八上专题复习将军饮马

合集下载

初中数学-必考类型-将军饮马

初中数学-必考类型-将军饮马

初中数学-必考类型-将军饮马在初中数学中,经常会考到求线段最值、求路线最值、周长最值的问题。

这种题型近几年来更是中考的热门考题。

这种问题涉及到的一个重要几何模型就是将军饮马模型。

将军饮马指的是:一位将军从营地A出发,外出去B地巡视边防。

在B地巡视完边防后,要在天黑之前赶回营地A处。

但是由于战马长途奔袭,体力不及,所以将军要先带着战马去远处的一条小河喝水。

然后才能继续返回营地A处。

(A.B,小河三地不再同一个直线上),现在将军要选一条最近的路线,才能在天黑之前返回营地。

所以将军要带着战马去河边的哪一个位置饮水,才能使所走的路线最短?在数学中,我们也将细细的求线段最值、路线最值、周最值的题型称之为将军饮马题型。

下面是将军饮马题型的实题,通过实题我们来学习以下将军饮马题型的求法,和解题思路。

两定一动模型,是指有两个点是定点,不发生变动,而另外一个点是不确定点,有待我们确定的模型。

这种模型是典型的将军饮马模型。

这种题型相对来说比较简单,学生可以直观的找出答案。

一定两动模型,是指三个点中,只有一个点是固定不变的,另外两个点是在运动的。

由于另外两个点在变动,所以三点之间所成线段的长度和也是发生变化的。

但是在运动过程中,一定会存在一个位置,使三点之间的长度和最短。

而让我们求的就是这个最短值。

折中题型是将军饮马模型的变形。

相对来说有一定难度。

两静两动模型,是将军饮马模型的延伸。

将原来的三个点之间的线段和问题,延伸成了四个点之间的线段求和。

这种题型同样是找出定点的对称点,然后利用两点之间线段最短的理论去求解,找出最短距离。

利用将军饮马模型求解角度最值问题,是将军饮马的一个另一个方向的应用。

一直以来也是考察学生学以致用能力的常考题型。

难关必刷03轴对称之将军饮马模型(3种类型30题专练)(原卷版)-2024-2025学年八年级数学上

难关必刷03轴对称之将军饮马模型(3种类型30题专练)(原卷版)-2024-2025学年八年级数学上

难关必刷03轴对称之将军饮马模型(3种类型30题专练)【模型梳理】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?B军营河如图,在直线上找一点P使得PA+PB最小?这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)类型一:两定一动在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P ’M +MN +NP ’’,当P ’、M 、N 、P ’’共线时,△PMN 周长最小.类型二:两定两动在OA 、OB 上分别取点M 、N 使得四边形PMNQ 的周长最小。

考虑PQ 是条定线段,故只需考虑PM +MN +NQ 最小值即可,类似,分别作点P 、Q 关于OA 、OB 对称,化折线段PM +MN +NQ 为P ’M +MN +NQ ’,当P ’、M 、N 、Q ’共线时,四边形PMNQ 的周长最小。

类型三:一定两动在OA 、OB 上分别取M 、N 使得PM +MN 最小。

此处M 点为折点,作点P 关于OA 对称的点P ’,将折线段PM +MN 转化为P ’M +MN ,即过点P ’作OB 垂线分别交OA 、OB 于点M 、N ,得PM +MN 最小值(点到直线的连线中,垂线段最短)BBBBBB【题型讲解】 类型一:两定一动 【例1】如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是( )A .B .C .D .【变式】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.类型二:两定两动【例2】如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为A .3B .4C .D .【变式】如图,在锐角三角形ABC中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是P OBAMN()E AFCDB()AB .2C .D .4类型三:一定两动【例3】点P 是定点,在OA 、OB 上分别取M 、N ,使得PM+MN 最小。

初二数学将军饮马相关题目及解答

初二数学将军饮马相关题目及解答

这是总纲:【序号一】文章引言- 对“初二数学将军饮马相关题目及解答”进行简单介绍和解释。

【序号二】初步理解将军饮马问题- 对问题进行初步描述,解释将军饮马问题的背景和相关概念。

- 分析将军饮马问题中的关键因素和要点,引导读者初步理解问题。

【序号三】盘点各类将军饮马问题- 总结各类将军饮马问题,包括常见的类型、变种及相关的难点。

- 分析各类问题的特点和难点,并介绍解题的一般思路和方法。

【序号四】深度解析具体的将军饮马问题- 选取一到两个典型的将军饮马问题进行详细分析,展示深度解题的过程和技巧。

- 重点突出解题思路和方法,引导读者掌握解决具体问题的技巧和策略。

【序号五】对将军饮马问题的个人理解和观点- 共享个人对将军饮马问题的理解和感悟,探讨解题过程中的心得和体会。

- 提出对将军饮马问题的个人见解和观点,展示对问题的深刻理解和思考。

【序号六】总结和回顾- 对全文进行总结和回顾,强调将军饮马问题的重要性和解题的技巧。

- 突出对变种问题的解题策略和技巧,鼓励读者深入探索相关问题,提升解题能力。

【序号七】结语- 对全文进行简短的结语,表达对将军饮马问题的重视和对读者的鼓励。

假设最终文章大致如下:序号一:文章引言在初二数学学习中,将军饮马问题一直是一个经典而又充满挑战的题目。

它不仅考验着学生的数学思维和逻辑能力,同时也对解题技巧和方法提出了很高的要求。

在接下来的文章中,我们将对将军饮马问题进行全面的探讨和分析,并共享解题的一般思路和方法。

序号二:初步理解将军饮马问题将军饮马问题是一个著名的逻辑问题,通常以丰富的形式出现在中学数学教科书中。

它涉及到将军与士兵、马与草地之间的复杂关系,要求学生通过数学方法解决实际问题,锻炼逻辑推理和数学建模的能力。

让我们来看一下一个常见的例子。

假设有一名将军带着三十个士兵和三十匹马要过草原。

草原上有三十个不同的点,它们是将军要经过的地方。

将军每次只能带十匹马经过,但他有几个条件:1. 每匹马每次必须有骑手骑着; 2. 每个地点只能经过一次; 3. 带着马过草地时必须带上骑手;问题是,如何保证士兵、马、将军都能安全地过草地?透过这个简单的例子,我们初步了解了将军饮马问题的背景和相关概念。

8年级数学将军饮马专题复习

8年级数学将军饮马专题复习

八年级数学专题复习:将军饮马求线段和最值❶(-)两定一动型例1:如图,AM丄EF, BN丄EF,垂足为M、N,MN = 12m, AM = 5m, BN = 4m, P是EF上任意一点,则PA + PB的最小值是____ m・分析:这是最基本的将军饮马问题,A, B是定点,P的“定点定线作对称笃可作点A关于EF的对称点A',根据两点之间,线段最短,连接A'B, 此时A'P+PB即为AB最短.而要求AB则是动点,于两定一动将军饮马型,根据常见需要构造直角三角形,利用勾股定理解决.解答:作点A关于EF的对称点A',过点A'作A'C丄BN 的延长线于C.易知A#M=AM = NC = 5m, BC = 9m, A'C = MN = 12m, 在RtAA^BC中,A'B = 15m,即PA+PB 的最小值是15m・变式:如图,在边长为2的正三角形ABC中,E, F,G为各边中点,P为线段EF上一动点,则△ BPG周长的最小値为________ ・分析:考虑到BG为定值是1,则△BPG的周长最小转化为求BP + PG的最小值,又是两定一动的将军饮马型,考虑作点G关于EF的对称点,这里有些同学可能看不出来到底是哪个点,我们不妨连接AG,则AG丄BC,再连接EG,根据“直角三角形斜边中线等于斜边的一半S可得AE= EG,则点A就是点G关于EF的对称点.最后计算周长时,别忘了加上BG的长度.解答:连接AG,易知PG = PA, 当B, P, A三点共线时, 最短,BA = 2, BG = 1, 3. BP+PG=BP+PA, BP + PG = BA,此时即周长最短为❷(二)一定两动型分析:这里的点C是定点,P, E杲动点,属于一定两动的将军饮马模型,由于AABC是等腰三角形,AD 是BC中线,则AD垂直平分BC,点C关于AD的对称点是点B,PC + PE=PB + PE,显然当B, P, E三点共纟戋时,BE更短.但此时还不是最短,根据“垂线段最短”只有当BE丄AC时,BE最短.求BE时,用面积法即可.作BE丄AC交于点E,交AD于点P,易知AD-LBC, BD = 3, BC = 6,则ADBC = BEAC,4X6=BE・5, BE = 4.8B D C解答:如图,作点E关于BD的对称点E',连接E'F,则EF + CF = ET + CF,当F, C三点共线时,E'F + CF = E'C,此时较短.过点C作CE”丄AB 于E“,当点E'与点E"重合时,E“C最短,E"C 为AB边上的高,E”C = 5・O (三)两定两动型例3:,zTLAOB = 30° , OC = 5 , OD = 12 ,点E , F分別是射线OA, OB上的动点,求CF + EF-FDE的晟小值.O E D B分析:这里的点C, 点D建定点,F , E是动点,属于两定两动的将军仪马型,依旧可以用“定点定线作对称"来考虑.作点C关于OB的对称点,点。

专题8 将军饮马模型(学生版)

专题8 将军饮马模型(学生版)

专题8将军饮马模型模型1:当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使PA +PB最小.连接AB 交直线l 于点P ,点P 即为所求作的点.PA +PB 的最小值为AB.模型2:当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA +PB最小.作点B 关于直线l 的对称点B',连接AB'交直线l 于点P ,点P 即为所求作的点.PA +PB 的最小值为AB'模型3:当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最大.连接AB 并延长交直线l 于点P ,点P 即为所求作的点,PA PB -的最大值为AB模型4:当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使得PA PB -最大.作点B 关于直线I 的对称点B',连接AB'并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为AB'解题策略-最小.模型5:当两定点A、B在直线l同侧时,在直线l上找一点P,使得PA PB连接AB,作AB的垂直平分线交直线l于点P,点P即为所求作的点.PA PB-的最小值为0模型6:点P在∠AOB内部,在OB边上找点D,OA边上找点C,使得△PCD周长最小.分别作点P关于OA、OB的对称点P′、P″,连接P′P″,交OA、OB于点C、D,点C、D即为所求.△PCD周长的最小值为P′P″模型7:点P在∠AOB内部,在OB边上找点D,OA边上找点C,使得PD+CD最小.作点P关于OB的对称点P′,过P′作P′C⊥OA交OB,PD+CD的最小值为P′C【例1】.(2022·湖南师大附中博才实验中学九年级开学考试)如果有一条直线经过三角形的某个顶点,将三角形分成两个三角形,其中一个三角形与原三角形相似,则称该直线为三角形的“自相似分割线”.如图1,在△ABC 中,AB=AC=1,∠BAC=108°,DE 垂直平分AB ,且交BC 于点D ,连接AD.(1)证明直线AD 是△ABC 的自相似分割线;(2)如图2,点P 为直线DE 上一点,当点P 运动到什么位置时,PA+PC 的值最小?求此时PA+PC 的长度.(3)如图3,射线CF 平分∠ACB ,点Q 为射线CF 上一点,当AQ取最小值时,求∠QAC 的正弦值.经典例题【例2】.(2021·四川南充·一模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(4,0)、B(0,4)、C.其对称轴l交x轴于点D,交直线AB于点F,交抛物线于点E.(1)求抛物线的解析式;(2)点P为直线l上的动点,求△PBC周长的最小值;(3)点N为直线AB上的一点(点N不与点F重合),在抛物线上是否存在一点M,使以点E、F、N、M为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.【例3】(2022·浙江衢州·模拟预测)如图,⊙O是△ABC的外接圆,AB为直径,弦AD平分∠BAC,过点D作射线AC的垂线,垂足为M,点E为线段AB上的动点.(1)求证:MD是⊙O的切线;(2)若∠B=30°,AB=8,在点E运动过程中,EC+EM是否存在最小值?若存在,请求出最小值;若不存在,说明理由;(3)若点E恰好运动到∠ACB的角平分线上,连接CE并延长,交⊙O于点F,交AD于点P,连接AF,CP=3,EF=4,求AF的长.【例4】(2022·重庆巴蜀中学七年级期末)在Rt△ABC中,AB=BC,在Rt△CEH中,∠CEH=45°,∠ECH=90°,连接AE.(1)如图1,若点E在CB延长线上,连接AH,且AH=6,求AE的长;(2)如图2,若点E在AC上,F为AE的中点,连接BF、BH,当BH=2BF,∠EHB+12∠HBF=45°时,求证:AE=CE;(3)如图3,若点E在线段AC上运动,取AE的中点F,作FH'∥BC交AB于H,连接BE并延长到D,使得BE =DE,连接AD、CD;在线段BC上取一点G,使得CG=AF,并连接EG;若点E在线段AC上运动的过程中,当ACD的周长取得最小值时,△AED的面积为25,请直接写出GE+BH′的值.【例5】(2022·江苏·九年级课时练习)如图,四边形ABCD中,AD∥BC,∠B=90°,AB=8,BC=20,AD=18,点Q为BC中点,动点P在线段AD边上以每秒2个单位的速度由点A向点D运动,设动点P的运动时间为t秒.(1)当t为何值时,四边形PBQD是平行四边形,请说明理由?(2)在AD边上是否存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形?若存在,请直接写出t的值:若不存在,请说明理由.(3)在线段PD上有一点M,且PM=10,当点P从点A向右运动_________秒时,四边形BCMP的周长最小,其最小值为_________.培优训练一、解答题1.(2022·江苏·八年级专题练习)如图,在△ABC中,AB=AC,AD是△ABC底边BC上的中线,点P为线段AB上一点.(1)在AD上找一点E,使得PE+EB的值最小;(2)若点P为AB的中点,当∠BPE满足什么条件时,△ABC是等边三角形,并说明理由.2.(2021·全国·八年级专题练习)如图所示,在平面直角坐标系中,已知一次函数y=12x+1的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求边AB的长;(2)求点C,D的坐标;(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.3.(2022·江苏·八年级专题练习)已知Rt△ABC中∠C=90°,且BC=9,∠B=30°.(1)如图1、2,若点D是CB上一点,且CD=3,点E是AB上的动点,将△DBE沿DE对折,点B的对应点为B′(点B′和点C在直线AB的异侧),DB′与AB交于点H.①当∠B′EA=20°时,求∠EDB的度数.②当△B′HE是等腰三角形时,求∠DEB的度数.(2)如图2,若点D是CB上一点,且CD=3,M是线段AC上的动点,以∠MDN为直角构造等腰直角△DMN (D,M,N三点顺时针方向排列),在点M的运动过程中,直接写出CN+NB的最小值.4.(2021·湖北武汉·八年级期中)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,以BC为边向左作等边△BCE,点D为AB中点,连接CD,点P、Q分别为CE、CD上的动点.(1)求证:△ADC为等边三角形;(2)求PD+PQ+QE的最小值.5.(2022·江苏·八年级专题练习)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点D,交AC于点E,连接BE.(1)若∠ABC=68°,求∠AED的度数;(2)若点P为直线DE上一点,AB=8,BC=6,求△PBC周长的最小值.6.(2021·江苏·星海实验中学八年级期中)如图,在平面直角坐标系中,直线l平行于x轴,l上有两点A、B,且点A坐标为(-14,8),点B位于A点右侧,两点相距8个单位,动点P、Q分别从A、B出发,沿直线l向右运动,点P速度为2个单位/秒,点Q速度为6个单位/秒,设运动时间为t秒.(1)用含t的代数式表示P、Q的坐标:P(_________),Q(_________);(2)在P、Q运动过程中,取线段PQ的中点D,当△OBD为直角三角形时,求出t的值及相应的点D的坐标;(3)取满足(2)中条件最右侧的D点,若坐标系中存在另一点E(−133,-4),请问x轴上是否存在一点F,使FD-FE的值最大,若存在,求出最大值;若不存在,说明理由.7.(2021·全国·九年级专题练习)如图,在平面直角坐标系中,抛物线y x2﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y2﹣3沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.8.(2021·四川省成都市七中育才学校八年级开学考试)以BC为斜边在它的同侧作Rt△DBC和Rt△ABC,其中∠A=∠D=90°,AB=AC,AC、BD交于点P.(1)如图1,BP平分∠ABC,求证:BC=AB+AP;(2)如图2,过点A作AE⊥BP,分别交BP、BC于点E、点F,连接AD,过A作AG⊥AD,交BD于点G,连接CG,交AF于点H,①求证:△ABG≌△ADC;②求证:GH=CH;(3)如图3,点M为边AB的中点,点Q是边BC上一动点,连接MQ,将线段MQ绕点M逆时针旋转90°得到线段MK,连接PK、CK,当∠DBC=15°,AP=2时,请直接写出PK+CK的最小值.9.(2021·广东·岭南画派纪念中学八年级阶段练习)如图,在平面直角坐标系中,直线y=﹣12x﹣2分别与x、y 轴交于A、C两点,点B(1,0)在x轴上.(1)求直线BC的解析式;(2)若点C关于原点的对称点为C′,问在AB的垂直平分线上是否存在一点G,使得△GBC′的周长最小?若存在,求出点G的坐标和最小周长;若不存在,请说明理由.(3)设点P是直线BC上异于点B、C的一个动点,过点P作PQ∥x轴交直线AC于点Q,过点Q作QM⊥x 轴于点M,再过点P作PN⊥x轴于点N,得到矩形PQMN,在点P的运动过程中,当矩形PQMN为正方形时,求该正方形的边长.10.(2021·陕西宝鸡·九年级期中)问题提出(1)在图1中作出点B关于直线AC的对称点B'问题探究(2)如图2,在△ABC中,AB=AC=6,∠BAC=120°,D为AC的中点,P为线段BC上一点,求AP+DP的最小值.问题解决(3)如图3,四边形ABCD为小区绿化区,DA=DC,∠ADC=90°,AB=6+63,BC=12,∠B=30°,AC,边BC和边AC上分别取一点P,E,F,使得DP+PE+EF+PF 是以D为圆心,DA为半径的圆弧.现在规划在AC为这一区域小路,求小路长度的最小值.11.(2021·全国·九年级专题练习)已知在Rt△OAB中,∠OAB=90°,∠ABO=30°,OB=4,将Rt△OAB绕点O顺时针旋转60°,得到△ODC,点D在BO上,连接BC.(1)如图①,求线段BC的长;(2)如图②,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图③,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长的最小值.12.(2021·全国·九年级专题练习)如图,在平面直角坐标系中,A0,2、B−2,0、C2,2,点E、F分别是直线AB和x轴上的动点,求△CEF周长的最小值.13.(2021·全国·九年级专题练习)如图,抛物线y=x2+bx+c与x轴交于A−1,0、B两点,与y轴交于点C0,−3.(1)求抛物线的解析式;(2)如图①,连接BC,点P是抛物线在第四象限上一点,连接PB,PC,求△BCP面积的最大值;(3)如图②,点D为抛物线的顶点,点C关于抛物线对称轴的对称点为点E,连接DE.将抛物线沿x轴向右平移t个单位,点A,B的对应点分别为A′、B′,连接A′D、B′E,当四边形A′DEB′的周长取最小值时,求t的值.14.(2022·全国·八年级课时练习)如图,在四边形ABCD中,∠B=∠D=90°,E,F分别是BC,CD上的点,连接AE,AF,EF.(1)如图①,AB=AD,∠BAD=120°,∠EAF=60°.求证:EF=BE+DF;(2)如图②,∠BAD=120°,当△AEF周长最小时,求∠AEF+∠AFE的度数;(3)如图③,若四边形ABCD为正方形,点E、F分别在边BC、CD上,且∠EAF=45°,若BE=3,DF=2,请求出线段EF的长度.15.(2021·全国·九年级专题练习)如图,等边△ABC的边长为6,点D,E分别是边BC,AC的中点,连接BE.(1)如图①,求点D到线段BE的最短距离;(2)点P,N分别是BE,BC上的动点,连接PN、PD.①如图②,当PN+PD的长度取得最小值时,求BP的长度;②如图③,点Q在BE上,若BQ=1,连接QN,求QN+NP+PD的最小值.16.(2021·全国·九年级课时练习)在平面直角坐标系中,以点P23,−3为圆心的圆与x轴相交于A、B两点,与y轴相切于点C,抛物线y=ax2+bx+c经过点A、B、C,顶点为D.(1)求抛物线的表达式;(2)点M为y轴上一点,连接DM,MP,是否存在点M使得△DMP的周长最小?若存在,求出点M的坐标及△DMP的周长最小值;若不存在,请说明理由.17.(2021·全国·九年级专题练习)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,BC=4,⊙O是△ABC的外接圆,D是CB延长线上一点,且BD=2,连接DA,点P是射线DA上的动点(1)求证:DA是⊙O的切线;(2)DP的长度为多少时,∠BPC的度数最大,最大度数是多少?请说明理由;(3)点P运动的过程中,PB+PC的值能否达到最小,若能,求出这个最小值;若不能,请说明理由.18.(2021·全国·九年级专题练习)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论;(3)在(2)的情况下,点M在AC线段上移动,请直接回答,当点M移动到什么位置时,MB+MD有最小值.19.(2022·全国·八年级课时练习)(1)【问题解决】已知点P在∠AOB内,过点P分别作关于OA、OB的对称点P1、P2.①如图1,若∠AOB=25∘,请直接写出∠P1OP2=______;②如图2,连接P1P2分别交OA、OB于C、D,若∠CPD=98∘,求∠AOB的度数;③在②的条件下,若∠CPD=α度(90<α<180),请直接写出∠AOB=______度(用含α的代数式表示).(2)【拓展延伸】利用“有一个角是60∘的等腰三角形是等边三角形”这个结论,解答问题:如图3,在ΔABC中,∠BAC=30∘,点P是ΔABC内部一定点,AP=8,点E、F分别在边AB、AC上,请你在图3中画出使ΔPEF周长最小的点E、F的位置(不写画法),并直接写出ΔPEF周长的最小值.20.(2012·浙江金华·中考真题)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.21.(2021·全国·九年级专题练习)已知,如图,二次函数y=ax2+2ax−3a a≠0图象的顶点为H,与x轴交于A、B两点(B点在A点右侧),点H、B关于直线l:y=+3对称.(1)求A、B两点的坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK//AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连结HN、NM、MK,求HN+NM+MK的最小值.22.(2022·吉林松原·八年级期中)教材呈现:下图是华师版八年级下册数学教材第111页的部分内容.(1)问题解决:请结合图①,写出例1的完整解答过程.(2)问题探究:在菱形ABCD中,对角线AC、BD相交于点O,AB=4,∠BAD=2∠ABC.过点D作DE//AC 交BC的延长线于点E.如图②,连结OE,则OE的长为____.(3)如图③,若点P是对角线BD上的一个动点,连结PC、PE,则PC+PE的最小值为_____.23.(2022·河北保定·一模)[问题提出]初中数学的学习中,我们学习了“两点之间线段最短”“垂线段最短”等知识……常可利用它们来解决“最值问题”.[简单运用](1)如图1,在△ABC中,AB=6,∠A=60°,∠B=45°,在BC上取一点D,则AD的长的最小值是______.[综合运用](2)如图1,在△ABC中,AB=6,∠A=60°,∠B=45°,在BC、AB、AC.上分别取点D、E、F,使得△DEF 的周长最小.画出图形确定D、E、F的位置,并直接写出△DEF的周长的最小值.[拓展延伸](3)图2是由线段AB、线段AC、BC 组成的图形,其中∠A=60°,AB=6,AC=3,BC 为60°,分别在BC、线段AB和线段AC.上取点D、E、F,使得△DEF的周长最小,画出图形确定D、E、F的位置,并直接写出△DEF 的周长的最小值.24.(2022·山东济宁·一模)如图,已知抛物线y=ax2+bx−6与x轴的交点A(-3,0),B(1,0),与y轴的交点是点C.(1)求抛物线的解析式;(2)点P是抛物线对称轴上一点,当PB+PC的值最小时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M,N,使得∠CMN=90∘且以点C,M,N为顶点的三角形与△OAC相似?若存在,求出点M和点N的坐标;若不存在,说明理由.。

数学将军饮马知识点总结

数学将军饮马知识点总结

数学将军饮马知识点总结一、问题描述数学将军饮马问题的描述如下:一个将军率领一支骑兵队,要经过一片沙漠。

沙漠上有一口水井,水井的深度可以满足整支骑兵队的饮水需求。

将军骑着一匹马,可以携带一定数量的水。

现在问题来了,将军每小时可以骑马走一定的距离,而每匹马每小时可以喝一定的水。

现在需要确定将军携带多少水,才能保证整支骑兵队能够成功地跨越沙漠,而又不至于浪费水资源。

二、问题分析1. 数学模型建立数学将军饮马问题首先需要进行问题分析和建模,以确定针对这一问题的数学模型。

通过观察和分析可以得出,这是一个关于时间、距离和水量的问题,需要建立数学关系,建模求解。

2. 走距离与喝水在沙漠中骑马跋涉,对于骑马走的距离和喝水之间的关系需要进行合理的分析和计算。

根据数学将军饮马问题的描述,我们可以得知:将军每小时可以骑马走一定的距离,每匹马每小时可以喝一定的水。

3. 求解根据将军队伍的规模、马的喝水速度和水源的容量,我们需要求解将军携带多少水能够足够整支骑兵队顺利跨越沙漠的问题。

三、相关知识点总结1. 时间、距离与速度的关系在数学将军饮马问题中,时间、距离和速度是密不可分的。

根据题目描述,我们需要确定将军每小时可以骑马走的距离。

这就涉及到了时间、距离和速度的关系。

在实际生活和工作中,我们也经常会遇到时间、距离和速度的计算和关系问题,而这一问题正是数学知识在实际应用中的体现。

2. 水量的计算在数学将军饮马问题中,将军骑马携带的水量是一个重要的问题。

将军需要在保证整支骑兵队能够成功跨越沙漠的前提下,尽量减少携带的水量,避免浪费水资源。

因此,对于将军饮马问题,我们需要进行水量的计算和分析,以确定最合适的携带水量。

3. 最优化问题数学将军饮马问题可以理解为一个最优化问题,在保证整支骑兵队能够成功地跨越沙漠的前提下,需要尽量减少携带的水量,以达到最优化的效果。

这就涉及到了数学中的最优化问题的求解方法,需要通过建立数学模型、分析求解,找到最优的携带水量。

初二上册将军饮马压轴题

初二上册将军饮马压轴题

初二上册将军饮马压轴题
初二上册数学将军饮马压轴题,可以考虑将问题设定为:将军每天从A地骑马到B地,途中需要经过一条河,并在河岸处喝水休息。

将军想要找到一个点,使得他从A地骑马到这个点,再从这点骑马到B地的时间最短。

这就是一个典型的将军饮马问题。

这个问题可以通过构建和解决一系列的数学模型来解决,包括对称点、一次函数、不等式等知识点。

通过这些数学工具,我们可以找到使得时间最短的点,即马在河岸处应该饮水的位置。

这个问题的解决过程需要学生具备一定的数学建模能力和逻辑推理能力,同时也能提高他们的数学应用意识和问题解决能力。

部编数学八年级上册专题21轴对称之将军饮马基础篇(解析版)含答案

部编数学八年级上册专题21轴对称之将军饮马基础篇(解析版)含答案

专题21 轴对称之将军饮马基础篇1.如图,30AOB Ð=°,M ,N 分别是边,OA OB 上的定点,P ,Q 分别是边,OB OA 上的动点,记,OPM OQN a b Ð=Ð=,当MP PQ QN ++的值最小时,关于a ,b 的数量关系正确的是( )A .60b a -=°B .210b a +=°C .230b a -=°D .2240b a +=°【答案】B【解析】【分析】如图,作M 关于OB 的对称点M′,N 关于OA 的对称点N′,连接M′N′交OA 于Q ,交OB 于P ,则MP+PQ+QN 最小易知∠OPM=∠OPM′=∠NPQ ,∠OQP=∠AQN′=∠AQN ,KD ∠OQN=180°-30°-∠ONQ ,∠OPM=∠NPQ=30°+∠OQP ,∠OQP=∠AQN=30°+∠ONQ ,由此即可解决问题.【详解】如图,作M 关于OB 的对称点M ¢,N 关于OA 的对称点N ¢,连接M N ¢¢交OA 于Q ,交OB 于P ,则此时MP PQ QN ++的值最小.易知¢Ð=Ð=ÐOPM OPM NPQ ,¢Ð=Ð=ÐOQP AQN AQN .∵18030Ð=°-°-ÐOQN ONQ ,30Ð=Ð=°+ÐOPM NPQ OQP 30Ð=Ð=°+ÐOQP AQN ONQ ,∴303018030210+=°+°+Ð+°-°-Ð=°ONQ ONQ a b .故选:B.【点睛】本题考查轴对称-最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.如图,△ABC 是等腰三角形,底边BC 的长为4,面积是18,腰AC 的垂直平分线EF 分别交AC ,AB 于点E ,F .若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值是( )A .11B .13C .9D .8【答案】A【解析】【分析】连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,由此即可得出结论.【详解】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴1141822ABC S BC AD AD =×=´´=V ,解得AD =9,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴CM =AM ,∴CD +CM +DM =CD +AM +DM ,∵AM +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =9+12×4=9+2=11.故选:A .【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.3.如图,25AOB Ð=°,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ a Ð=,PQN b Ð=,当MP PQ QN ++的值最小时,b a -的大小=__________(度).【答案】50【解析】【分析】作M 关于OB 的对称点M ¢,N 关于OA 的对称点N ¢,连接M N ¢¢,交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ¢¢Ð=Ð=ÐÐ=Ð=Ð,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ¢,N 关于OA 的对称点N ¢,连接M N ¢¢,交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN ++最小,即MP PQ QN M N ¢¢++=,∴OPM OPM NPQ OQP AQN AQN ¢¢Ð=Ð=ÐÐ=Ð=Ð,,∵MPQ PQN a b Ð=Ð=,,∴11(180)(180)22QPN OQP a b Ð=°-Ð=°-,,∵QPN AOB OQP Ð=Ð+Ð,25AOB Ð=°,∴11(180)25(180)22a b °-=°+°- ,∴50b a -=° .故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.4.如图,点P 是AOB Ð内任意一点,3cm OP =,点M 和点N 分别是射线OA 和射线OB 上的动点,30AOB Ð=°,则PMN V 周长的最小值是______.【答案】3【解析】【分析】根据“将军饮马”模型将最短路径问题转化为所学知识“两点之间线段最短”可找到PMN V 周长的最小的位置,作出图示,充分利用对称性以及30AOB Ð=°,对线段长度进行等量转化即可.【详解】解:如图所示,过点P 分别作P 点关于OB 、OA 边的对称点P ¢、P ¢¢,连接PP ¢¢、PP ¢、P P ¢¢¢、OP ¢、OP ¢¢,其中P P ¢¢¢分别交OB 、OA 于点N 、M ,根据“两点之间线段最短”可知,此时点M 、N 的位置是使得PMN V 周长的最小的位置.由对称性可知:,PN P N PM P M ¢¢¢==,,P OB POB POA P OA¢¢¢Ð=ÐÐ=Ð 3OP OP OP ¢¢¢===,30POA POB AOB Ð+Ð=Ð=°Q 30P OA P OB ¢¢¢\Ð+Ð=°+=60POA POB P OA P OB P OP ¢¢¢¢¢¢\Ð+ÐÐ+ÐÐ=°P OP ¢¢¢\△为等边三角形=3P P OP OP ¢¢¢¢¢¢\==\PMN V 的周长=PN PM MN ++=P N P M MN P P ¢¢¢¢¢¢++==3故答案为:3【点睛】本题是典型的的最短路径问题,考查了最短路径中的“将军饮马”模型,能够熟练利用其原理“两点之间线段最短”作出最短路径示意图是解决本题的关键.5.如图,ABC V 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PCE V 的周长最小时,ACP Ð的度数为______.【答案】30°##30度【解析】【分析】连接BP,由等边三角形的性质可知AD为BC的垂直平分线,即得出BP=CP,由此可知要使△PCE 的周长最小,即P点为BE与AD的交点时.最后根据等边三角形三线合一的性质,即得出CP平分ACBÐ,从而可求出1==302ACP ACBÐа.【详解】如图连接BP.∵ABCV为等边三角形,∴AD为BC的垂直平分线,∴BP=CP,∵△PCE的周长=PE+CP+CE= PE+BP+CE,∴当PE+BP最小时,△PCE的周长最小,∵PE+BP最小时为BE的长,即此时BE与AD的交点为P,如图.又∵点E为中点,AD为高,ABCV为等边三角形,∴P点即为等边ABCV角平分线的交点,∴CP平分ACBÐ,∴1==302ACP ACBÐа.故答案为:30°【点睛】本题考查等边三角形的性质,线段垂直平分线的判定和性质,两点之间线段最短等知识.理解要使△PCE的周长最小,即P点为BE与AD的交点是解题关键.6.如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=_____°.【答案】80【解析】【分析】作点A关于BC、CD的对称点A1、A2,根据轴对称确定最短路线问题,连接A1、A2分别交BC、DC于点M、N,利用三角形的内角和定理列式求出∠A1+∠A2,再根据轴对称的性质和角的和差关系即可得∠MAN.【详解】如图,作点A关于BC、CD的对称点A1、A2,连接A1、A2分别交BC、DC于点M、N,连接AM、AN,则此时△AMN的周长最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵点A关于BC、CD的对称点为A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案为:80.【点睛】本题考查了轴对称的最短路径问题,利用轴对称将三角形周长问题转化为两点间线段最短问题是解决本题的关键.7.如图,在锐角△ABC中,∠BAC = 40°,∠BAC的平分线交BC于点D,M,N分别是AD和AB 上的动点,当BM +MN有最小值时,ABMÐ=_____________°.【答案】50【解析】【分析】在AC上截取AE=AN,可证△AME≌△AMN,当BM +MN有最小值时,则BE是点B到直线AC的距离即BE⊥AC,代入度数即可求∠ABM的值;【详解】如图,在AC上截取AE=AN,连接BE,∵∠BAC 的平分线交BC 于点D ,∴∠EAM =∠NAM ,∵AM =AM ,∴△AME ≌△AMN ,∴ME =MN ,∴BM +MN =BM +ME ≥BE .∵BM +MN 有最小值.当BE 是点B 到直线AC 的距离时,BE ⊥AC ,∴∠ABM =90°-∠BAC =90°-40°=50°;故答案为:50.【点睛】本题考查的是轴对称-最短路线问题,通过最短路线求出角度;解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最短路线,代入即可求出度数.8.如图,直线1l ,2l 交于点O ,点P 关于1l ,2l 的对称点分别为1P ,2P .若4OP =,127PP =,则12POP △的周长是______.【答案】15【解析】【分析】根据对称的性质可知,OP 1=OP =OP 2=3,再根据P 1P 2=7即可求出△P 1OP 2的周长.【详解】∵P 关于l 1、l 2的对称点分别为P 1、P 2,∴OP 1=OP =OP 2=4,∵P 1P 2=7,∴△P 1OP 2的周长=OP 1+OP 2+P 1P 2=4+4+7=15.故答案为15【点睛】本题考查的是轴对称的性质,熟知轴对称的性质是解答此题的关键.9.如图,等腰三角形ABC 的面积是18,底边BC 长为4,腰AC 的垂直平分线EF 分别交AC ,AB 于点E ,F .若D 为BC 的中点,G 为线段EF 上一动点,则CDG V 周长的最小值为___________.【答案】11【解析】【分析】连接AD ,由于ABC D 是等腰三角形,点D 是BC 边的中点,故AD BC ^,再根据三角形的面积公式求出AD 的长,再再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM MD +的最小值,由此即可得出结论.【详解】解:连接AD ,△ABC 是等腰三角形,点D 是BC 边的中点,AD BC \^,∴S △ABC =1141822BC AD AD ×=´´= ,解得9AD =,EF 是线段AC 的垂直平分线,\点C 关于直线EF 的对称点为点A ,CM AM\=,CD CM DM CD AM DM\++=++,AM+DM≥AD,AD\的长为CM MD+的最小值,CDM\D的周长最短11()94921122CM MD CD AD BC=++=+=+´=+=.故答案为11.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题10.问题:如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C 处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线l上另外任取一点C',连接AC'、BC',证明AC+CB<AC'+C'B.请完成这个证明.(2)如图③,点P为∠MON内的一个定点,在OM上有一点A,ON上有一点B.请你作出点A 和点B的位置,使得△PAB的周长最小.(保留作图痕迹,不写作法)在上述条件下,若∠MON=40°,则∠APB=°.【答案】(1)证明见解析;(2)作图见解析,100【解析】【分析】(1)如图②,连接A C ¢¢,由轴对称的性质可得,,AC A C AC A C ¢¢¢¢== 再证明:,A B AC BC ¢=+ 再利用三角形的三边关系可得结论;(2)分别作点P 关于,OM ON 的对称点,,P P ¢¢¢ 连接P P ¢¢¢交OM 于,A 交ON 于,B 则PAB △的周长最短,再由轴对称的性质可得:,,OPB OP B OPA OP A ¢¢¢V V V V ≌≌ 证明,APB OP B OP A ¢¢¢Ð=Ð+Ð 80,P OP ¢¢¢Ð=° 再求解50,OP P OP P ¢¢¢¢¢¢Ð=Ð=° 从而可得答案.【详解】证明:(1)如图②,连接A C ¢¢,∵点A ,点A ¢关于l 对称,点C 在l 上,∴CA CA ¢=,∴AC BC A C BC A B ¢¢+=+=,同理可得:AC C B A C BC ¢¢¢¢¢+=+,∵A B ¢<A C C B ¢¢¢+,∴AC +BC <AC C B ¢¢+;(2)如图所示,点A 、B 即为所求,由轴对称的性质可得:,,OPB OP B OPA OP A ¢¢¢V V V V ≌≌,,,,PO P O PO P O OPB OP B OPA OP A ¢¢¢¢¢¢\==Ð=ÐÐ=Ð,,POB P OB POA P OA ¢¢¢Ð=ÐÐ=Ð,APB OPB OPA OP B OP A ¢¢¢\Ð=Ð+Ð=Ð+Ð40,POB POA P OB P OA ¢¢¢Ð+Ð=Ð+Ð=°404080,P OP ¢¢¢\Ð=°+°=°,OP OP ¢¢¢=Q()11808050,2OP P OP P ¢¢¢¢¢¢\Ð=Ð=°-°=° 100,APB OP P OP P ¢¢¢¢¢¢\Ð=Ð+Ð=°故答案为:100°.【点睛】本题考查的是轴对称的作图,利用轴对称的性质求解线段和或周长的最小值,同时考查线段的垂直平分线的性质,等腰三角形的性质,掌握以上知识是解题的关键.11.如图,在平面直角坐标系中,已知点(2,5)A ,(2,1)B ,(6,1)C .(1)画出ABC V 关于y 轴对称的111A B C △;(2)在x 轴上找一点P ,使PB PC +的值最小(保留作图痕迹),并写出点P 的坐标.【答案】(1)见解析;(2)见解析,P 的坐标为(4,0).【解析】【分析】(1)根据轴对称的性质结合坐标系,分别确定点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,即可作出111A B C △;(2)作出点B 关于x 轴的对称点B 2,连接B 2C ,交x 轴于P ,点P 即为所求做的点.(1)解:解:(1)如图所示,111A B C △即为ABC V 关于y 轴对称的三角形.(2)解:如图所示,点P 即为所求做的点,点P 的坐标为(4,0).【点睛】本题考查了平面直角坐标系中的轴对称图形,将军饮马问题,熟知轴对称的性质是解题关键,注意坐标系中两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数,两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变.12.如图,在锐角∠AOB的内部有一点P,试在∠AOB的两边上各取一点M,N,使得△PMN的周长最小.(保留作图痕迹)【答案】见详解【解析】【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,N,△PMN即为所求求作三角形.【详解】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,PN,△PMN即为所求作三角形.理由:由轴对称的性质得MP=ME,NP=NF,∴△PMN的周长=PM+MN+PN=EM+MN+NF=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.【点睛】本题考查轴对称﹣最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,以BC为边向左作等边△BCE,点D 为AB 中点,连接CD ,点P 、Q 分别为CE 、CD 上的动点.(1)求证:△ADC 为等边三角形;(2)求PD +PQ +QE 的最小值.【答案】(1)证明见解析;(2)4.【解析】【分析】(1)先根据直角三角形的性质可得60,BAC AD CD Ð=°=,再根据等边三角形的判定即可得证;(2)连接,PA QB ,先根据等边三角形的性质可得12ACE ACD Ð=Ð,再根据等腰三角形的三线合一可得CE 垂直平分AD ,然后根据线段垂直平分线的性质可得PA PD =,同样的方法可得QB QE =,从而可得PD PQ QE PA PQ QB ++=++,最后根据两点之间线段最短即可得出答案.【详解】证明:(1)Q 在Rt ABC V 中,90,30,2ACB ABC AC Ð=°Ð=°=,60,24BAC AB AC Ð\=°==,Q 点D 是Rt ABC V 斜边AB 的中点,2AD AC \==,ADC \V 是等边三角形;(2)如图,连接,PA QB ,BCE QV 和ADC V 都是等边三角形,60BCE \Ð=°,60ACD Ð=°,1302ACE ACB BCE ACD \Ð=Ð-Ð=°=Ð,CE \垂直平分AD ,PA PD \=,同理可得:CD 垂直平分BE ,QB QE \=,PD PQ QE PA PQ QB \++=++,由两点之间线段最短可知,当点,,,A P Q B 共线时,PA PQ QB ++取得最小值AB ,故PD PQ QE ++的最小值为4.【点睛】本题考查了等边三角形的判定与性质、含30°角的直角三角形的性质等知识点,熟练掌握等边三角形的性质是解题关键.14.如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC V (即三角形的顶点都在格点上).(1)在图中作出ABC V 关于y 轴对称的111A B C △,并写出点1C 的坐标.(2)在y 轴上求作一点P ,使得PA PC +最短(保留作图痕迹,不需写出作图过程).(3)求ABC V 的面积.【答案】(1)画图见解析;()11,4C (2)画图见解析(3)6【解析】【分析】(1)利用网格,根据轴对称的性质画出点A 、B 、C 关于y 轴的对称点A 1、B 1,C 1,再连接A 1B 1,A 1C 1,B 1C 1即可;(2)连接A 1C 交y 轴于点P ,即可;(3)利用网格,用矩形面积减去三个直角三角形面积求解即可.(1)解:如图所示,111A B C △就是所要求画的.()11,4C .(2)解:如图所示,点P 就是所要求作的点.(3)解:111353322156222ABC S =´-´´-´´-´´=△.【点睛】本题考查利用轴对称性质作轴对称图形,利用轴对称求最短路径问题,熟练掌握轴对称的性质是解题的关键.15.如图所示的方格纸中,每个小方格的边长都是1,点A (-4,1)、B (-3,3)、C (-1,2).(1)请作出△ABC向右平移5个单位长度,下移4个单位长度后的△A₁B₁C₁;(2)作△ABC关于y轴对称的△A₂B₂C₂;(3)在x轴上求作点N,使△NBC的周长最小(保留作图痕迹).【答案】(1)答案见详解;(2)答案见详解;(3)答案见详解;【解析】【分析】(1)分别作出点A,B,C向右平移5个单位长度,下移4个单位长度后的对应点A₁,B₁,C₁再顺次连接A₁B₁C1;(2)分别作出点A,B,C关于y轴的对称点,再首尾顺次连接可得;(3)作点B关于x轴的对称点B3,再连接B3C交y轴于点N,顺次连接点NB,NC,即可;(1)如图所示:分别作出点A,B,C向右平移5个单位长度,下移4个单位长度后的对应点A₁,B₁,C₁再顺次连接A₁B₁C1;(2)如图所示:分别作出点A,B,C关于y轴的对称点A2,B2,C2,再首尾顺次连接可得;(3)作点B关于x轴的对称点B3,再连接B3C交y轴于点N,顺次连接点NB,NC,△NBC的周长最小;【点睛】本题主要考查作图-轴对称变换,图形的平移,解题的关键是熟练掌握轴对称变换的定义和性质及最短路线问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八(上)数学专题复习______将军饮马问题
傅苏球 2013年12 月25日
一、任务一-------------阅读理解
1、问题提出
1111、一
一,
早在古罗
马时代,
传说亚历
山大城有
一位精通
数学和物理的学者,名叫海伦.一天,一位罗马
将军专程去拜访他,向他请教一个百思不得其解
的问题:将军每天从军营B出发,先到河边饮马,然后再去河岸同侧的A地开会,应该怎样走才能使路程最短?从此,这个被称为“将军饮马”的问题广泛流传.这个问题的解决并不难,据说海伦略加思索就解决了它.
2、解决办法
如图所示,从A出发向河岸引垂线,垂足为D,在AD的延长线上,
取A关于河岸的对称点A',连结A'B,与河岸线相交于C,则C点就是饮马的地方,将军只要从A出发,沿直线走到C,饮马之后,再由C沿直线走到B,
所走的路程就是最短的.如果将军在河边的另外任一点
C'饮马,所走的路程就是AC'+C'B,但是,
AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB.可见,在C点外任何
一点C'饮马,所走的路程都要远一些.
这有几点需要说明的:(1)由作法可知,河流l相当于线段
AA'的中垂线,所以AD=A'D,AC=A'C。

(2)由上一条知:将军
走的路程就是AC+BC,就等于A'C+BC,而两点确定一线,所
以C点为最优。

思考:解题思路是
_______________________________________________
3、将军饮马问题的应用
如图,有A、B两个村庄,他们想在河流l的边上建立一个水泵站,
已知每米的管道费用是100元,A到河流的距离AD是1km,B到河流
的距离BE是3km,DE长3km。

请问这个水泵站应该建立在哪里使得
费用最少,为多少?
解:如图所作,C点为水泵站的位置。

依题意,得:所铺设的水管长度就是AC+BC,即:A'C+BC=A'B的长度。

因为EF=A'D=AD=1km, 所以BF=BE+EF=4km
又A'F=DE=3km
在Rt△A'BF中,A'B2=A'F2+BF2
所以:解得:A'B=5km
所以总费用为:5×1000×100=500000(元)
二、任务二-----------将军饮马问题在几何中的应用
1、如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.
2、如图,∠AOB内有一点P,在OA,OB上分别找出点M,
N,使△PMN的周长最短
3、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R
分别是OA、OB上的动点,求△PQR周长的最小值。

三、任务三-----------将军饮马问题在函数中的应用
1、如图,在直角坐标系中,x轴上的动点M(x,0)到两点P(5,5),Q(2,1)的距离分别为MP和MQ,那么当MP+MQ取最小值时,在x轴上作出M点,并求点M的坐标以及MP+MQ的最小值 .
2、已知,A(-1,0), B(3,0), C(0,-3), M(1,m),点M到点
A的距离与到点C的距离之和最小时,求M的坐标。

3、如图,当四边形PABN的周长最小时,a=_____
变式:若P,Q一个在y轴上,一个在x轴上,如何确定P,Q位置?
四、链接中考
1、(荆门中考)一次函数y=kx+b的图像与x、y轴分别交于点A(2,0),B(0,4)。

(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为O上一动点,求PC+PD的最小值,并求取得最小值时P点坐标。

2、((2011•济宁)去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图).两村的坐标分别为A(2,3),B(12,7).
(1)若从节约经费考虑,水泵站建在距离大桥哦多远的地
方可使所用输水管道最短?
(2)水泵站建在距离大桥哦多远的地方,可使它到张村、
李村的距离相等?
QQ群:67765273(满)、167419647(满)、33022826(空闲)
浙ICP备11042271号
关于我们联系我们免责声明
3\在平面直角坐标系中,有A,B两个点,其中A(-6,3),B(-2,5)。

(1)若一只青蛙从A点跳到x轴上一点P处,再从P点跳到B点,则青蛙所跳的路程最短时点P的坐标是()。

(2)若这只青蛙先从A点出发跳到B点,再从B点跳到y轴上的C点,继续从C点跳到x 轴上的D点,最后从D点回到A点(青蛙每次所跳的距离不一定相等),当青蛙四步跳完的路程最短时,直线CD的解析式是()。

相关文档
最新文档