2021年八年级数学下册第章一元二次方程本章小结教案新版浙教版

合集下载

八年级数学下册2.1一元二次方程教案(新版)浙教版

八年级数学下册2.1一元二次方程教案(新版)浙教版

第2章一元二次方程2.1 一元二次方程【教学目标】知识与技能1、经历一元二次方程概念的发生过程。

2、理解一元二次方程的概念。

3、了解一元二次方程的一般形式,会将一个一元二次方程化成一般形式,会辨认一元二次方程的二次项系数、一次项系数和常数项。

4、会依据简单的实际问题列一元二次方程并将其转化为一般形式。

过程与方法经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.情感、态度与价值观进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性.【教学重难点】重点:一元二次方程的概念;一元二次方程的一般式的理解难点:一元二次方程的一般式及根的概念的运用。

【导学过程】【情景导入】根据题意列方程(1)、有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?设x年后树高为5m,可列出方程。

(2)、把面积为4平方米的一张纸分割成如图的正方形和长方形两部分,求正方形的边长。

设正方形的边长为x,可列出方程。

(3)、某放射性元素经2天后,质量衰变为原来的1/2.这种放射性元素平均每天减少率为多少?可列出方程。

(4)问:这两个有什么相同的特点?【新知探究】探究一、方程②x2+5x=150和.③x2+3x=4的两边都是整式,并且只含有一个未知数,并且未知数最高次数为2次我们把这样的方程叫做一元二次方程即共同点:(1)两边都是整式;(2)只含有一个未知数;(3)未知数最高次数为2次具有以上三个特点的方程称为一元二次方程(5)判断下列方程是否为一元二次方程:① 10x2=9 ( ) ②2(x-1)=3x ( )③2x2-3x-1=0 ( ) ( )⑤2xy-7=0 ( ) ⑥9x2=5-4x ( )⑦4x2=5x ( ) ⑧3y2+4=5y ( )探究二、概念教学一般地,任何一个关于x的一元二次方程都可以化为ax2+bx+c=0的形式,我们把ax2+bx+c=0 (a,b,c为常数,a≠0)称为一元二次方程的一般形式.其中ax2,bx,c分别称为二次项,一次项,常数项,a,b分别称为二次项系数,一次项系数. 注意:要确定一元二次方程的系数和常数项 ,必须先将方程化为一般形式在写一元二次方程的一般形式时,通常按未知数的次数从高到低排列,即先写二次项,再写一次项,最后是常数项。

八年级数学下册 第2章 一元二次方程教案 (新版)浙教版

八年级数学下册 第2章 一元二次方程教案 (新版)浙教版

一元二次方程整节课以“一堂课讲述着一个故事,一堂课蕴含着一种思想(助人为乐的思想),一堂课透视着一个社会热点问题(三农问题),一堂课解决了一元二次方程的解法及应用,应用中的3类重点问题(面积问题、利润问题、增长率问题)”的思路进行设计.一、教学目标1、知识与技能目标以实际问题为背景线索,能独立回顾一元二次方程的相关知识(主要是一元二次方程的解法与列一元二次方程解应用题),并能进行初步的知识组织,通过相互交流建立一元二次方程的相关知识结构.2、过程与方法目标会根据实际问题建立一元二次方程模型并通过解方程解决问题,让学生感受数学源于生活,数学就在我们身边,体会方程模型是描述实际问题中数量关系的重要模型.3、情感态度与价值观目标让学生体会关心他人、帮助他人的乐趣,培养学生助人为乐的思想品质.二、教学重点和难点1、教学重点一元二次方程的解法及通过一元二次方程的实际应用活动加深对方程建模的体验2、教学难点列一元二次方程解应用题(面积问题、经济问题、增长率问题)的解决三、教学过程1.引言——故事的开端师:3月5日是学雷锋日,3月份是学雷锋月,老师给大家介绍一个人.他叫勤老伯,他勤劳,但缺少文化,想致富,却碰上了一堆的问题……他非常希望同学们能像雷锋一样帮助他,让他走上致富的道路,同学们,你们愿意吗?【设计意图:通过故事情境,引入新课,来吸引学生,激发学生学习数学的兴趣,提高学生自主学习的积极性.拉近师生间的距离,创建和谐课堂.】2.问题——故事的发展问题1 如图1,勤老伯有一块长方形土地,长比宽多12米,面积为640平分米,求这块长方形土地的边长.(1)你所设的未知数是_________.列出的方程为____________ ___ .(2)试用尽可能多的方法解出你所列的方程.小结1:由上述问题的解决过程能想到一元二次方程的哪些知识和方法? 预设:学生说出解一元二次方程的解法配方法、公式法等及列方程的步骤等. 问题2 为了便于灌溉,他在土地上修筑了两条一样宽的水渠(如图2所示),为了使余下部分面积还剩540平方米,水渠的宽度应为多少?师:本题为面积问题,阅读题目后,你能找到哪些相关的量图1和等量关系?说说你的思路和方法.预设1:学生可以根据面积的特点,应用大长方形的面积减去两个小长方形的面积方法来解决.注意:两个小长方形公共部分减了2次,会出现失误.师:很好,说说你的分析过程让大家听听,好吗?生:大长方形的面积是3220⨯,设水渠的宽为x 米.两个小长方形的面积分别是32x 与20x ,因为两个小长方形公共部分2x 减了2次,所以要加上2x ,列出方程232203220540x x x ⨯--+=.师:很好,思考很全面细致.预设2:学生可以根据面积的特点,应用平移的思想方法来解决.如图2变化到图3. 师:很好,说说你的分析过程让大家听听,好吗?生:我们可以将水平方向的水渠向上移,竖直方向的水渠向左移,设水渠的宽为x 米.则余下部分土地为长(32)x -米、宽(20)x -米的长方形(如图3所示).列出方程(32)(20)540x x --=.师:这种方法很有新意,使题目中的等量关系更加直观易得.(教师板书解题过程)解:设水渠的宽为x 米.根据题意,得(32)(20)540x x --=解得12x =,250x =(不合题意,舍去).答:水渠的宽为2米.【设计意图:通过当地农业生产中的一个实际问题情境,引入教材中常规的面积问题,通过对此题的分析和建模来复习解决应用问题的思路和策略.培养了学生学数学、用数学的意识.】变式1 若设计了如图4所示的水渠,则水渠的宽度又为多少?(只列方程,不求解)预设:学生类比问题2,可用平移的思想方法来解决,设水渠宽为米,则可得图2 图3图4方(322)(20)540x x --=.变式2 若把水渠由直线改为斜线(如图5所示),那么水渠的宽度又为多少?(直接说出答案.)(学生合作交流,探讨问题解决的思路和方法)预设:学生由等底、等高的平行四边形面积相等,得图5平行四边形面积和图2竖直方向的矩形面积相等,故变式2的答案与问题2相同.师:有了水渠以后,勤老伯的蔬菜长得很好,一年下来,勤老伯收获了大量蔬菜,看着这些蔬菜,勤老伯是又喜又愁,怎么卖才能获得最大利润呢?怎样才能尽快销售出去呢?【设计意图:通过问题2的变式,来培养学生思维的灵活性和深刻性,同时也揭示了解决这类面积问题的思路和方法.以变式训练的形式对问题进行深入研究,使问题具有层次性和内在的联系,并揭示了解决同类问题的通解和通法,使问题更具一般性,这样的设计能使 学生较自然地参与到问题解决的过程中.】问题3 勤老伯在该土地上种植蔬菜,喜获丰收,经计算蔬菜成本2元/千克,若以3元/千克的价格出售,每天可售出200千克,为了促销,勤老伯决定降价销售.经调查发现,蔬菜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本需要24元.勤老伯要想每天盈利200元,应将每千克蔬菜的售价降低多少钱?师:本题为利润问题,解题关键是找到表示等量关系的语句,本题表示等量关系的语句是什么呢?预设:学生找到每天盈利200元.每天盈利=每千克蔬菜的利润×每天售出的蔬菜数量一固定成本.(教师板书解题过程)解:设应将每千克蔬菜的售价降低x 元.根据题意,得40(32)(200)242000.1x x --+-= 解,得 10.2x =,20.3x =.答:应将每千克蔬菜的售价降低0.2元或0.3元.师:为使蔬菜尽快销售出去,勤老伯应降价多少元?预设:通过生活实际情况,蔬菜不能放久,需要学生理解,售价降低越多,日销量越大,故为使蔬菜尽快销售出去,应降价0.3元.师:买卖蔬菜让勤老伯赚了不少钱,有了钱以后,勤老伯更加信心百倍,他想进一步改进技术,进一步扩大再生产.使蔬菜的利润越来越大,让自己越来越富有……【设计意图:通过故事情境,引入问题3,使学生学会分析市场经济问题的思路和解决问题的方法.以故事的形式,较自然地引入新问题,使前后问题密切联系,学生很自然地沿着故事深入,较自觉地对新问题展开思考,并解决问题.】问题4 勤老伯算了算2010年种植蔬菜共获利21600元,他记得自己2008年种植蔬菜时只获利15000元,若从2008年到2010年,每年获利的年增长率相同.(1)求每年获利的年增长率为多少?(2)若获利的年增长率继续保持不变,预计2011年勤老伯将获利多少?师:本题为增长率问题,请同学们自己解答.(投影学生作业,生生分析)解:(1)设每年获利的年增长率为x .根据题意,得 215000(1)21600x +=.解,得 10.2x =,2 2.2x =-(不合题意,舍去).所以每年获利的年增长率为20%,2011年获利21600(10.2)25920+=元.师:在同学们的帮助下,勤老伯的口袋一年比一年鼓了,那么在帮助勤老伯的同时,同学们的知识是否也充实了不少呢?下面我们就来检验一下.【设计意图:通过故事情境这一主线,继续引入新问题,通过对问题4的分析和解决,引导学生学会增长率问题的思考方法和思路.在学生的帮助下,勤老伯的收益大增,具有较强的教育意义和感染力.】师:下面是勤老伯生活致富的一些情境,老师选择几个片段,让我们一起去勤老伯家参观,感受一下.出示勤老伯家的房子的图片,从外面到房间里面的引入,…3.参观——故事的高潮练习1 客厅——方程思想如图6,有一张长方形桌子的桌面长100cm ,宽60 cm .有一块长方形台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同.求台布的长和宽(精确到1 cm ). 解:设各边垂下的长度为x cm .根据题意,得(1002)(602)210060x x ++=⨯⨯,化简,得28015000x x +-=,解得14015.7x =-+,140x =--.所以台布的长约为1002131x +=(cm ),宽约为60291x +=(cm ).练习2 旅游——分类讨论大众旅行社为吸引市民组团去某风景区旅游,推出了如下收费标准:如果人数不超过25人,人均旅游费用为1000元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.勤老伯的所在的社区组织去该风景区旅游,共支付给旅行社旅游费用27000元.请问这次与勤老伯一起去共有多少人去旅游?【设计意图:通过参观勤老伯的家的形式完成练习题,碰到的一些数学问题都是在参观中出现的,也使学生意识到数学无处不在,激发学习的内动力.通过针对性练习,巩固和提高学生的应用能力,掌握学生在应用问题解决中所存在的实际问题,通过对练习题的讲评,达到查漏补缺的目的.】4.小结——做事的结局师:通过本节课的学习,你有哪些收获?预设:生:这节课复习了解一元二次方程的解法.生:这节课还复习了3类问题:面积问题、利润问题、增长率问题.……师:同学们回答的非常好,看来这节课不仅勤老伯丰收了,同学们也“丰收”了,在帮如图6助别人的同时,也帮助了我们自己.【设计意图:通过对故事的小结,让学生回顾和归纳本节课所学的数学知识和数学方法.通过学生自己归纳和教师点拨的课堂小结,深化了学生的已学知识,提升了学生的思维品质.】5.布置作业,巩固提高板书设计四、本节课具有以下特点:(1)以勤老伯致富的故事为主线体现了课堂的故事性;(2)以解决3类问题为重点实现了课堂教学的有效性;(3)以参观勤老伯的家的形式激发了学生解决问题的积极性;(4)以社会热点问题(三农问题)为背景体现了教学题材的时代性;(5)以助人为乐为德育目标体现了数学教学的人文性.。

浙教版数学八年级下册2.1《一元二次方程》教学设计1

浙教版数学八年级下册2.1《一元二次方程》教学设计1

浙教版数学八年级下册2.1《一元二次方程》教学设计1一. 教材分析《一元二次方程》是浙教版数学八年级下册第2.1节的内容,本节课的主要内容是一元二次方程的定义、性质及求解方法。

一元二次方程是初中数学的重要内容,也是进一步学习高中数学的基础。

它不仅在数学领域有着广泛的应用,而且在物理、化学等学科中也具有重要意义。

本节课的内容为学生提供了解决实际问题的工具,有助于培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了代数基础知识,包括一元一次方程、不等式等,对解方程的方法有一定的了解。

但一元二次方程相对于一元一次方程来说,未知数的次数更高,求解方法也更为复杂,因此学生可能存在一定的困难。

同时,学生对实际问题转化为数学问题的方法还不够熟练,需要通过本节课的学习来提高。

三. 教学目标1.理解一元二次方程的定义及其基本性质。

2.掌握一元二次方程的求解方法,并能灵活运用。

3.能够将实际问题转化为数学问题,并用一元二次方程解决。

4.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.一元二次方程的定义及其基本性质。

2.一元二次方程的求解方法。

3.实际问题转化为数学问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例分析让学生掌握一元二次方程的求解方法,通过小组合作学习促进学生之间的交流与合作。

六. 教学准备1.教材、教案、课件。

2.练习题。

3.多媒体教学设备。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一元一次方程的知识,为新课的学习做好铺垫。

例如:一元一次方程的定义是什么?解一元一次方程的方法有哪些?呈现(10分钟)教师通过课件呈现一元二次方程的定义及其基本性质,让学生初步认识一元二次方程。

接着,教师给出一个实际问题,引导学生将其转化为数学问题,从而引出一元二次方程的求解方法。

操练(10分钟)教师给出几个一元二次方程的例子,让学生分组讨论、探究求解方法。

浙教版数学八年级下册2.1《一元二次方程》教学设计2

浙教版数学八年级下册2.1《一元二次方程》教学设计2

浙教版数学八年级下册2.1《一元二次方程》教学设计2一. 教材分析《一元二次方程》是浙教版数学八年级下册第二章的第一节内容。

本节内容是在学生已经掌握了方程的解法、一元一次方程的基础上,引入一元二次方程的概念、性质以及解法。

通过本节课的学习,使学生能够掌握一元二次方程的一般形式、判别式的意义,了解一元二次方程的解法,为后续的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程的解法,对于方程的概念有一定的理解。

但是,对于一元二次方程的概念、判别式的意义以及解法还比较陌生。

因此,在教学过程中,需要引导学生从一元一次方程过渡到一元二次方程,逐步理解并掌握一元二次方程的相关知识。

三. 教学目标1.知识与技能:使学生掌握一元二次方程的一般形式、判别式的意义,了解一元二次方程的解法。

2.过程与方法:通过观察、分析、归纳等方法,使学生能够自主探究一元二次方程的性质和解法。

3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、探究的学习精神。

四. 教学重难点1.重点:一元二次方程的一般形式、判别式的意义,一元二次方程的解法。

2.难点:一元二次方程的解法,特别是因式分解法和求根公式的应用。

五. 教学方法1.情境教学法:通过设置问题情境,引导学生自主探究一元二次方程的性质和解法。

2.启发式教学法:通过提问、讨论等方式,激发学生的思维,引导学生主动参与学习。

3.小组合作学习:学生进行小组讨论,培养学生的合作意识和团队精神。

六. 教学准备1.课件:制作课件,展示一元二次方程的一般形式、判别式的意义以及解法。

2.练习题:准备一些一元二次方程的题目,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,引导学生思考如何用数学模型来解决这些问题。

通过分析,引入一元二次方程的概念。

2.呈现(10分钟)呈现一元二次方程的一般形式、判别式的意义,以及一元二次方程的解法。

引导学生观察、分析,总结出一元二次方程的性质。

浙教版数学八年级下册2.1《一元二次方程》教案1

浙教版数学八年级下册2.1《一元二次方程》教案1

浙教版数学八年级下册2.1《一元二次方程》教案1一. 教材分析《一元二次方程》是中学数学的重要内容,也是初中数学的难点之一。

浙教版八年级下册第2.1节的内容,主要包括一元二次方程的定义、解法、判别式等知识点。

通过本节课的学习,使学生掌握一元二次方程的基本概念,学会解一元二次方程,培养学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式、函数等基础知识,具备一定的逻辑思维和运算能力。

但一元二次方程相对复杂,学生对其概念、解法、判别式等知识点的理解还需加强。

此外,学生解决实际问题的能力有待提高。

三. 教学目标1.知识与技能:使学生掌握一元二次方程的基本概念,学会解一元二次方程,理解一元二次方程的判别式。

2.过程与方法:培养学生运用一元二次方程解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:一元二次方程的定义、解法、判别式。

2.难点:一元二次方程的实际应用。

五. 教学方法采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探究、合作学习,提高学生解决问题的能力。

六. 教学准备1.教学素材:教材、PPT、黑板、粉笔。

2.教学工具:投影仪、计算机。

七. 教学过程1.导入(5分钟)利用PPT展示一组实际问题,引导学生思考如何用数学模型来解决这些问题。

进而引出一元二次方程的概念。

2.呈现(15分钟)讲解一元二次方程的定义、解法、判别式等基本知识。

通过PPT展示,让学生清晰地了解一元二次方程的各个部分。

3.操练(15分钟)让学生分组讨论,尝试解一些简单的一元二次方程。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)选取一些典型的一元二次方程,让学生独立解答。

教师及时反馈,指出解题过程中的错误,巩固所学知识。

5.拓展(10分钟)让学生运用一元二次方程解决实际问题。

教师提供一些案例,引导学生思考、讨论。

6.小结(5分钟)对本节课的主要知识点进行总结,强调一元二次方程在实际生活中的应用。

2.1一元二次方程教案(浙教版八年级下)(2021年整理)

2.1一元二次方程教案(浙教版八年级下)(2021年整理)
(4)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x。
(可让学生板演,完成后对照一下,教师可作简单点评.)
四、【拓展创新】
1、下列方程一定是一元二次方程的是( )
A、ax2+bx+c=0 B、5x2-6y-1=0
C、ax2-x-2=0 D、(a2+1)x2+bx+c=0
2、(中考题)若方程(m+2)x︱m︱+3mx+1=0是关于x的一元二次方程,则m的值为:( )
(完整)2.1一元二次方程教案(浙教版八年级下)(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2.1一元二次方程教案(浙教版八年级下)(word版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
A、m=±2B、m=2 C、m=-2 D、m≠±2
3、已知关于x的方程(2m-1)x2-mx+(m+2)=0
(1)m为何值时,此方程是一元一次方程?
(2)m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。
五、课堂小结(针对学习目标)
可由学生自己完成,教师作适当补充。
一、自学检测
1、观察方程:2x=1;3x+2=x-4;2(x+2)—3(x—1)=0它们都含有个未知数,并且未知数的最高次数是,这样的整式方程叫做一元一次方程。
2下列方程哪些是一元一次方程( )
(1)5x+3=0,(2)2x+y=3,(3) ,
(4) ; (5)x2-2x+1=0

浙教版数学八年级下册2.1《一元二次方程》教案

浙教版数学八年级下册2.1《一元二次方程》教案

浙教版数学八年级下册2.1《一元二次方程》教案一. 教材分析《一元二次方程》是初中数学的重要内容,也是八年级下册的重点和难点。

本节课通过引入一元二次方程,让学生了解一元二次方程的定义、解法及其应用,培养学生解决实际问题的能力。

教材从生活实例出发,引导学生认识一元二次方程,并通过探究、合作、交流的方式,让学生掌握一元二次方程的解法,为后续学习函数、不等式等知识打下基础。

二. 学情分析学生在七年级已经学习了方程和不等式的基本知识,对解方程有一定的了解。

但一元二次方程相对复杂,需要学生具有较强的逻辑思维能力和抽象概括能力。

此外,学生对于数学问题的探究和合作能力也有待提高。

三. 教学目标1.了解一元二次方程的定义、解法及其应用。

2.掌握一元二次方程的解法,提高解决实际问题的能力。

3.培养学生的合作、探究、交流能力,提高学生的逻辑思维和抽象概括能力。

四. 教学重难点1.重难点:一元二次方程的定义、解法及其应用。

2.重点:一元二次方程的解法。

3.难点:一元二次方程的应用。

五. 教学方法1.采用问题驱动法,引导学生探究一元二次方程的定义和解法。

2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。

3.利用案例分析法,让学生从实际问题中认识一元二次方程的应用。

4.采用板书演示法,直观展示一元二次方程的解法过程。

六. 教学准备1.准备相关的生活实例和案例,用于导入和巩固环节。

2.准备一元二次方程的习题,用于操练和家庭作业环节。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过生活实例引入一元二次方程,让学生感受一元二次方程在实际生活中的应用。

例如,讲解一个关于面积和高度的问题,引导学生发现方程x^2 - 6x + 9 = 0。

2.呈现(15分钟)讲解一元二次方程的定义,明确方程的一般形式:ax^2 + bx + c = 0。

解释方程中的a、b、c分别代表什么含义,并引导学生理解一元二次方程的解法。

浙教版数学八年级下册《2.1 一元二次方程》教案2

浙教版数学八年级下册《2.1 一元二次方程》教案2

浙教版数学八年级下册《2.1 一元二次方程》教案2一. 教材分析《2.1 一元二次方程》是浙教版数学八年级下册的教学内容。

本节内容主要让学生掌握一元二次方程的定义、解法以及应用。

通过本节的学习,为学生后续学习函数、不等式等知识打下基础。

教材从实际问题出发,引导学生认识一元二次方程,并通过探究、合作的方式,让学生掌握一元二次方程的解法。

二. 学情分析学生在学习本节内容前,已掌握了实数、代数式、方程等基础知识。

但一元二次方程较为抽象,对学生思维能力要求较高。

因此,在教学过程中,要关注学生的学习需求,引导学生通过自主学习、合作交流,克服学习困难,提高解决问题的能力。

三. 教学目标1.理解一元二次方程的定义,掌握一元二次方程的一般形式。

2.学会解一元二次方程,提高解决问题的能力。

3.培养学生的合作交流、自主学习能力,提高学生的思维能力。

四. 教学重难点1.一元二次方程的定义及其一般形式。

2.一元二次方程的解法。

五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现一元二次方程。

2.运用合作交流法,让学生在探讨中掌握一元二次方程的解法。

3.采用自主学习法,培养学生的独立思考能力。

六. 教学准备1.准备相关实际问题,用于引导学生认识一元二次方程。

2.准备一元二次方程的例题和练习题。

3.准备多媒体教学设备,用于展示和解说一元二次方程。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如物体运动、面积计算等问题,引导学生发现这些问题都可以归结为一种特殊的方程——一元二次方程。

2.呈现(10分钟)介绍一元二次方程的定义及其一般形式,让学生理解一元二次方程的概念。

3.操练(10分钟)让学生分组讨论,探索一元二次方程的解法。

教师引导学生运用合作交流法,共同解决问题。

4.巩固(10分钟)让学生自主解决一些一元二次方程的实际问题,巩固所学知识。

5.拓展(10分钟)引导学生思考:一元二次方程有哪些应用?让学生发挥想象力,联系实际生活中的问题,提高解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年八年级数学下册第2章一元二次方程本章小结教案新版浙教版一、学生知识状况分析学生的知识技能基础:学生在七年级和八年级已经学习了一元一次方程、二元一次方程以及一次函数的相关知识及应用,在本章中,又学习了一元二次方程及其相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力;学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是一元二次方程的复习课,对于本章的基础知识,学生已大致掌握.本节课以梳理、巩固基础知识为起点,重点解决在学生中存在的易错点与混淆点;实际应用是方程建模思想的具体体现,学生往往感到有一定的难度,本节课以此为重点,从简单的实际问题入手,逐步加深对建模思想的理解.为此,设置本节课的教学目标如下:1、知识与技能:①经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②能够利用一元二次方程解决有关实际问题,帮助学生认识到运用方程解决实际问题的关键是确定题目中蕴含的等量关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;③了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想;2、过程与方法:①通过让学生经历将多种实际问题抽象成数学问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②通过小组合作学习,经历一题多解等过程,发展学生多角度思考问题的方法.情感与态度:①通过对方程的认识、一题多解的思维展示,发展学生勇于展示自己的品质;②在解决富有挑战性的问题的过程中,培养学生敢于直面困难、勇于挑战的良好品质,鼓励学生大胆尝试,体会成功的喜悦,激发学生学习数学的兴趣.三、教学过程分析本节课设计了六个教学环节:第一环节:课前准备---构建知识结构;第二环节:基础知识重现;第三环节:情境中合作学习;第四环节:巩固提高;第五环节:课堂小结;第六环节:布置作业.第一环节:课前准备----构建知识结构活动内容:在授完本章新课知识后,让学生重新回顾本章内容,整理出本章的知识结构网络,理清各板块内容间的联系.此活动内容在上课前一天布置,让每一位学生都提前做好准备.上课时,选取有代表性的知识结构网络进行全班展示,其他同学对照自己的总结查缺补漏.同时,教师展示一下本章的框架,指出本节课的重点是:利用一元二次方程解决实际问题.活动目的:学生在整理本章知识结构的同时,可以回顾本章的重点内容,细细体会解一元二次方程的“转化”思想,找寻利用方程解决实际问题的关键.活动的实际效果:基于对学生两年来的不间断训练,绝大分学生可以对本章的主要内容以及注意点详细地总结出来,只是呈现形式略微不同.但也有少数同学只是泛泛地停留在书本上的定义、黑体字上,对于更深入的内容总结不到位,这部分同学在教学中往往也是需要特别关注的同学,需要我们教师从各方面来激发他们对数学学习的兴趣.附部分学生的作业:学生A的本章知识结构㈠问题情景---- —元二次方程1、定义:只含有一个未知数x的整式方程,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样⑴直接开平方法⑵配方法⑶公式法ax2+bx+c=0 (a≠0,b2-4ac≥0)的解为:⑷分解因式法2、解法:㈡本章的重点:一元二次方程的解法和应用.㈢本章的难点:应用一元二次方程解决实际问题的方法.学生B的本章知识结构:本章的知识体系包括三大部分:(一)一元二次方程的定义:只含有一个未知数x的整式方程,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程.在这里应注意的问题是:⑴只含有一个未知数;⑵未知数的最高指数必须是2;(3)二次项系数不为0)(二)一元二次方程的解法:一元二次方程的常用解法有:⑴直接开平方法;⑵配方法;⑶公式法;⑷分解因式法.(注意:在运用配方法解一元二次方程时,一般先将二次项系数化为1;在运用公式法解一元二次方程时,必须先将方程化为ax2+bx+c=0 (a≠0)的形式,同时判断b2-4ac是否≥0,如果b2-4ac≥0,才可用公式求解)(三)一元二次方程的应用:花边、道路宽度(P42引例);梯子滑动(P43引例);养鸡场问题(P562);古算题(P65 1);简单动点问题(P66 2);利润问题(P66例2)(其关键是能找出题目中的等量关系,列出方程)本章的重点和难点是:一元二次方程的解法和应用.第二环节:基础知识重现内容:以投影形式展示一组基础题目,内容涉及一元二次方程的定义和解法.其中,1、2小题采取口答形式,第3、4小题对比来做,体会其中的方法,第5小题采取3个同学分别板演、其他同学纠错、教师集中规范的方式来解决.1、当m 时,关于x的方程(m-1)+5+mx=0是一元二次方程.2、方程(m2-1)x2+(m-1)x+1=0,当m 时,是一元二次方程;当m 时,是一元一次方程.3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是 .4、用配方法解方程x2+8x+9=0时,应将方程变形为 ( )A.(x+4)2=7B.(x+4)2=-9C.(x+4)2=25D.(x+4)2=-75、解下列一元二次方程(1) 4x2-16x+15=0 (用配方法解)(2) 9-x2=2x2-6x(用分解因式法解)(3) (x+1)(2-x)=1 (选择适当的方法解)目的:上述这一组题目主要目的是巩固对一元二次方程定义的理解、熟练地解一元二次方程.其中,第1、2小题对比,加深学生对一元二次方程和一元一次方程定义的理解;第3、4小题均是对一元二次方程配方法掌握程度的检验,同时,这部分内容所涉及的方法也是后续“二次函数”学习的基础,此处,也为二次函数的学习奠定一定的基础;第5小题设置三道小题,分别限定方法让学生来解一元二次方程,让学生熟练方程的解法.实际效果:对于第1题,学生普遍掌握比较好,但对于与之对比的第2题,有部分同学存在一定的问题,尤其是对于何时是一元一次方程,更是没有思路,通过这两道题的对比,使学生对方程的定义更加深了理解,也明确了判断一个方程是何类方程时,不仅要关注未知数的次数,还要注意系数;对于第5小题中的第(3)小题,部分学生直接用分解因式法来做,这也是本题设置的一个重要意图:当方程中等式右侧不为0时,不可以直接用分解因式法来做,而要先化成一般形式,再具体选用方法.通过这几道题,让学生关注了方程中的易错点,对于今后的学习也作了部分铺垫.第三环节:情境中合作学习内容:在本环节中,选择具有代表性的三类实际问题:利润问题、简单动点问题、周长一定的面积问题作为例题及小组合作学习的题目,其中的1、3小题作为例题,2、4小题作为小组合作学习的题目,仿照例题的分析方式小组合作完成,第5题作为师生互动的题目.选择第1题作为例题规范板书,其余题目只需分析、列方程即可.对于第1题,可以从以下几个方面提出问题,帮助学生分析问题、解决问题:(1)成本为多少?(2)“如果以20元/支的价格销售,每月可以售出200支”在本题中的作用是什么?(3)“售价每上涨1元就少卖10支”的作用?(4)利润的表达形式有哪几种?(5)本题中的等量关系是什么?在用一种方法解决完本题之后,可以让学生尝试其它的思路,进行一题多解.对于第3题,可以从以下几个方面入手分析:(1)题目中的等量关系是什么?(2)点P、Q移动的过程中,哪个量是相同的?(3)如何求出△PCQ的面积?(4)如何求出Rt△ACB面积?对于第5题,着重于第(4)(5)两个小问题,需要借助于一定的经验加以解决.同时,此题是典型的二次函数最值问题,放在此处,给学生一个直观的感受.1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?2、新新商场以16元/件的价格购进一批衬衫,根据市场调查,如果以20元/件的价格销售,每月可以售出200件;而这种衬衫的售价每上涨1元就少卖10件.现在商场经理希望销售该种衬衫月利润为1350元,而且,经理希望用于购进这批衬衫的资金不多于1500元,则该种衬衫该如何定价?此时该进货多少?3、如图,在Rt△ACB中,∠C=90°,BC=6m,AC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,已知点P移动的速度是20cm/s,点Q 移动的速度是10cm/s,几秒后△PCQ的面积为Rt△ACB面积的?4、如图,在Rt△ACB中,∠C=90°, AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQAPC B PA的面积为Rt △ACB 面积的一半?5、新苑小区的物业管理部门为了美化环境,在小区靠墙的一侧设计了一处长方形花圃(墙长25m),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆40m ,(1) 花圃的面积能达到180m 2吗?(2) 花圃的面积能达到200m 2吗?(3) 花圃的面积能达到250m 2吗?如果能,请你给出设计方案;如果不能,请说明理由. (4) 你能根据所学过的知识求出花圃的最大面积吗?此时,篱笆该怎样围?(5) 如果想在花圃中栽种两种不同的蝴蝶花,需要在花圃中再加一道篱笆,若不想改变篱笆的总长度,那么,此时花圃的最大面积会是多少,篱笆该怎样围?目的:让学生熟悉一元二次方程应用中的几种主要模型,明确解决各类问题的关键是找寻题目中蕴含的等量关系;另外,这几种问题情景也是在二次函数中频繁出现的实际问题,若在此处有一个良好的基础,势必会对学习二次函数的学习起到事半功倍的效果.实际效果:将1、3两道小题作为例题,学生彻底理解透彻后,本章的基本应用学生已大致掌握,数学建模思想初步形成.在第2题的合作学习过程中,呈现出了不同的思维形式,各组针对“用于购进这批衬衫的资金不多于1500元”展开了讨论,有的同学认为这是一个无用的条件;有的同学认为在解题之初,要结合进价来用;有的同学认为按常规思路解决完问题之后,用来确定最终的解的合理性.各种想法的提出,真正展现了学生开阔的思维,真正体现了合作学习的优势.第四环节:巩固提高内容:重点放在一元二次方程的实际应用上,内容呈现形式多样化,设置实际背景比较全面.其中3、4小题表面上看类似,实际有一定的差异,可以对比来看;第5小题为后续学习的二次函数作铺垫;第7题为一道经典的中考真题,让学生感受一下中考的氛围.1、新园小区计划在一块长为40米,宽为26米的矩形场地上修建三条同样宽的甬路(两条纵向、一条横向,且横向、纵向互相垂直),其余部分种花草.若要使甬路的面积占矩形场地面积的.则甬路宽为多少米?设甬路宽为x 米,则根据题意,可列方程为 .2、由于家电市场的迅速成长,某品牌的电视机为了赢得消费者,在半年之内连续两次降价,从4980元降到3698元,如果每次降低的百分率相同,设这个百分率为x ,则根据题意,可列方程: .3、王老师假期中去参加高中同学聚会,聚会时,所有到会的同学都互相握了一次手,王老师发现共握手435次,则参加聚会的同学共有多少人?设参加聚会的同学共有x 人,则根据题意,可列方程: .4、初三、三班同学在临近毕业时,每一个同学都将自己的照片向全班其他同学各送一张以表示纪念,全班共送了1640张照片,如果设全班有x 名学生,则根据题意,可列方程( )A.x(x+1)=1640B. x(x -1)=1640C.2x(x+1)=1640D.x(x -1)=2×16405、某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x 元,则每天可卖出(350-10x)件,但物价局限定每件商品加价不能超过进价的20%,商店要想每天赚400元,需要卖出多少件商品?每件商品的售价应定为多少元?6、用一块面积为888cm 2的矩形材料做一个无盖的长方体盒子,要求盒子的长为25cm ,宽为高的2倍,盒子的宽和高应为多少?7、一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属台风区.当轮船到A 处时,测得台风中心移到位于点A 正南方向B 处,且AB=100海里.若这艘轮船自A 处按原速度继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,请说明理由.目的:对本节知识进行巩固练习.实际效果:通过对这些题目的具体分析,学生再次经历在实际问题中抽象出一元二次方程的过程,发展他们分析问题、解决问题的意识和能力,也为下学期二次函数的学习奠定一定的基础,体现了教材螺旋式上升的设计意图.第五环节:课堂小结内容:师生共同总结本节课的收获,内容主要设计以下几个方面:(1)整节课的感悟:如在解决概念性题目时,要注意领会概念的实质含义;在计算时要做到细心;对于学过的内容,自己要及时进行梳理等等;(2)解决问题时所用到的方法;(3)对于某个知识点的困惑;(4)通过本节课的学习,自己的最大收获.目的:关注学生对数学知识的理解、数学方法的掌握和数学情感的感悟,力争使每个层次的学生在本节课学有所获.实际效果:学生畅所欲言自己的切身感受与实际收获,每个同学的感受也揭示了各自的良好学习方法,为其他同学的学习、听讲等方面提供了有效的借鉴.第六环节:布置作业1、本节课中涉及的所有题目在课下进行分类整理,留作资料;2、针对自己对本章的理解,每名同学命制一份试卷,要求时间在60分钟左右,重点突出,难度适宜,并配有答案(此作业不要求第二天必须上交,给学生一定的收集资料时间).四、教学反思1、作为一章的复习课,本节课设置的内容较为全面细致,重点突出,课堂容量相对来说较大,学生的分组讨论从时间上来看较为紧张,因而,应该更好地规划对某些题目的处理.2、通过课前知识网络的整理、课堂展示讲解的过程,为学生提供展示自己的机会,更利于教师在此过程中发现学生的闪光点以及思维的误区,以便指导今后的教学.3、学生的学习合作小组也应该是动态的,所学知识的不同,学生的反应也不相同,在分组时,应该将思维形态类似的同学放在一组,这样,可以避免让一些思维活跃的学生代替了其他学生的思考,掩盖了其他学生的疑问.同时,教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.此外,作为一个较大的章节复习课,希望一节课完成上面所有的任务,是比较困难的,因此,建议根据学生状况灵活选择其中部分例习题,如有可能,将例习题分解成两个课时.m40277 9D55 鵕39300 9984 馄34750 87BE 螾34304 8600 蘀W30370 76A2 皢-33049 8119 脙H 31794 7C32 簲20100 4E84 亄。

相关文档
最新文档