2021-2022年高考数学 7.1 空间几何体的结构及其三视图和直观图练习

合集下载

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。

高一数学空间几何体的三视图与直观图试题答案及解析

高一数学空间几何体的三视图与直观图试题答案及解析

高一数学空间几何体的三视图与直观图试题答案及解析1.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.【答案】(1);(2)【解析】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素的位置关系和数量关系;(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理;(3)圆锥、圆柱、圆台的侧面是曲面,计算侧面积或长度时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和. 试题解析:(Ⅰ)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.所以. 6分(Ⅱ)沿点到点所在母线剪开圆柱侧面,如图:则,所以从点到点在侧面上的最短路径的长为. 12分【考点】空间几何体的表面积.2.如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是_______-【答案】【解析】如图,根据斜二测画法,可得原平面图形是直角梯形,在直观图中,分别过顶点作底面的高,由于是等腰梯形,可得底面边长为,所以在平面图形中,可知DC=2,所以S= ( AD+BC)·DC=.【考点】直观图和平面图的关系.3.下列命题中正确的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若A、B、C、D既在平面α内,又在平面β内,则平面α和平面β重合D.四条边都相等的四边形是平面图形【答案】B【解析】不在同一直线的三点确定一个平面,故A错,B对;共线的四点可以构成无数个平面,故C错;正四面体的四个边都相等,但它不是平面图形,故D错.故选B.【考点】平面的基本性质.4.将棱长为2的正方体切割后得一几何体,其三视图如图所示,则该几何体的体积为___________.【答案】.【解析】由三视图可知,该几何体为正方体先切割得到的三棱柱后切割一三棱锥,如图所示,则其体积为.【考点】空间几何体的体积.5.某一几何体的三视图如图所示.按照给出的尺寸(单位:cm),(1)请写出该几何体是由哪些简单几何体组合而成的;(2)求出这个几何体的体积.【答案】(1) 正方体和直三棱柱;(2)10cm3.【解析】(1)画出已知三视图的直观图,就很容易获得此几何体是由哪些简单几何体组合而成的;(1)既然几何体是由简单几何体组合而成的,那就只需先求得各个简单几何体的体积,然后相加即得所求几何体的体积.试题解析:(1)如图是题中所给几何体的直观图,所以这个几何体可看成是由正方体及直三棱柱的组合体.(2)由,,可得.所求几何体的体积:【考点】1.三视图;2.直观图;3.体积公式.6.某向何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为。

高考数学一轮总复习 第七章 立体几何 第一节 空间几何体的结构及其三视图和直观图练习 文

高考数学一轮总复习 第七章 立体几何 第一节 空间几何体的结构及其三视图和直观图练习 文

第一节空间几何体的结构及其三视图和直观图【最新考纲】 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.1.多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的形成直角三角形(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )答案:(1)×(2)×(3)×(4)×2.如图,长方体ABCD A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.简单组合体解析:由几何体的结构特征,剩下的几何体为五棱柱.答案:C3.(2016·邯郸调研)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是( )解析:由于组合体的上部分(五面体)与下部分(长方体)有相同的底面,则几何体在下底面的投影为图形B.答案:B4.(2015·课标全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:如图所示,由条件知,截去部分是正三棱锥DABC.设正方体的棱长为a ,则V DABC =a 36,因此剩余部分的体积V 剩=56a 3,故它们的体积之比为15.答案:D5.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于________.解析:由题意得圆柱的底面半径r =1,母线l =1. 所以圆柱的侧面积S =2πrl =2π. 答案:2π一种思想棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.两点注意1.注意空间几何体的不同放置对三视图的影响. 2.画直观图注意平行性、长度两个要素.(1)平行性不变;(2)平行于y 轴的线段长度减半,平行于x 轴、z 轴的线段长度不变. 三条规则——画三视图应遵循的三条规则 1.画法规则:“长对正,宽相等,高平齐”.2.摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.3.实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出.一、选择题1.(2014·福建卷)某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体 D .三棱柱解析:由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.答案:A3.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32 B .1 C.2+12D. 2 解析:由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.答案:D4.(2014·北京卷)在空间直角坐标系O xyz 中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S 1,S 2,S 3分别是三棱锥D ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1解析:如右图所示。

高考一轮练习(7.1空间几何体的结构特征及三视图和直观图)

高考一轮练习(7.1空间几何体的结构特征及三视图和直观图)

课时提升作业(四十二)一、选择题1.以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形;③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形.其中,真命题的个数为( )(A)4 (B)3 (C)2 (D)12.下列几何体各自的三视图中,有且仅有两个视图相同的是( )(A)①②(B)①③(C)①④(D)②④3.(2013·沈阳模拟)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图,△ABC为正三角形,AA′∥BB′∥CC′,CC′⊥平面ABC且3AA′=错误!未找到引用源。

BB′=CC′=AB,则多面体ABC-A′B′C′的主视图是( )5.(2013·宁波模拟)一个水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这个平面图形的面积为( )(A)错误!未找到引用源。

+错误!未找到引用源。

(B)2+错误!未找到引用源。

(C)错误!未找到引用源。

+错误!未找到引用源。

(D)错误!未找到引用源。

+错误!未找到引用源。

6.一个正方体截去两个角后所得几何体的主视图、左视图如图所示,则其俯视图为( )7.(2013·西安模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的主视图是( )(A)①②(B)①③(C)②④(D)③④二、填空题8.等腰梯形ABCD,上底CD=1,腰AD=CB=错误!未找到引用源。

,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.9.(2013·临沂模拟)已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是错误!未找到引用源。

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。

2022版高考数学一轮复习第七章立体几何第一讲空间几何体的结构及其三视图和直观图学案含解析新人教版

2022版高考数学一轮复习第七章立体几何第一讲空间几何体的结构及其三视图和直观图学案含解析新人教版

第七章立体几何第一讲空间几何体的结构及其三视图和直观图知识梳理·双基自测知识梳理知识点一多面体的结构特征名称棱柱棱锥棱台图形结构特征①有两个面互相__平行且全等__,其余各面都是__四边形__.②每相邻两个四边形的公共边都互相__平行__有一个面是__多边形__,其余各面都是有一个公共顶点的__三角形__的多面体用一个平行于棱锥底面的平面去截棱锥,__截面__和__底面__之间的部分侧棱__平行且相等__相交于__一点__但不一定相等延长线交于__一点__ 侧面形状__平行四边形____三角形____梯形__名称圆柱圆锥圆台球图形母线互相平行且相等,__垂直__于底面相交于__一点__延长线交于__一点__轴截面全等的__矩形__全等的__等腰三角全等的__等腰梯__圆__归纳拓展1.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度;由此得到:主俯长对正,主左高平齐,俯左宽相等.2.一个平面图形在斜二测画法下的直观图与原图形相比,有“三变、三不变”.三变:坐标轴的夹角改变,与y轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x轴平行的线段长度不变,相对位置不变.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( ×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ×)(3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.( √)(4)正方体、球、圆锥各自的三视图中,三视图均相同.( ×)(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( ×)(6)菱形的直观图仍是菱形.( × )题组二 走进教材 2.(必修2P 19T2)下列说法正确的是( D )A .相等的角在直观图中仍然相等B .相等的线段在直观图中仍然相等C .正方形的直观图是正方形D .若两条线段平行,则在直观图中对应的两条线段仍然平行[解析]由直观图的画法规则知,角度、长度都有可能改变,而线段的平行关系不变. 题组三 走向高考3.(2020·新课标Ⅰ卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( C )A .5-14B .5-12C .5+14D .5+12[解析]如图,设CD =a ,PE =b ,则PO =PE 2-OE 2=b 2-a 24,由题意PO 2=12ab ,即b 2-a 24=12ab ,化简得4⎝ ⎛⎭⎪⎫b a 2-2·b a -1=0,解得b a =1+54(负值舍去).故选C .4.(2017·,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( B )A.32B.2 3C.22D.2[解析]根据三视图可得该四棱锥的直观图(四棱锥P-ABCD)如图所示,将该四棱锥放入棱长为2的正方体中.由图可知该四棱锥的最长棱为PD,PD=22+22+22=2 3.故选B.5.(2018·全国Ⅰ)某圆柱的高为2,底面周长为16,其三视图如下图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( B )A.217B.2 5C.3D.2[解析]先画出圆柱的直观图,根据题中的三视图可知,点M,N的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN , 则图中MN 即为M 到N 的最短路径.|ON |=14×16=4,|OM |=2, ∴|MN |=|OM |2+|ON |2=22+42=2 5.考点突破·互动探究考点一 空间几何体的结构特征——自主练透例1 (1)给出下列四个命题,其中错误命题....的序号是( D ) ①有两个侧面是矩形的棱柱是直棱柱 ②侧面都是等腰三角形的棱锥是正棱锥 ③侧面都是矩形的直四棱柱是长方体 ④若有两个侧面垂直于底面,则该四棱柱为直四棱柱A .②③④B .①②③C .①②④D .①②③④(2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,所得截面都是圆面,则这个几何体一定是球.其中正确结论的序号是__⑤__.[解析](1)认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,例:在如图所示的平行六面体中,ADD 1A 1及BCC 1B 1都是矩形,且平面ABB 1A 1及DCC 1D 1都与底面ABCD垂直,故①④错误;将菱形沿一条对角线折起所得三棱锥各面都是等腰三角形,但该棱锥不一定是正棱锥,故②错误;侧面都是矩形但底面为梯形的直四棱柱不是长方体,故③错误.故选D.(2)①中这条边若是直角三角形的斜边,则得不到圆锥,①错;②中这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面,③错误;④中如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.名师点拨空间几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析.考点二空间几何体的三视图——多维探究角度1 由几何体的直观图识别三视图例2(2018·课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )[解析]由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.角度2 由空间几何体的三视图还原直观图例3(2018·高考)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( C )A.1B.2C.3D.4[解析]由该四棱锥的三视图,得其直观图如图,由正视图和侧视图都是等腰直角三角形,知PD⊥平面ABCD,所以侧面PAD和PDC都是直角三角形,由俯视图为直角梯形,易知DC⊥平面PAD.又AB∥DC,所以AB⊥平面PAD,所以AB⊥PA,所以侧面PAB也是直角三角形.易知PC=22,BC=5,PB=3,从而△PBC不是直角三角形,故选C.角度3 由三视图的两个视图推测另一视图例4(2021·某某金卷改编)某几何体的正视图与侧视图如图所示,则它的俯视图不可能是( C )[解析]若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个三棱锥的组合体,则俯视图为D;故选C.名师点拨1.由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.2.由几何体的三视图还原几何体的形状,要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象或长方体将三视图还原为实物图.常见三视图对应的几何体:①三视图为三个三角形,对应三棱锥;②三视图为两个三角形,一个四边形,对应四棱锥;③三视图为两个三角形,一个圆,对应圆锥;④三视图为一个三角形,两个四边形,对应三棱柱;⑤三视图为两个四边形,一个圆,对应圆柱.3.由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,再找其剩下部分三视图的可能形式,当然作为选择题,也可将选项逐项检验,看看给出的部分三视图是否符合.〔变式训练1〕(1)(理)(角度1)(2020·某某省某某市三模)“牟合方盖”是我国古代数学家X徽在研究球的体积过程中构造在一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖),其直观图如图所示,图中四边形是体现其直观性所做的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别是( A )A.a,b B.a,cC.a,d D.b,d(文)(角度1)(2019·某某某某中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为( D )(2)(理)(角度2)(2021·某某模拟)若某几何体的三视图如图所示,则此几何体的直观图是( A )(文)(2021·某某模拟)若某几何体的三视图如图所示,则这个几何体的直观图可以是( D )(3)(角度3)(2021·某某某某三诊)如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是( A )[解析](1)(理)因为相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).所以其正视图和侧视图是一个圆;若俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,则俯视图是有2条对角线且为实线的正方形.故选A.(文)易知侧视图的投影面为矩形,又AF的投影线为虚线,即为左下角到右上角的对角线,所以该几何体的侧视图为选项D中图.(2)(理)利用排除法求解.B的侧视图不对.C图的俯视图不对,D的正视图不对,排除B,C,D,A正确,故选A.(文)选项A的正视图、俯视图不符合要求,选项B的正视图不符合要求,选项C的俯视图不符合要求,故选D.(3)若俯视图为A,则正视图不符,故选A.考点三空间几何体的直观图——师生共研例5(2021·某某某某三中模拟)已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( D )A .34a 2B .38a 2C .68a 2D .616a 2[解析]如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.[引申]若已知△ABC 的平面直观图△A 1B 1C 1是边长为a 的正三角形,则原△ABC 的面积为__62a 2__.[解析]在△A 1D 1C 1中,由正弦定理asin 45°=xsin 120°,得x =62a ,∴S △ABC =12×a ×6a =62a 2.名师点拨1.在斜二测画法中,要确定关键点及关键线段的位置,注意“三变”与“三不变”;平面图形的直观图,其面积与原图形的面积的关系是S直观图=24S原图形.2.在原图形中与x轴或y轴平行的线段,在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.〔变式训练2〕一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( B )A.24a2B.22a2C.22a2D.223a2[解析]由题意可知原平行四边形一边长为a,此边上的高为22a,故其面积为22a2.故选B.名师讲坛·素养提升(理)三视图识图不准致误例6(2020·某某某某模拟)如图为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是( B )[错因分析] (1)不能正确把握投影方向致误;(2)不能正确判定上表面椭圆投影形状致误;(3)不能正确判定投影线的虚实致误.[解析]圆柱被不平行于底面的平面所截得的截面为椭圆,结合正视图,可知侧视图最高点在中间,故选B.名师点拨对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,再画其三视图.另外要注意交线的位置,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线,即一定要分清可见轮廓线与不可见轮廓线,避免出现错误.〔变式训练3〕(2019·某某省某某市模拟)设四面体ABCD各棱长均相等,S为AD的中点,Q为BC上异于中点和端点的任一点,则△SQD在四面体的面BCD上的射影可能是( C )[解析]设BC的中点为P,则由题意可知DP⊥BC且平面ADP⊥平面BDC,从而S在平面BCD上的射影在DP上,△SQD在面BCD上的射影为C,故选C.(文)三视图识图不准致误例6(2021·某某阆中中学测试)将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为( B )[错因分析](1)不能正确把握投影方向、角度致误;(2)不能正确确定点、线的位置致误;(3)不能正确判断实线与虚线而致误.[解析]其左视图即为几何体在平面BCC1B1上的投影,注意到加工后的几何体的棱AD1在平面BCC1B1上的投影为BC1且在左视图中能见到,而棱B1C的投影即为它本身且在左视图中看不见,故选B.名师点拨在三视图中,正视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度,侧视图、俯视图中的宽就是空间几何体的最大宽度,在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.〔变式训练3〕(2020·某某某某质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是( C )[解析]此几何体侧视图是从左边向右边看.故选C.。

近年高考数学一轮复习第7章立体几何7.1空间几何体的结构及其三视图和直观图课后作业文(2021年整

近年高考数学一轮复习第7章立体几何7.1空间几何体的结构及其三视图和直观图课后作业文(2021年整

2019版高考数学一轮复习第7章立体几何7.1 空间几何体的结构及其三视图和直观图课后作业文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第7章立体几何7.1 空间几何体的结构及其三视图和直观图课后作业文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第7章立体几何7.1 空间几何体的结构及其三视图和直观图课后作业文的全部内容。

7.1 空间几何体的结构及其三视图和直观图[基础送分提速狂刷练]一、选择题1.一个几何体的三视图如图所示,则该几何体的直观图可以是()答案D解析由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,故选D.2.如图所示,在正方体ABCD-A′B′C′D′中,M,E是AB的三等分点,G,N是CD的三等分点,F,H分别是BC,MN的中点,则四棱锥A′-EFGH的侧视图为()答案C解析侧视图中A′E,A′G重合,A′H成为A′N,A′F,A′B重合,侧视图为向左倾斜的三角形.故选C.3.(2017·临沂模拟)如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF,如图乙,则该几何体的正视图(主视图)是( )答案C解析由于三棱柱为正三棱柱,故平面ADEB⊥平面DEF,△DEF是等边三角形,所以CD在后侧面上的投影为AB的中点与D的连线,CD的投影与底面不垂直.故选C.4.(2018·江西景德镇质检)如图所示,正方体ABCD-A1B1C1D1上、下底面中心分别为O1,O2,将正方体绕直线O1O2旋转一周,其中由线段BC1旋转所得图形是( )答案D解析由图形的形成过程可知,在图形的面上能够找到直线,在B,D中选,显然B不对,因为BC1中点绕O1O2旋转得到的圆比B点和C1点的小.故选D.5.(2017·内江模拟)如图,已知三棱锥P-ABC的底面是等腰直角三角形,且∠ACB=错误!,侧面PAB⊥底面ABC,AB=PA=PB=2.则这个三棱锥的三视图中标注的尺寸x,y,z分别是( )A。

2021届高考数学一轮温习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业

2021届高考数学一轮温习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业

第一节空间几何体的结构特征及三视图与直观图课时作业A组——基础对点练1.如图所示,四面体ABCD的四个极点是长方体的四个极点(长方体是虚拟图形,起辅助作用),则四面体ABCD的正视图、侧视图、俯视图是(用①②③④⑤⑥代表图形)( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤解析:正视图应为边长为3和4的长方形,且正视图中右上到左下的对角线应为实线,故正视图为①;侧视图应为边长为4和5的长方形,且侧视图中左上到右下的对角线应为实线,故侧视图为②;俯视图应为边长为3和5的长方形,且俯视图中左上到右下的对角线应为实线,故俯视图为③,故选B.答案:B2.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( ) A.8 B.43C.4 2 D.4解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S=3×4=4 3.答案:B3.某几何体的三视图如图所示,则该几何体中最长的棱长为( )A.3 3 B.2 6C.21 D.2 5解析:由三视图得,该几何体是四棱锥P­ABCD,如图所示,ABCD为矩形,AB=2,BC=3,平面PAD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.答案:B4.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.答案:D5.已知某几何体的三视图如图所示,则该几何体的表面积是( )A .(25+35)πB .(25+317)πC .(29+35)πD .(29+317)π解析:由三视图可知该几何体的直观图如图所示,所以该几何体的表面积为π+π×(1+2)×17+2×π×2×4+4π×222=π+317π+16π+8π=(25+317)π,故选B.答案:B6.(2021·长沙模拟)某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A .①③B .①③④C .①②③D .①②③④解析:若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,故选A. 答案:A7.(2021·石家庄市模拟)某几何体的三视图如图所示,则其体积为( )A.3π4B .π+24C.π+12D .3π+24解析:由几何体的三视图知,该几何体的一部份是以腰长为1的等腰直角三角形为底面,高为3的三棱锥,另一部份是底面半径为1,高为3的圆锥的四分之三.所以几何体的体积为13×3π4×3+13×12×1×1×3=3π4+12=3π+24,故选D. 答案:D8.某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:由三视图恢复的几何体是一个长方体与半个圆柱的组合体,如图.其中长方体的长、宽、高别离是4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积V 1=4×2×2=16, 半个圆柱的体积V 2=12×22×π×4=8π.∴这个几何体的体积是16+8π. 答案:A9.一个半径为2的球体通过切割以后所得几何体的三视图如图所示,则该几何体的表面积为( )A .16πB .12πC .14πD .17π解析:按照三视图可知几何体是一个球体切去四分之一,则该几何体的表面是四分之三球面和两个截面(半圆). 由题意知球的半径是2,∴该几何体的表面积S =34×4π×22+π×22=16π.答案:A10.一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为( )A.72 m 3 B .92 m 3 C.73m 3 D .94m 3 解析:由三视图可知,几何体为如图所示的几何体,其体积为3个小正方体的体积加三棱柱的体积,所以V =3+12=72(m 3),故选A.答案:A11.球面上有A ,B ,C 三点,球心O 到平面ABC 的距离是球半径的13,且AB =22,AC ⊥BC ,则球O 的表面积是( ) A .81π B .9π C.81π4D .9π4解析:由题意可知,AB 为△ABC 的外接圆的直径,设球O 的半径为R ,则R 2=(R3)2+(2)2,可得R =32,则球的表面积S =4πR 2=9π.故选B.答案:B12.某几何体的三视图如图所示,则该几何体的体积为________.解析:将三视图还原成直观图,取得如图所示几何体,设BC 的中点为G ,连接AG ,DG ,△ABC 是一个边长为2的等边三角形,其高AG = 3.该几何体可以看成一个三棱锥与一个四棱锥组合而成.∴该几何体的体积V =V三棱锥D ­ABG+V四棱锥A ­DECG=13×S △ABG ×DG +13×S 四边形DECG×AG =13×12×1×3×2+13×2×1×3= 3.答案: 313.某空间几何体的三视图如图所示,则该几何体的体积为________.解析:由题意取得几何体的直观图如图,即从四棱锥P ABCD 中挖去了一个半圆锥.其体积V =13×2×2×2-12×13×π×12×2=8-π3.答案:8-π314.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2 cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2 cm 的圆(包括圆心),则该零件的体积是________.解析:依题意得,零件可视为从一个半球中挖去一个小圆锥所剩余的几何体,其体积为12×4π3×23-13×π×22×1=4π(cm 3).答案:4π cm 3B 组——能力提升练1.若三棱锥S ­ABC 的底面是以AB 为斜边的等腰直角三角形,AB =SA =SB =SC =2,则该三棱锥的外接球的表面积为( ) A.16π3B .8π3C.43π3D .4π3解析:在等腰直角三角形ABC 中,AB 是斜边且AB =2,取AB 的中点D ,连接CD ,SD .∴CD =AD =BD =1.又SA =SB =SC =2,∴SD ⊥AB ,且SD =3,在△SCD 中,SD 2+CD 2=SC 2,∴SD ⊥CD ,∴SD ⊥平面ABC .∴三棱锥S ­ABC 的外接球球心在SD 上,记为O ,设球半径为R ,连接OA ,则SO =OA =R ,∴在Rt △AOD 中,AD =1,OD =3-R ,AO =R ,∴12+(3-R )2=R 2⇒R =233,∴三棱锥S ­ABC 的外接球的表面积S =4πR 2=4π×(233)2=16π3.故选A.答案:A2.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.答案:D3.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45°,过圆柱的轴的平面截该几何体所得的四边形ABB ′A ′为矩形,若沿AA ′将其侧面剪开,其侧面展开图的形状大致为( )解析:过AB 作平行于底面的半平面α,如图,取截面边界上任一点P ,过P 作PP ′垂直于半平面α,垂足为P ′,延长PP ′交圆柱底面于点P 1,过P作PM ⊥AB ,垂足为M ,连接MP ′,则MP ′⊥AB ,∠PMP ′就是截面与底面所成的角,∠PMP ′=45°,设AB 的中点为O ,连接OP ′.设l AP ′=x ,则∠AOP ′=x1=x ,在Rt △PP ′M 中,PP ′=MP ′,在Rt △OP ′M 中,MP ′=OP ′sin∠MOP ′=sin x ,∴PP ′=sin x ,PP 1=AA ′+sin x ,故选A.答案:A4.如图是一个几何体的三视图,则该几何体任意两个极点间距离的最大值是( )A .4B .5C .3 2D .3 3解析:作出直观图如图所示,通过计算可知AF 最长且|AF |=|BF |2+|AB |2=3 3.答案:D5.高为4的直三棱柱被削去一部份后取得一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的( ) A.34 B .14 C.12D .38解析:由侧视图、俯视图知该几何体是高为二、底面积为12×2×(2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积是原直三棱柱的体积的48=12,故选C.答案:C6.(2021·昆明市检测)我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“幂”是截面面积,“势”是几何体的高.意思是:若两个等高几何体在同高处的截面面积总相等,则这两个几何体的体积相等.现有一旋转体D (如图1所示),它是由抛物线y =x 2(x ≥0),直线y =4及y 轴围成的封锁图形绕y 轴旋转一周形成的几何体,旋转体D 的参照体的三视图如图2所示,利用祖暅原理,则旋转体D 的体积是( )A.16π3B .6πC .8πD .16π解析:由三视图知参照体是一个直三棱柱,其体积V =12×4×4×π=8π,故旋转体D 的体积为8π,故选C. 答案:C7.如图,某三棱锥的正视图、侧视图和俯视图别离是直角三角形、等腰三角形和等边三角形.若该三棱锥的极点都在同一个球面上,则该球的表面积为( )A .27πB .48πC .64πD .81π 解析:由三视图可知该几何体为三棱锥,该棱锥的高VA =4,棱锥底面ABC 是边长为6的等边三角形,作出直观图如图所示.因为△ABC 是边长为6的等边三角形,所之外接球的球心D 在底面ABC 上的投影为△ABC 的中心O ,过D 作DE ⊥VA 于E ,则E 为VA 的中点,连接OD ,OA ,DA ,则DE =OA=23×33=23,AE =12VA =2,DA 为外接球的半径,所以DA =DE 2+AE 2=4,所以外接球的表面积S =4πr 2=64π.故选C. 答案:C8.(2021·天津测试)若一个几何体的表面积和体积相同,则称这个几何体为“同积几何体”.已知某几何体为“同积几何体”,其三视图如图所示,则a =( )A.14+223B .8+223C.12+223D .8+2 2解析:按照几何体的三视图可知该几何体是一个四棱柱,如图所示,可得其体积为12(a +2a )·a ·a =32a 3,其表面积为12·(2a +a )·a ·2+a 2+a 2+2a ·a +2a ·a =7a 2+2a 2,所以7a 2+2a 2=32a 3,解得a =14+223,故选A.答案:A9.(2021·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高别离为22,22,4的长方体,则该长方体外接球的半径r =222+222+422=22,则所求外接球的表面积为4πr 2=32π.答案:C10.某几何体的三视图如图所示,则该几何体的表面积为( )A .18+2πB .20+πC .20+π2D .16+π 解析:由三视图可知,这个几何体是一个棱长为2的正方体割去了两个半径为一、高为1的14圆柱,其表面积相当于正方体五个面的面积与两个14圆柱的侧面积的和,即该几何体的表面积S =4×5+2×2π×1×1×14=20+π,故选B. 答案:B11.(2021·南昌模拟)某四棱锥的三视图如图所示,则该四棱锥最长的一条侧棱的长度是________.解析:由题意可知该几何体是一个底面为直角梯形的四棱锥,梯形的两底边长别离为4,2,高为3,棱锥的高为2,所以最长侧棱的长度为22+32+42=29.答案:2912.在三棱锥A BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积别离为22,32,62,则该三棱锥外接球的表面积为________.解析:设彼此垂直的三条侧棱AB ,AC ,AD 别离为a ,b ,c ,则12ab =22,12bc =32,12ac =62,解得a =2,b =1,c = 3.所以三棱锥A BCD 的外接球的直径2R =a 2+b 2+c 2=6,则其外接球的表面积S =4πR 2=6π.答案:6π13.一个直三棱柱被削去一部份后的几何体ABCDE 及其侧视图、俯视图如图所示,其中侧视图是直角梯形,俯视图是等腰直角三角形.设M 是BD 的中点,点N 在棱DC 上,且MN ⊥平面BDE ,则CN =_____________________________.解析:由题意可得,DC ⊥平面ABC ,所以DC ⊥CB .若MN ⊥平面BDE ,则MN ⊥BD .又因为∠MDN =∠CDB ,所以△DMN ∽△DCB ,所以DN DB =DM DC ,故DN 26=64,解得DN =3,所以CN =CD -DN =1.答案:114.(2021·武汉市模拟)棱长均相等的四面体ABCD 的外接球半径为1,则该四面体的棱长为________.解析:将棱长均相等的四面体ABCD 补成正方体,设正方体的棱长为a ,则正四面体ABCD 的棱长为2a ,正方体的体对角线长为3a ,由3a =2⇒a =233,则2a =263. 答案:263。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高考数学 7.1 空间几何体的结构及其三视图和直观图练习
(25分钟60分)
一、选择题(每小题5分,共25分)
1.(xx·兰州模拟)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )
【解析】选D.如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.
【加固训练】(xx·佛山模拟)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是图中的( )
【解析】选B.截去的平面在俯视图中看不到,故用虚线,因此选B.
2.(xx·淄博模拟)某三棱锥的正视图与俯视图如图所示,则其侧视图的面积为()
A.2
B.3
C.4
D.6
【解析】选A.由三棱锥的特点知侧视图为直角三角形,根据正视图和俯视图知,侧视
图的两直角边长分别为2,2,所以侧视图的面积为×2×2=2.
3.(xx·安庆模拟)某几何体的正视图和侧视图均为如图1所示的图形,则在图2的四个图中可以作为该几何体的俯视图的是()
A.(1)(3)
B.(1)(4)
C.(2)(4)
D.(1)(2)(3)(4)
【解析】选A.由几何体的正视图与侧视图可得出,此几何体上部一定是一个球,下部可以是一个正方体,或是一个圆柱体,故(1)(3)一定正确,第二个几何体不符合要求,这是因为球的投影不在正中,第四个不对的原因与第二个相同,综上,A选项符合要求.故选A.
【加固训练】(xx·广州模拟)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()
【解析】选D.由几何体的正视图和侧视图均为题干图中左图.结合四个选项中的俯视图知,若为D,则正视图应为,故D不可能,所以选D.
4.(xx·绍兴模拟)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()
A.②③④
B.①②③
C.①③④
D.①②④
【解析】选A.①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.
【方法技巧】由直观图确定三视图的技巧
(1)将几何体放在自己的前面,从正面、左面、上面观察几何体,得到三视图.
(2)画三视图时,看得到的轮廓线画成实线,看不到的轮廓线要画成虚线.
5.(xx·武汉模拟)如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①水的部分始终呈棱柱状;
②水面四边形EFGH的面积不改变;
③棱A1D1始终与水面EFGH平行;
④当E∈AA1时,AE+BF是定值.
其中正确说法是()
A.①②③
B.①③
C.①②③④
D.①③④
【解析】选D.显然水的部分呈三棱柱或四棱柱状,故①正确;容器倾斜度越大,水面四边形EFGH的面积越大,故②不正确;显然棱A1D1始终与水面EFGH平行,故③正确;由于水的体积不变,四棱柱ABFE-DCGH的高不变,所以梯形ABFE的面积不变,所以AE+BF是定值,故④正确.所以四个命题中①③④正确.
二、填空题(每小题5分,共15分)
6.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的
(填入所有可能的几何体的编号).
①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.
【解析】四棱柱与圆柱的正视图不可能为三角形,三棱锥、四棱锥、三棱柱、圆锥的正视图都有可能是三角形.
答案:①②③⑤
7.等腰梯形ABCD,上底CD=1,腰AD=CB=,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.
【解析】如图所示:
因为OE==1,所以O′E′=,E′F=,
则直观图A′B′C′D′的面积为S′=×(1+3)×=.
答案:
8.(xx·武汉模拟)某四棱锥的三视图如图所示,则最长的一条侧棱的长度是.
【解析】根据三视图可知原图为如图,最长棱为AC,
所以AE=2,EB=2,ED=3,DC=4,
所以EC=5,所以AC=.
答案:
三、解答题(每小题10分,共20分)
9.如图是一个几何体的正视图和俯视图.
(1)试判断该几何体是什么几何体.
(2)画出其侧视图,并求该平面图形(侧视图)的面积.
【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.
(2)该几何体的侧视图如图:
其中AB=AC,AD⊥BC,且BC的长是俯视图正六边形对边间的距离,即BC=a,AD是正六棱锥的高,则AD=a,所以该平面图形(侧视图)的面积为S=×a×a=a2.
【加固训练】已知正三棱锥V-ABC的正视图和俯视图如图所示.
(1)画出该三棱锥的侧视图和直观图.
(2)求出侧视图的面积.
【解析】(1)如图.
(2)侧视图中V A=
==2.
则S△VBC=×2×2=6.
10.(xx·辽宁高考改编)某几何体的三视图如图所示.
(1)判断该几何体是什么几何体?
(2)画出该几何体的直观图.
【解题提示】根据俯视图可得这是一个切割后的几何体,再结合另外两个视图,得到几何体.
【解析】(1)该几何体是一个正方体切掉两个圆柱后得到的几何体.
(2)直观图如图所示.
(20分钟40分)
1.(5分)一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为,则原梯形的面积为()
A.2
B.
C.2
D.4
【解析】选D.直观图为等腰梯形,若上底设为x,高设为y,则S直观图=y(x+2y+x)=,而原梯形为直角梯形,其面积为S=·2y(x+2y+x)=2×=4.
2.(5分)(xx·长沙模拟)如图,三棱锥V-ABC的底面ABC为正三角形,侧面V AC
与底面ABC垂直,且V A=VC,以平面V AC为正视图的投影面,其正视图的面积为,
则其侧视图的面积为()
A. B. C. D.
【解题提示】关键由题设条件确定侧视图的形状.
【解析】选B.取AC中点H,连接VH,BH,在△V AC中,V A=VC,所以VH⊥AC,因
为平面V AC⊥平面ABC且其交线为AC,所以VH⊥平面ABC,因为△ABC是等
边三角形,则BH⊥AC,所以AC⊥平面VHB,即侧视图为△VHB,设AB=a,VH=h,根据等体积法得S△ABC·h=S△VHB·AC,即·a2·h=S△VHB·a,所以S△VHB=a·h,又正视图面积为S=a·h=,所以S△VHB=×=.
【加固训练】(xx·成都模拟)三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,则侧视图的面积为()
A.8
B.4
C.4
D.
【解析】选C.由正视图面积为8知,三棱柱的侧棱长为4,侧视图是一个矩形,它的一边长为4,另一边长是底
面正三角形的高,所以侧视图的面积为4×=4.
3.(5分)(xx·杭州模拟)多面体MN-ABCD的底面ABCD为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM的长为()
A. B. C. D.2
【解析】选C.在直观图中,过M作MH垂直于AB,垂足为H,则在直角三角形AHM中,AH=1,MH=,所以AM=.
4.(12分)(xx·石家庄模拟)如图的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图.
(2)按照给出的尺寸,求该多面体的体积.
【解析】(1)如图.
(2)所求多面体体积V=V长方体-V正三棱锥
=4×4×6-××2=(cm3).
5.(13分)(能力挑战题)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01
平方米).
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作
图时,不需考虑骨架等因素).
【解题提示】(1)根据条件确定圆柱的高与底面半径的关系,转化为函数问题解
决.(2)结合实物图画出三视图即可.
【解析】(1)设圆柱的高为h米,由题意可知,
4(4r+2h)=9.6,
即2r+h=1.2.
S=2πrh+πr2=πr(2.4-3r)
=3π[-(r-0.4)2+0.16],其中0<r<0.6.
所以当半径r=0.4米时,Smax=0.48π≈1.51(平方米).
(2)由r=0.3及2r+h=1.2,得圆柱的高h=0.6(米).则灯笼的三视图为:。

相关文档
最新文档