=1.016吨〔t〕1千克〔kg〕=2.205磅〔lb〕1磅〔lb〕=0.454千克〔kg〕[常衡] 1盎司〔oz〕=28.350克(g)1短吨〔sh.ton〕=0.907吨〔t〕=2000磅〔lb〕1吨〔t〕=1000千克〔kg〕=2205磅〔lb〕=1.102短吨〔sh.ton〕=0.984长吨〔long ton〕密度换算1磅/英尺3〔lb/ft3〕=16.02千克/米3〔kg/m3〕API度=141.5/15.5℃时的比重-131.51磅/英加仑〔lb/gal〕=99.776千克/米3〔kg/m3〕1波美密度〔B〕=140/15.5℃时的比重-1301磅/英寸3〔lb/in3〕=27679.9千克/米3〔kg/m3〕1磅/美加仑〔lb/gal〕=119.826千克/米3〔kg/m3〕1磅/〔石油〕桶〔lb/bbl〕=2.853千克/米3〔kg/m3〕1千克/米3〔kg/m3〕=0.001克/厘米3〔g/cm3〕=0.0624磅/英尺3〔lb/ft3〕运动粘度换算1斯〔St〕=10-4米2/秒〔m2/s〕=1厘米2/秒〔cm2/s〕1英尺2/秒〔ft2/s〕=9.29030×10-2米2/秒〔m2/s〕1厘斯〔cSt〕=10-6米2/秒〔m2/s〕=1毫米2/秒〔mm2/s〕动力粘度换算动力粘度1泊〔P〕=0.1帕·秒〔Pa·s〕1厘泊〔cP〕=10-3帕·秒〔Pa·s〕1磅力秒/英尺2〔lbf·s/ft2〕=47.8803帕·秒〔Pa·s〕1千克力秒/米2〔kgf·s、m2〕=9.80665帕·秒〔Pa·s〕力换算1牛顿〔N〕=0.225磅力〔lbf〕=0.102千克力〔kgf〕1千克力〔kgf〕=9.81牛〔N〕1磅力〔lbf〕=4.45牛顿〔N〕1达因〔dyn〕=10-5牛顿〔N〕温度换算K=5/9〔°F+459.67〕K=℃+273.15n℃=(5/9·n+32) °F n°F=[(n-32)×5/9]℃1°F=5/9℃〔温度差〕压力换算压力1巴〔bar〕=105帕〔Pa〕1达因/厘米2〔dyn/cm2〕=0.1帕〔Pa〕1托〔Torr〕=133.322帕〔Pa〕1毫米汞柱〔mmHg〕=133.322帕〔Pa〕1毫米水柱〔mmH2O〕=9.80665帕〔Pa〕1工程大气压=98.0665千帕〔kPa〕1千帕〔kPa〕=0.145磅力/英寸2〔psi〕=0.0102千克力/厘米2〔kgf/cm2〕=0.0098大气压〔atm〕1磅力/英寸2〔psi〕=6.895千帕〔kPa〕=0.0703千克力/厘米2〔kg/cm2〕=0.0689巴〔bar〕=0.068大气压〔atm〕1物理大气压〔atm〕=101.325千帕〔kPa〕=14.696磅/英寸2〔psi〕=1.0333巴〔bar〕传热系数换算1千卡/米2·时〔kcal/m2·h〕=1.16279瓦/米2〔w/m2〕1千卡/〔米2·时·℃〕〔1kcal/(m2·h·℃)〕=1.16279瓦/〔米2·开尔文〕〔w/(m2·K)〕1英热单位/〔英尺2·时·°F〕〔Btu/(ft2·h·°F)〕=5.67826瓦/〔米2·开尔文〕〔〔w/m2·K〕〕1米2·时·℃/千卡〔m2·h·℃/kcal〕=0.86000米2·开尔文/瓦〔m2·K/W〕热导率换算1千卡〔米·时·℃〕〔kcal/(m·h·℃)〕=1.16279瓦/〔米·开尔文〕〔W/(m·K)〕1英热单位/〔英尺·时·°F〕〔But/(ft·h·°F) =1.7303瓦/〔米·开尔文〕〔W/(m·K)〕比容热换算1千卡/〔千克·℃〕〔kcal/(kg·℃)〕=1英热单位/〔磅·°F〕〔Btu/(lb·°F)〕=4186.8焦耳/〔千克·开尔文〕〔J/〔kg·K〕〕热功换算1卡〔cal〕=4.1868焦耳〔J〕1大卡=4186.75焦耳〔J〕1千克力米〔kgf·m〕=9.80665焦耳〔J〕1英热单位〔Btu〕=1055.06焦耳〔J〕1千瓦小时〔kW·h〕=3.6×106焦耳〔J〕1英尺磅力〔ft·lbf〕=1.35582焦耳〔J〕1米制马力小时〔hp·h〕=2.64779×106焦耳〔J〕1英马力小时〔UKHp·h〕=2.68452×106焦耳1焦耳=0.10204千克·米=2.778×10-7千瓦·小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位功率换算1英热单位/时〔Btu/h〕=0.293071瓦〔W〕1千克力·米/秒〔kgf·m/s〕=9.80665瓦〔w〕1卡/秒〔cal/s〕=4.1868瓦〔W〕1米制马力〔hp〕=735.499瓦〔W〕速度换算1英里/时〔mile/h〕=0.44704米/秒〔m/s〕1英尺/秒〔ft/s〕=0.3048米/秒〔m/s〕渗透率换算1达西=1000毫达西1平方厘米〔cm2〕=9.81×107达西地温梯度换算1°F/100英尺=1.8℃/100米〔℃/m〕1℃/公里=2.9°F/英里〔°F/mile〕=0.055°F/100英尺〔°F/ft〕油气产量换算1桶〔bbl〕=0.14吨〔t〕〔原油,全球平均〕1万亿立方英尺/日〔tcfd〕=283.2亿立方米/日〔m3/d〕=10.336万亿立方米/年〔m3/a〕10亿立方英尺/日〔bcfd〕=0.2832亿立方米/日〔m3/d〕=103.36亿立方米/年〔m3/a〕1百万立方英尺/日〔MMcfd〕=2.832万立方米/日〔m3/d〕=1033.55万立方米/年〔m3/a〕1千立方英尺/日〔Mcfd〕=28.32立方米/日〔m3/d〕=1.0336万立米/年〔m3/a〕1桶/日〔bpd〕=50吨/年〔t/a〕〔原油,全球平均〕1吨〔t〕=7.3桶〔bbl〕(原油,全球平均)气油比换算1立方英尺/桶〔cuft/bbl〕=0.2067立方米/吨〔m3/t〕热值换算1桶原油=5.8×106英热单位〔Btu〕1吨煤=2.406×107英热单位〔Btu〕1立方米湿气=3.909×104英热单位〔Btu〕1千瓦小时水电=1.0235×104英热〔Btu〕1立方米干气=3.577×104英热单位〔Btu〕〔以上为1990年美国平均热值〕〔资料来源:美国国度规范局〕热当量换算1桶原油=5800立方英尺自然气〔按平均热值计算〕1立方米自然气=1.3300千克规范煤1千克原油=1.4286千克规范煤。

过程能力指数Cp与Cpk计算公式

过程能力指数Cp与Cpk计算公式

过程能力指数Cp与Cpk计算公式摘要:过程能力也称工序能力,是指过程加工方面满足加工质量的能力,它是衡量过程加工内在一致性的,最稳态下的最小波动。

过程能力概述过程能力也称工序能力,是指过程加工方面满足加工质量的能力,它是衡量过程加工内在一致性的,最稳态下的最小波动。

当过程处于稳态时,产品的质量特性值有99.73%散布在区间[μ-3σ,μ+3σ],(其中μ为产品特性值的总体均值,σ为产品特性值总体标准差)也即几乎全部产品特性值都落在6σ的范围内﹔因此,通常用6σ表示过程能力,它的值越小越好。

过程能力指数Cp的定义及计算过程能力指数Cp是表征过程固有的波动状态,即技朮水平。

它是在过程的平均值μ与目标值M重合的情形,如下图所示:过程处于统计控制状态时,过程能力指数Cp可用下式表示:Cp = (USL-LSL)/6σ而规格中心为M=(USL+LSL)/2,因此σ越小,过程能力指数越大,表明加工质量越高,但这时对设备及操作人员的要求也高,加工成本越大,所以对Cp值的选择应该根据技朮与经济的综合分析来决定。

一般要求过程能力指数Cp≧1,但根据6Sigma过程能力要求Cp ≧2,即在短期内的过程能力指数Cp ≧2。

例:某车床加工轴的规格为50±0.01mm,在某段时间内测得σ =0.0025,求车床加工的过程能力指数。

Cp = (USL-LSL)/6σ=0.02/ (6*0.0025)=1.33过程能力指数Cpk的定义及计算上面我们讨论了Cp,即过程输出的平均值与目标值重合的情形,事实上目标值与平均值重合情形较为少见;因此,引进一个偏移度K 的概述,即过程平均值μ与目标值M的偏离过程,如下图所示:K=|M-μ|/(T/2) = 2|M-μ|/T (其中T=USL-LSL)Cpk= (1-K)*Cp= (1-2|M-μ|/T)*T/6σ=T/6σ-|M-μ|/3σ从公式可知:Cpk=Cp-|M-μ|/3σ,即Cp-Cpk=|M-μ|/3σ尽量使Cp=Cpk,|M-μ|/3σ是我们的改善机会。

阻力估算及Cp法

阻力估算及Cp法

第1章阻力估算船体型线确定以后,计算船体在不同航速下所收到的阻力是预估船舶快速性的基础,本文采用系类实验图谱估算发和统计和回归资料估算法对船舶阻力进行估算,获得不同航行速度下的阻力并绘制有效马力曲线,为螺旋桨的设计提供理论依据。

1.1相关参数计算1.1.1排水体积计算运用CAD自带的面积测量功能,获取每条半宽水线与基线所围成的面积,则可得到每条水线所围成的面积表3- 1水线面面积数据采用梯形法计算排水体积。

由于0~1000wl,1000~10000wl、10000wl~10820wl的间距不相同,分三部分进行计算。

梯形法计算的表格如表4-2表3- 2梯形法计算排水体积在海水中的设计排水量 =36943t ∇海水密度31025.91(/)kg m ρ= 设计排水体积 /36009.9ρ∆=∇= 绝对误差-100%=0.217∆∆⨯∆设计计算设计误差主要来源:各水线面面积的计算误差采用梯形法计算的误差1.1.2 浮心纵向坐标计算运用CAD 自带的曲线面积测量工具,获取每站位上横剖线围成的横剖面积,由梯形法可计算排水体积以及浮心纵向坐标表3- 3梯形法计算和浮心纵向坐标在海水中设计排水量 =36943t∆ 海水密度31025.91(/)k g m ρ= 设计排水体积 /ρ∇=∆ 绝对误差-100%=0.642∇∇⨯∇设计计算设计浮心纵向坐标 0.07yozb M X ∑==-∇浮心纵向坐标距船中(L%)100%0.04bBPX L ⨯=- 1.1.3 湿表面积计算运用CAD 自带的曲线长度测量工具,获取每个站位上水线以下部分横剖面曲线所围成长度。

利用梯形法计算湿表面积。

具体计算见表3-4表3- 4梯形法计算湿表面积总和 677.795计算湿表面积 2=6377.795S m 计算 设计船湿表面积 2=6448S m 设计 绝对误差(100%)-S 100%=1.09S S 设计计算设计1.2 阻力估算船舶在水中航行所受的水阻力可分为船舶在静水中航行时的静水阻力和波浪中的汹涛阻力两部分。

船舶原理公式

船舶原理公式

船舶原理公式Document number:NOCG-YUNOO-BUYTT-UU986-1986UT船舶原理公式汇总第一章船型系数:水线面系数 C WP =A W /LB 中横剖面系数 C M =A M /Bd 方形系数C B =排水体积/LBd菱形系数C P =排水体积/A M L=排水体积/C M BdL=C B /CM 垂向菱形系数 C VP =排水体积\A W d=排水体积/C WP LBd=C B /C WP 排水体积符号▽ 尺度比:长宽比L/B :与船的快速性有关船宽吃水比B/d:与船的稳性、快速性和航向稳定性有关型深吃水比D/d :与船的稳性、抗沉性、船体的坚固性以及船体的容积有关 船长吃水比L/d :与船的回转性有关,比值越小,船越短小,回转越灵活 梯形法:A= ⎰b aydx A=l ⎰bydx 0=l(∑=ni yi 0-(y 0+y 3)/2) 注 (y 0+y n )/2为首尾修正项辛氏法:一法,A=1/3l(y 1+4y 2+y 3) 二法,A=3l/8(y 1+3y 2+3y 3+y 4) 计算漂心 X F =M oy /A W =⎰-2/2/L L xydx /⎰-2/2/l l ydx 其中A W =2Lδ∑yi 'M oy =2(L δ)2∑kiyi ' 所以X f =L δ∑kiyi '/∑yi '计算横剖面面积型心的垂向坐标Z a =M oy /A s =⎰dzydz 0/⎰dydz 0其中横剖面面积As=2⎰dydz 0Moy=2⎰dzydz 0又可以表达为As=2dδ∑yi ' (注意首位修正)Moy=2(l δ)2∑kiyi ' 所以可以表达为za=d δ∑kiyi '/∑yi '第二章浮心的计算dM yoz =x F A w d z dM xoy =zA w d z x F 为A w 的漂心纵向坐标排水体积对中站面yoz 的静距 M yoz =⎰dxfAwdz 0浮心纵向坐标x B =M yoz /▽=⎰d xfAwdz 0/⎰dAwdz 0同理可以得排水体积对基平面xoy 的静距和浮心垂向坐标 Mxoy=⎰dzAwdz 0Zb=Mxoy/▽=⎰d zAwdz 0/⎰dAwdz 0同理根据横剖面计算排水体积和浮心位置 dM yoz =x F A s d x dM xoy =z a A s d x 浮心纵向坐标Myoz=⎰-2/2/l l xAsdx X B =Myoz/▽=⎰-2/2/l l xAsdx /⎰-2/2/l l Asdx 浮心垂向坐标Myoz=⎰-2/2/l l zaAsdx z B =Mxoy/▽=⎰-2/2/l l zaAsdx /⎰-2/2/l l Asdx第三章复原力矩 M R =GZ ∆BM =I T /∆ BML =I LF /∆初稳性公式和稳性高 复原力矩M R =GZ ∆=GM ∆φ 忽略第四章M R =GZ ∆可以得到M R =GZ ∆=∆L 重点:静稳性曲线的特征M R =GZ ∆ M R =GZ ∆=∆L 所以M R =∆L L=GM φ说明:船舶在正浮的平衡位置,静稳性臂L 对横倾角的导数等于初稳性高度GM故,对于静稳性曲线来说,其远点的切线的斜率等于初稳性高度GM第七章船舶阻力总阻力=兴波阻力+摩擦阻力+粘压阻力(漩涡阻力)R t=R w+R f+R pv估算阻力的近似方法海军系数:对于船型近似,尺度和航速相同的船舶,他们的阻力Rt和排水量及航速都有以下的关系,R t∝∆2/3V2有效功率PE和排水量∆已及航速V的关系P E∝∆2/3V3又可以表示为C e=∆2/3V3/P ECe为海军系数∆为排水量V为航速Kn艾亚法:单桨船C BC=双桨船C BC=艾亚法给出的对应于上述标准的有效功率P EPE=∆C0*(KW)V S为静水中航行的速度C0系数可以根据长度排水量系数L/∆1/3和速长比V/L这里的LS 垂线间长雷诺定律C f=R f/1/2ρv2s=f(R e) 摩擦阻力R f雷诺数R e=Lν/V ν为水运动粘性系数 V为速度傅汝德数F f=V/gl傅汝德数的比较定律Ls/= V mα1/2V s/gls=V m/glm所以得出V s=V m Lmα为模型船与实船的缩尺比相似定律:流体兴波阻力是傅汝德数的函数,因此总阻力必定是粘性阻力和兴波阻力的和,也就是雷诺数与傅汝德数的函数(不做要求)Ct=Rt/1/2ρv2s=f(Re,Fr)傅汝德假定,1假定船体总阻力可以分为独立的两部分,一是摩擦阻力,二是粘压阻力和兴波阻力,合并后为剩余阻力。

船舶阻力要点

船舶阻力要点

第一章总论1.船舶快速性,船舶快速性问题的分解。

船舶快速性:对一定的船舶在给定主机功率时,能达到的航速较高者快速性好;或者,对一定的船舶要求达到一定航速时,所需主机功率小者快速性好。

船舶快速性简化成两部分:“船舶阻力”部分:研究船舶在等速直线航行过程中船体受到的各种阻力问题。

“船舶推进”部分:研究克服船体阻力的推进器及其与船体间的相互作用以及船、机、桨(推进器)的匹配问题。

2.船舶阻力,船舶阻力研究的主要内容、主要方法。

船舶阻力:船舶在航行过程中会受到流体(水和空气)阻止它前进的力,这种与船体运动相反的作用力称为船的阻力。

船舶阻力研究的主要内容:1.船舶以一定速度在水中直线航行时所遭受的各种阻力的成因及其性质;2.阻力随航速、船型和外界条件的变化规律;3.研究减小阻力的方法,寻求设计低阻力的优良船型;4.如何较准确地估算船舶阻力,为设计推进器(螺旋桨)决定主机功率提供依据。

研究船舶阻力的方法:1.理论研究方法:应用流体力学的理论,通过对问题的观察、调查、思索和分析,抓住问题的核心和关键,确定拟采取的措施。

2.试验方法:包括船模试验和实船实验,船模试验是根据对问题本质的理性认识,按照相似理论在试验池中进行试验,以获得问题定性和定量的解决。

3.数值模拟:根据数学模型,采用数值方法预报船舶航行性能,优化船型和推进器的设计。

3.水面舰船阻力的组成,每种阻力的成因。

船舶在水面航行时的阻力由裸船体阻力和附加阻力组成,其中附加阻力包括空气阻力、汹涛阻力和附体阻力。

船体阻力的成因:船体在运动过程中兴起波浪,船首的波峰使首部压力增加,而船尾的波谷使尾部压力降低,产生了兴波阻力;由于水的粘性,在船体周围形成“边界层”,从而使船体运动过程中受到摩擦阻力;在船体曲度骤变处,特别是较丰满船的尾部常会产生漩涡,引起船体前后压力不平衡而产生粘压阻力。

4.船舶阻力分类方法。

1.按产生阻力的物理现象分类:船体总阻力由兴波阻力、摩擦阻力和粘压阻力Rpv三者组成,即Rt二Rw+Rf+Rpv.2.按作用力的方向分类:分为由兴波和旋涡引起的垂直于船体表面压力和船体表面切向水质点的摩擦阻力,即Rt=Rf+Rp.3.按流体性质分类:分为兴波阻力和粘性阻力(摩擦阻力和粘压阻力),即Rt=Rw+Rv.4.傅汝德阻力分类:分为摩擦阻力和剩余阻力(粘压阻力和兴波阻力), 即Rt二Rf+Rr.5.船舶动力相似定律,研究船舶动力相似定律的意义,粘性与重力互不相干假定。

阻力系数公式

阻力系数公式

阻力系数公式阻力的公式:F=1/2C p SV²阻力系数是流体穿过一个物体时,物体产生的阻力与流体的原始动能之比。

它通常用数字表示,越大表示物体产生的阻力越大。

阻力系数的公式为:Cd=F/ρv²A,其中:Cd:阻力系数F:物体阻力ρ:流体密度v:流体速度A:物体表面积流体力学阻力系数公式阻力系数Cd=F/(0.5*p*v*v*A)F是阻力p是密度v是速度A 是正投影面积流体力学阻力系数公式是:F = 1/2ρv2CdA其中,F表示流体阻力,ρ表示流体密度,v表示流体速度,Cd表示阻力系数,A表示物体横截面积。

突扩管局部阻力系数公式局部阻力损失计算公式:动压= 局部阻力系数*ρ*V*V*1/2突缩管局部阻力系数公式,突缩管局部阻力系数公式是动压=局部阻力系数×p×2v×2分之一。

局部阻力系数是流体流经设备及管道附件所产生的局部阻力与相应动压的比值,其值为无量纲数。

管道阻力系数公式管道阻力计算公式:R=(λ/D)*(ν^2*γ/2g)。

ν-流速(m/s);λ-阻力系数;γ-密度(kg/m3);D-管道直径(m);P-压力(kgf/m2);R-沿程摩擦阻力(kgf/m2);L-管道长度(m);g-重力加速度=9.8。

压力可以换算成Pa,方法如下:1帕=1/9.81(kgf/m2)。

管道阻力系数公式可以用来计算流体在管道中的阻力。

它的公式为:K = f * L / (2 * g * D^5)其中:K:管道阻力系数;f:管道内表面粗糙系数;L:管道长度;g:重力加速度;D:管道内径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章阻力估算船体型线确定以后,计算船体在不同航速下所收到的阻力是预估船舶快速性的基础,本文采用系类实验图谱估算发和统计和回归资料估算法对船舶阻力进行估算,获得不同航行速度下的阻力并绘制有效马力曲线,为螺旋桨的设计提供理论依据。

1.1相关参数计算1.1.1排水体积计算运用CAD自带的面积测量功能,获取每条半宽水线与基线所围成的面积,则可得到每条水线所围成的面积表3- 1水线面面积数据采用梯形法计算排水体积。

由于0~1000wl,1000~10000wl、10000wl~10820wl的间距不相同,分三部分进行计算。

梯形法计算的表格如表4-2表3- 2梯形法计算排水体积在海水中的设计排水量 =36943t ∇海水密度31025.91(/)kg m ρ= 设计排水体积 /36009.9ρ∆=∇= 绝对误差-100%=0.217∆∆⨯∆设计计算设计误差主要来源:各水线面面积的计算误差采用梯形法计算的误差1.1.2 浮心纵向坐标计算运用CAD 自带的曲线面积测量工具,获取每站位上横剖线围成的横剖面积,由梯形法可计算排水体积以及浮心纵向坐标表3- 3梯形法计算和浮心纵向坐标在海水中设计排水量 =36943t ∆ 海水密度31025.91(/)k g m ρ= 设计排水体积 /ρ∇=∆ 绝对误差-100%=0.642∇∇⨯∇设计计算设计浮心纵向坐标 0.07yozb M X ∑==-∇浮心纵向坐标距船中(L%)100%0.04bBPX L ⨯=- 1.1.3 湿表面积计算运用CAD 自带的曲线长度测量工具,获取每个站位上水线以下部分横剖面曲线所围成长度。

利用梯形法计算湿表面积。

具体计算见表3-4表3- 4梯形法计算湿表面积总和 677.795计算湿表面积 2=6377.795S m 计算 设计船湿表面积 2=6448S m 设计绝对误差(100%)-S 100%=1.09S S 设计计算设计1.2 阻力估算船舶在水中航行所受的水阻力可分为船舶在静水中航行时的静水阻力和波浪中的汹涛阻力两部分。

船舶在静水中运动时所受到的阻力与船体周围的流动现象密切有关。

根据观察,船体周围的绕流运动情况相当复杂,但主要有以下三种流动现象:(1)兴波阻力:船体在运动过程中兴起波浪,简称兴波阻力。

兴波阻力包括产生稳定的船行波和不稳定的破波。

由于船行波的产生,改变了船体表面的压力分布情况,船首的波峰使首部压力增加,而船尾的波谷是尾部压力降低,于是产生首尾流体动压力差,形成阻力。

从能量观点看,无论是船行波还是破波都具有一定的能量,这些能量必然由船体供给。

这种由于船体运动不断兴波而耗散能量所产生的阻力称为兴波阻力,一般用Rw表示。

(2)摩擦阻力:当船舶运动时,由于水的粘性,在船体周围形成“边界层”,从使船体运动过程中受到粘性切应力,亦即船体表面产生了摩擦力,它在运动方向的合力便是船体摩擦阻力,用Rf表示.(3)粘压阻力:在船体曲度骤变出,特别是较丰满船的尾部常会产生旋涡。

旋涡产生的根本原因也是由于水具有粘性。

旋涡处的水压力下降,从而改变了沿船体表面的压力分布情况。

这种有粘性引起船体前后压力不平稳产生的阻力称为粘压阻力,用Rpv表示。

从能量观点看,克服粘压阻力所做的功耗散为旋涡能量。

粘压阻力习惯也叫旋涡阻力。

在阻力计算方面,对于各类阻力的计算已有很多相关的研究。

对于摩擦阻力,一般分为相当平板摩擦阻力和计及船型椅子的阻力增加系数kRf,并有了很多的经验公式可供阻力估算;粘压阻力和兴波阻力的计算通常采用尾流测量法,随着边界层非线性理论研究的深入和流体力学理论(CFD)的发展,粘压阻力和兴波阻力的理论计算得到了很多发展,并在实际中得以运用,但目前的理论方法还不能正确地计算船舶阻力。

现有的阻力估算通常按傅汝德分类方法将船体静水阻力分为相当平板摩擦阻力和剩余阻力。

本文进行阻力估算均采用了傅汝德分类方法。

根据现有资料和设计的船型参数,选择泰勒系列图谱法、艾亚(Ayre)法、兰泼-凯勒(Lap-Keller)法进行阻力估算。

1.2.1航速预设船舶在不同的航速下航行具有不同的雷偌数和傅汝德数,因此不同的航行速度具有遭受的阻力不同。

在进行阻力估算前,必须先预设一组航速。

集装箱船的航速一般为22~25kn,经济航速为17kn,本船设计航速为17.5kn 预设航速为15~22kn,则Fr=0.190~0.282。

根据船型分类,属于中速船范围。

1.2.2泰勒法阻力估算C图谱插值求出不同预设航速下的剩余阻(1)运用泰勒系列剩余阻力系数r力系数,如表3-5,具体插值计算示例见附录表3- 5插值后的剩余系数(2)按桑海公式计算相当平板摩擦阻力系数 2.60.4631(lg Re)f C =(3)粗糙度附加值 30.410f C -∆=⨯ (4)总阻力系数 t f f r C C C C =+∆+ (5)总阻力(N ) 212t tR C S ρν= (6)取附体系数0.03ap k =,空气阻力系数30.110aa C -=⨯,总阻力'(1)ts t ap aa R R k R =++计算得到的总阻力如表3-6表3- 6泰勒法估算总阻力1.2.3 艾亚法阻力估算艾亚法阻力估算步骤(1)由设计船舶的Fr 和/V 1/3/L ∆值在艾亚法标准船型系数0C 值查得相应于标准船型的0C 值;(2)根据Fr 或/V bc C 及标准浮心纵向位置c x 表插值该集装箱船对应的标准准方形系数bc C 及标准浮心纵向位置c x ;(3)对实船进行修正,包括方形系数bc C 的修正,宽度吃水比BT的修正、浮心纵向位置c x 的修正、水线长度wl L 的修正。

计算得到的总阻力如表3-7表3- 7艾亚法估算阻力1.2.4 兰泼-凯勒法阻力估算兰泼-凯勒法阻力估算步骤:(1)根据船舶的p C 和c x 值,由兰泼-凯勒法的浮心位置分组图决定使用何组图谱进行内插(2)及p C 值,由选定的rm S C A 图谱获取r mSC A 的值,计算得到r C 的值(3)因图谱以L/B=6.5给出,根据计算船的L/B 值进行修正(4)摩擦阻力系数由桑海公式算出,粗糙度补贴系数根据船长选取30.210f C -∆=⨯ (5)计算总阻力系数及总阻力(6)图谱以B/T=2.4给出,在获得总阻力t R 后,对总阻力做修正10(2.4)0.5%t t BR R T∆=±-⨯ 经过修正后的实船总阻力为't t R R R =+∆(7)取附体系数0.03ap k =,空气阻力系数30.110aa C -=⨯,总阻力'(1)ts t ap aa R R k R =++计算的阻力值如表3-8表3- 8 兰泼-凯勒法估算阻力1.3 阻力换算与比较实验船型为长度为122m 的几何相似船型,给定的实验值与计算值进行比较前需进行阻力换算,消除船体尺度所引发的误差。

上世纪 50~60 年代甚至更早些年代,船模与实船间的换算关系都是采用二因次法,即将船舶阻力划分为摩擦阻力与剩余阻力两部分,换算到实船时再加上粗糙度补贴。

这对早期的军船、小型船舶及方形系数不大的船舶是可行的,但随着船越造越大,方形系数也大大增加,再将服从雷诺定律的粘性阻力、漩涡阻力以及其他一些阻力分量都归入剩余阻力中是不适宜的,甚至会出现实船比模型还光滑的谬论,于是就出现了三因次换算法。

对于方形系数较大的低速船,进行模型和实船阻力换算时通常采用三因次换算法;对于中高速船,进行模型和实船阻力换算时通常采用二因次换算方法本文的Fr=0.19~0.284,属于中高速船舶,因此本文采用了二因次换算法,即傅汝德换算。

为计算方便,将实船阻力系数应用傅汝德阻力换算换算为122m 实验船的阻力系数,并在相当船速下进行比较。

1.3.1 阻力系数换算总阻力系数 22/31251/2tR πρν©=∇傅汝德阻力换算 122f122fs 125(s)(C )s f C C π©=©+--∆三种计算方法得到的阻力经换算后的总阻力系数为表3- 9经傅汝德换算后的总阻力系数1.3.2 阻力比较将换算后的总阻力系数与相当速度下试验得到的阻力数据进行比较(1)计算设计船在预设航速下的速度系数()k =(2)根据设计船的预设航速下的速度系数计算相应速度下试验船的航速 (3)根据以后的实验航速下的阻力系数插值得到计算航速下的122©(4)比较三种不同计算方法经转换后的©值与试验船的122©进行比较,计算误差表3- 10相当航速下计算值与实验值比较图3- 1计算阻力系数与实验阻力系数图3- 2计算阻力系数与实验阻力系数误差比较1.3.3误差分析由以上计算可知,计算阻力与船舶实验阻力具有一定的误差,且不同的计算方法的误差不同。

由图3-2可知,兰泼法的整体误差较小,一般低于5%,泰勒法和艾亚发的误差均较大,且误差随航速分布成方向。

对于不同的计算方法,误差主要来源主要有一下几个方面:(1)阻力分类计算方法引发的误差:本文中阻力的估算均采用的是傅汝德阻力分类方法,将船体阻力分为相当平板年的摩擦阻力和剩余阻力。

傅汝德把船体阻力分成互不相关的两个独立部分,忽略了两者的相互联系;其次,傅汝德将行波阻力和粘压阻力这两种不同性质的阻力成分合并成剩余阻力,并认为符合傅汝德比较定律,在理论上是不恰当的;最后,船体形状的复杂的三因次物体,其周围的流动情况与平板相比显然有一定的差别,因此,用相当平板阻力代替船体摩擦阻力必然是有误差的。

(2)阻力估算方法引发的误差:泰勒法的母型船为一巡洋舰,阻力性能较好,因此对航速较高、船型较痩的双螺旋浆船用此法较为恰当。

本设计船为单螺旋桨集装箱船,方形系数0.675b C =,船型虽瘦,在一定程度上符合计算的要求,但仍存在较大误差。

同时,泰勒系列图谱的31000/7.0L ∇≤,而设计船的31000/7.47L ∇=,差值时采用了外插进行剩余阻力r C 的计算。

艾亚法船型系列的统计资料代表着20实际40年代以前的船型,随之时代的发展,现在的船型较过去有了很大的改变,因此艾亚法虽适用范围较广,对中、低速船的估算结果与船模实验的吻合程度尚好,但误差能较大。

同时,艾亚法所需的主要参数c x 在用梯形法计算中本身存在误差,再用于阻力估算中产生的误差较其他方法更大。

兰泼-凯勒法的阻力估算结果与船模实验结果吻合度较好,存在的误差主要源于对图谱的读数上。

(3)阻力换算引发的误差:本文才用了傅汝德阻力换算方法,即二因次阻力换算。

二因次阻力换算引发的误差如(1)中分析类似,不再做过多分析。

1.4 本章小结本章在型线确定及绘制完毕后,进行参数验证以及阻力估算。

通过计算排水体积、湿表面积、浮心纵向坐标等,可以得出计算参数与设计参数存在的误差较小,型线设计和绘制基本合格。

相关文档
最新文档