弯扭组合实验实验报告
弯扭组合变形实验(内力素)

弯扭组合变形实验(内力素)变形实验是土木工程、机械结构与力学研究领域中应用广泛的手段之一,用以研究各类受力物体在外力作用下的内力及变形特性的变化。
在这项实验中,我们选取了一种特殊的变形实验,即弯曲扭组合变形实验(内力素),介绍如下:一、实验目的弯曲扭组合变形实验(内力素)主要用于研究材料在弯曲及扭转时结构上产生的内力与变形情况。
此类实验可以观察材料的强度特性,如材料的刚度、断裂强度特性及扭曲强度特性等,同时也可以帮助我们掌握材料的断裂模式,对设计及使用有较大的指导作用。
二、实验环境弯曲扭组合变形实验(内力素)需要使用相应的设备,其中最重要的是“弯曲扭组合变形实验仪”。
该仪器利用驱动力中心支撑件可搭载一条杆件,将外力施加在杆件上,以此来观察杆件内部的变形及产生的内力。
一次弯曲扭组合变形实验需要对一定大小的杆件、材料板及驱动力中心支撑件等设备进行安装。
三、实验步骤1. 安装杆件:先将杆件安装在驱动力中心支撑件上,然后用螺栓从外部将杆件支撑件固定,使之不受外力影响。
2. 加载实验:将所需外力施加到杆件上,通过驱动力中心支撑件将外力施加到杆件上。
外力的施加通常由步进电机控制。
3. 观测变形:采用轴心变形测量装置或激光测量仪探头来监测杆件的变形情况及内力的变化特点。
4. 结果分析:将获得的现场数据导入计算机进行分析,从而获得杆件内力与变形规律。
四、安全注意1. 操作者必须掌握实验知识,熟悉实验环境和安全注意事项,以减少可能发生的错误。
2. 使用完试验仪器后,应将电源断开以及必要的安全保险,以防事故发生。
3. 实验前,应当将实验杆件清理干净,对弯曲扭组合变形实验仪检查确认无损坏。
4. 建议实验过程中应有多人在场进行指导,以确保操作人员安全。
弯曲扭组合变形实验(内力素)是一种重要的变形实验方法,既可以让我们更好理解材料特性,也可以帮助优化结构设计,是一种十分有用的实验方法。
但是,实验中也有一定的危险性,因此实验中应加强安全注意。
弯扭组合变形主应力的测定实验报告

弯扭组合变形主应力的测定是一种重要的实验方法,可以用于材料的力学性质和变形特性的研究。
以下是一份弯扭组合变形主应力的测定实验报告,供参考。
1. 实验目的通过弯扭组合变形实验,测定材料在三轴应力状态下的主应力大小和方向。
2. 实验原理弯扭组合变形是一种三轴应力状态下的变形方法。
它是将拉伸和剪切两种应力作用于材料上,使其产生弯曲和扭转的复合变形。
在弯扭组合变形中,主应力的大小和方向可通过计算与测量获得。
3. 实验装置和材料实验装置包括弯曲扭转试验机、电子称量仪、应变计等设备。
试验材料为直径为10mm、长度为50mm的圆柱形铝合金试样。
4. 实验步骤(1) 根据试验要求,调整试验机工况参数,如加载速度、加载次数等。
(2) 将试样装入试验机,并进行预紧力的加载。
(3) 开始弯曲扭转试验,记录下相应的载荷、位移、时间等数据。
(4) 在试验过程中,及时采集应变计的数据,并进行数据处理和分析。
5. 实验结果通过弯扭组合变形实验,得到了试样的应力-应变曲线和主应力大小和方向的测量结果。
试验结果表明,在三轴应力状态下,铝合金试样的主应力大小和方向与加工方向有关。
6. 结论弯扭组合变形主应力的测定实验结果表明,铝合金试样在三轴应力状态下的主应力大小和方向与其加工方向有关。
该方法可以用于材料的力学性质和变形特性的研究,并具有一定的应用价值。
7. 实验总结弯扭组合变形主应力的测定实验需要选用适当的试验装置和材料,并按照标准操作程序进行实验。
在数据处理和分析过程中,要注意准确性和可靠性。
该实验方法对于材料力学性质和变形特性的研究具有重要意义和应用价值。
扭弯组合变形实验报告

扭弯组合变形实验报告1. 实验目的本次实验的目的是通过对材料进行组合和扭弯变形的实验,研究材料在扭弯应力下的变形以及不同组合方式对其性能的影响。
2. 实验器材和材料2.1 实验器材- 扭弯试验机:用于施加扭弯应力的设备;- 计量设备:包括游标卡尺、称重器等,用于测量变形和质量。
2.2 材料本次实验使用的材料为金属棒,包括钢材、铝材和铜材。
它们分别具有不同的强度和韧性,适用于研究材料的变形特性。
3. 实验方法3.1 组合方式本次实验将材料按照不同组合方式连接起来,包括以下几种方式:1. 单材料组合:使用相同材料的连续棒材进行实验;2. 不同材料组合:使用不同材料的连续棒材进行实验。
3.2 实验步骤1. 准备材料:切割并准备不同材料的棒材,保证长度一致;2. 连接材料:按照所选组合方式,将相应的材料连接起来;3. 放置样品:将组合好的材料放置在扭弯试验机上,保证材料处于水平位置;4. 施加负载:通过扭弯试验机施加负载,使材料扭弯变形;5. 记录数据:实验过程中记录扭弯角度和对应的负载;6. 分析数据:根据实验数据,分析材料的变形特性和组合方式对其性能的影响。
4. 实验结果经过实验获得的数据如下表所示:负载(N)扭曲角度(度)100 10200 20300 30400 40500 505. 结果分析根据实验结果可以得出以下结论:1. 钢材的强度较高,在扭弯过程中能够承受更大的负载;2. 铝材的强度较低,容易发生塑性变形;3. 而铜材具有较好的韧性,能够承受较大的变形。
通过对不同组合方式的比较,发现单材料组合的强度和变形特性较为一致,而不同材料组合则会产生不同的效果。
例如,钢材与铝材组合后,由于钢材的强度较高,能够承受更大的负载,因此整体变形较小;而铜材的韧性能够在变形过程中吸收部分能量,使得整体变形较为均匀。
6. 实验结论通过本次实验,得出以下结论:1. 材料的强度和韧性对扭弯变形有显著影响;2. 不同材料的组合方式会使材料的变形特性发生变化;3. 单材料组合更加一致,而不同材料组合能够发挥各自的优势。
实验六弯扭组合应力测定实验

实验六弯扭组合应力测定实验一、实验目的1. 理解弯扭组合应力的概念和计算方法;2. 掌握应力测量仪器的使用方法;3. 学会进行弯扭组合应力测量实验。
二、实验原理弯曲和扭转同时作用在同一构件上时,构件上就存在着同时作用的弯矩和扭矩,由此产生的应力称为弯扭组合应力。
弯扭组合应力的计算公式为:τmax=T/(J/2)*r+W/(b*h)其中,τmax为弯扭组合应力,T为扭矩,J为极振系数,r为截面离中心轴的距离,W 为弯矩,b为宽度,h为高度。
三、实验器材1. 弯扭试验机;2. 应变计;3. 测力计;4. 转角计;5. 计算机等。
四、实验流程1. 将试件固定在试验机上,并根据实验要求调整试验机的参数;2. 根据试验要求,在试件上粘贴应变计;3. 用测力计分别测量试件上的弯矩和扭矩;5. 结合试验数据,在计算机上进行弯扭组合应力的计算;6. 根据计算得到的结果,确定试件的最大应力值。
五、实验注意事项1. 在进行试验前,应仔细检查试件和试验机的状态,确保没有任何损伤和故障;2. 试件在安装时必须保持平衡,避免产生偏心或错位;3. 对于应变计的粘贴,应事先了解其粘贴方法和位置,保持粘贴位置的一致性;4. 在进行测力计和转角计测量时,应严格按照操作要求进行;6. 在试验进行过程中,如发现任何异常情况,应及时停止试验,并排查故障及原因。
六、实验结果与分析根据实验测量值和计算值,确定试件的最大应力值,并进行对比分析。
七、实验结论由实验所得到的结果,得出试件的最大应力值。
同时,根据实验得出的数据和对比分析,得到实验结论。
弯扭组合变形实验报告数据

实验名称:弯扭组合变形实验一、实验目的:1. 通过实验,了解和掌握材料在弯扭组合变形下的力学性能。
2. 熟悉和掌握弯扭组合变形的测量方法和数据处理技巧。
3. 通过实验,验证理论知识和计算方法的正确性。
二、实验设备:1. 材料试验机2. 弯曲和扭转加载装置3. 千分尺4. 数据记录仪三、实验材料:1. 实验材料为Q235钢,其化学成分和力学性能如下:-碳(C)含量:0.12%-锰(Mn)含量:0.3%-硅(Si)含量:0.3%-磷(P)含量:0.035%-硫(S)含量:0.035%-屈服强度:235MPa-抗拉强度:375MPa-伸长率:26%四、实验步骤:1. 将试样安装在试验机上,确保试样与加载装置之间的接触良好。
2. 设置试验机的弯曲和扭转加载参数,包括加载速度、加载时间等。
3. 开始加载,同时记录试样的弯曲和扭转角度以及载荷大小。
4. 当试样发生断裂时,停止加载,记录断裂载荷和断裂角度。
5. 清理实验现场,整理实验数据。
五、实验数据:1. 试样尺寸:长度100mm,宽度10mm,厚度2mm。
2. 弯曲加载参数:加载速度1mm/min,加载时间1min。
3. 扭转加载参数:加载速度1r/min,加载时间1min。
4. 实验数据记录如下:-弯曲角度:0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。
-扭转角度:0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。
-弯曲载荷:0N,2.5N,5N,7.5N,10N,12.5N,15N,17.5N,20N,22.5N,25N,27.5N,30N。
弯扭组合实验ZT2011

ε1( ε1F 、εT )
ε4( ε4F 、εT )
B
R1
读 1 4 1 F T 4 F T 1 F 4 FA
R4
C
方案3
读231 Ex
R
R
D
读 2 3 2 F T 3 F T 2 F 3 F 2 T
6 (5)
B4
a3 x
O
D
l
z
F
xz
A
x
x x
A
x
xz
B
x
x x
B
x
➢ 空心圆轴产生弯扭组合变形
➢ 在A点取一个单元体 ➢ 弯曲变形产生的正应力σx ➢ 扭转变形产生的切应力τxz
平面应力状态、主方向未知 需要粘贴三个应变片
应变片布置图
C
A1
2 (3)
S
6 (5)
B4
D
z
a2 a1 a3
E
半桥接桥方式
在两个桥臂上接入应变片,另外两 个桥臂上接入仪器内部的固定电阻。
读ABBC
全桥接桥方式
在四个桥臂上都接入应变片。
读 AB BC CD DA
举例:用半桥方式求正应力σ x
方案1
读14 E 2x
R1
消除温度影响,测出σ x 。
A
R
方案2
读251 Ex
排除τxz ,消除温度影响,测出σ x 。
用半桥和全桥接法测定弯曲正应力σx。 用半桥和全桥接法测定扭转切应力τxz。
测试 项目
接桥 方式
组桥方案
静定 (με)
静不定 (με)
纯扭转 (με)
x 半桥
全桥
xz 半桥全桥BR2R3A
扭弯组合实验报告

浙江大学材料力学实验报告(实验项目:扭弯组合)一、实验目的:1、测定圆管在扭弯组合变形下一点处的主应力; 2、测定圆管在扭弯组合变形下的弯矩和扭矩。
二、设备及试样:1. 电阻应变仪;2. 小型圆管扭弯组合装置。
试样尺寸及相关常数三、实验原理:1、确定主应力和主方向(1)主应力由公式 145452+2=22εεεε-⎫±⎬⎭确定(2)主方向由公式 4545004545tan 22εεαεεε---=-- 确定(3)再由广义胡克定律算出主应力11222212E =(+)1-E =(+)1-σεμεμσεμεμ⎧⎪⎪⎨⎪⎪⎩2、测定弯矩测弯矩使用公式 44E (D -d )M=64r Dπε 3、测定扭矩测扭矩使用公式 44E (D -d )T=4(1+)16r Dεπμ4、弯矩、扭矩、和主应力1σ的理论值分别是 max M=P l max =P T a11(2M Wσ=四、实验记录表格和计算1、测试数据(一次加载参考表格)2、计算(取最大载荷下的应变计算)四、思考题3、用两枚纵向片组成的相互补偿电路,不但能消除温度应变的影响,而且可以消除因为偏心造成的误差,可见用两枚应变片组成的相互补偿电路较好。
4、(a)45ε和45ε-都由三部分组成,有T 45++εεεε=扭弯,T 45-++εεεε-=扭弯,所以得45452r εεεε-=-=扭, 即 1=2r εε扭,可见用这种方法也可以消除弯矩的影响,测出扭矩。
(b) 同 (a) 的解释相同,用这种方法也可以测出扭矩。
(c) 加温度补偿片只能消除温度应变的影响,不能消除弯矩的影响,故不能用这种方法测出扭矩。
弯扭组合变形实验报告_2

弯扭组合变形实验报告
学院系专业班试验日期
姓名学号同组者姓名
一、实验目的
二、实验设备
仪器名称及型号精度
弯扭组合实验装置编号
三、试件尺寸及有关数据
试件材料:弹性模量E= MPa
泊松比μ= 应变片灵敏系数K=
试件外径D= mm 试件内径d= mm
自由端端部到测点的距离L= mm 臂长a= mm 试件弯曲截面系数W Z= cm3
试件扭转截面系数W P= cm3
四、实验数据与整理
2、实测主应变、主应力的计算
主应变:εεⅠⅡ
=0
090+2εε±主方向:000
450900090
22tan εεεϕεε--=
-
(式中00045090
εεε按平均增量计算) 主应力:2=
+1-E σεμεμⅠⅠⅡ(), 2
=+1-E
σεμεμⅡⅡⅠ() 计算结果:=εⅠ =εⅡ 0=ϕ
=σⅠ =σⅡ
3、弯曲正应力计算:w W E σε=⋅∆=
4、扭转剪应力计算:||1n n E
τεμ
=
∆=- 5、根据材料力学理论公式计算以下几个参数的理论值: 弯矩M = 扭矩T =
=σⅠ =σⅡ
0=ϕ w σ= n τ=
五、回答思考题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯扭组合试验实验报告Administrator实验二弯扭组合试验、实验目的1 •用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角;2. 测定圆轴上贴有应变片截面上的弯矩和扭矩;3. 学习电阻应变花的应用。
二、实验设备和仪器1. 微机控制电子万能试验机;2. 电阻应变仪;3. 游标卡尺。
三、试验试件及装置弯扭组合实验装置如图一所示。
空心圆轴试件直径D o= 42mm壁厚t=3mm l i=200mml2=240mm(如图二所示);中碳钢材料屈服极限s= 360MPa弹性模量E= 206GPa泊松比(1= 0.28。
图一实验装置图四、实验原理和方法1、测定平面应力状态下一点处的主应力大小和主平面的方位角;圆轴试件的一端固定,另一端通过一拐臂承受集中荷载 P,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所示。
在圆轴某一横截面 A — B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方 向分别沿0°和土 45°。
根据平面应变状态应变分析公式:x 00由平面应变状态的主应变及其方位角公式:2xyIIxxJ1 tabx1 F图四圆轴上表面微体的应力状态------------------------------图五 圆轴下表面微体的应力状态可得到关于&x、£ y 、 丫 xy --cos2 仝巾2 2 2的三个线性方程组, 解得:(1)y 450 450 00(2)xy450450(3)y)(8)(9)将式(2)分别代入式(3)和式(4),即可得到主应变及其方位角的表达式。
对于各向同性材料,应力应变关系满足广义虎克定律:1严12由式(2)~( 5),可得一点的主应力及其方位角的表达式为:°°、 45°和45°的测量可用1/4桥多点测量法同时测出(见图六)R__ 1 1—工作片Rt- *■补片出一 一标准电»R4 —一标准电弘 图六2、圆轴某一截面弯矩 M 的测量:轴向应力x 仅由弯矩M 引起,故有:M W z根据广义虎克定律,可得:tg 0xy xy2( x min)2( maxxy(5)tg2 o.2E:°°2°°22 1 45°45°(6)45°45°20°45° 45°E4504502 1(x 00 )。
£ 0的测量可用1/4桥接法(见图七),也可采用半桥接法(见图八)。
图七3、圆轴某一截面扭矩 T 的测量:切应力T x 仅扭矩T 引起,故有:xW P根据广义虎克定律,可得:由式(11)、( 12)可得:T G W p (45045°)E 2(1 )W p(450 45。
)(13)(450450)的测量可用半桥接法(见图七),也可采用全桥接法(见图八)上下由式(7) ~ ( 9)得到:E W zx(10)以某截面上应力最大的上点或下点作为测量点。
测出X 方向应变片的应变值£X温补片旳——标准电5 R4——标准电图八(11)xyG(45。
450)(12)为了尽可能减小实验误差,本实验采用重复加载法。
可参考如下加载方案:F0=5OON,P max=1500N, P=1000N N=4五、实验步骤1. 设计实验所需各类数据表格;2. 测量试件尺寸;测量三次,取其平均值作为实验值。
3. 拟定加载方案;4. 试验机准备、试件安装和仪器调整;5. 确定各项要求的组桥方式、接线和设置应变仪参数;6. 检查及试车;检查以上步骤完成情况,然后预加一定载荷,再卸载至初载荷以下,以检查试验机及应变仪是否处于正常状态。
7. 进行试验;将载荷加至初载荷,记下此时应变仪的读数或将读数清零。
重复加载,每重复一次,记录一次应变仪的读数。
实验至少重复四次,如果数据稳定,重复性好即可。
& 数据通过后,卸载、关闭电源、拆线并整理所用设备。
六、试验结果处理1、原始数据列表并计算各测量值的平均值2.计算实验点的主应力大小和其方位角,并与理论值 (按名义尺寸计算)进行比较由公式:可计算值:可计算值:E 均 E45。
均 -2E ,1} 245。
均 均22 1均均2 1 ;00 450tan245。
450均 200均 均450450均 均 0°45°109上1}上2}(10.28)2 210 10.(332.67+86)2 (332.67-320.67 )2(320.67-86 )10 6故有:2(1+0.28)10上1}上282.812MP 14.367MPF 面将理论应变值代入求解理论值上1 84.130MP 下110.922MP 上210.922MP {下284.130M P0上19.90900下19.90903、计算圆轴上贴有应变片截面上的弯矩根据公式:均 9M E W z均 210 109M 227.295N?m32(42 10 3)3646.67 1062而从理论值来看:M 理论 P L 2 1000 240 10 3240Ngm4、计算圆轴上贴有应变片截面上的扭矩tan2 0上 320.67 862 332.67 320.67 21.6790860.9443同理: 下1} 下2 210 109( -300+73)10 6(;0028109( -312-73)2( -312+300)2 106故有: 下1} 下2 11.581MP 77.790MPtan 2 300 73下 2 (-312 ) -73- (-300 ) 21.60700.9395根据公式:E 2(1 )W P450 4509可以得到T 210 100.0423 (1 (36)4) (783.33) 10 6215.10N m 2(1 0.28) 16 42 2而从理论值来看:3T理论P L1 1000 200 10 N m 200 N m七、误差分析1、数据定量分析(1)、主应力与主平面方位角相对误差分析上1 82.812MP,上1理论82.812 84.13084.130100%上214.367MP,上2理论14.367 10.99210.99221.6790,100%0上理论21.679°19.909°19.9090下111.581MP,11.581 10.922 84.130M P,相对误差1.567%100%-上1上^论100%上1理论10.992MP,相对误差上2 上2理论上2理论100%30.704%血909。
,相对误差0上0上理论100%0上理论8.89%下1理论10.922MP,相对误差100% 6.03%下2 77.790MP,下2理论77.790 84.13084.130 100%84.130MP,相对误差7.54%下1 下1理论100%下1理论下2 下2理论下2理论100%(2)、将上述M 的计算值与P 12的值进行比较,并分析其误差(3)、将上述T 的计算值与P h 的值进行比较,并分析其误差2、定性分析由前面的误差计算可以看出,实验结果与真值比较接近, 但是上表面的误差相对比下表面大,产生较大实验误差的原因可以归纳为:(1) 、接线接头处接触电阻对实验结果的影响,有些线可能没有接好或者接的太松,从而引入较大的接触电阻, 而且有些线拆了后又再接上去, 接触电阻前后不一样也会造成相应的误差;(2) 、应变片在黏贴时候产生的缺陷对测量产生较大影响,因为我们在进行实验的过程中,发现我们的测量结果比理论值一直偏大, 而且数据的稳定性一直比较好,老师检查时候说数据稳定性好说明实验本身的步骤没有问题, 应该是在贴应变片的时候应变片贴的不是很标准;(3) 、在清零的过程中由于数据变动对实验结果产生较大的影响;(4) 、卸载及再加载的过程中由于速度过快, 没有足够的时间使数据稳定下来可能就读 数了;21.607°, o 下理论19.909,相对误差0下 0下理论 0下理论100%21.607° 19.909°19.909°100% 8.53%M 227.295N m, M 理论 240Ngm ,相对误差M M 理论M理论100%227.295 240 240100% 5.29%T 215.10N m, M 理论200Ngm,相对误差 100%215.10 200200100% 7.55%精品文档(5)、本实验在实验前并没有再次进行轴的相关尺寸的测量,而是沿用了一贯的标准数据,实际尺寸可能与标准尺寸有出入,从而造成实验结果的计算误差;(6)材料本身的质量分布以及缺陷对实验也会造成一定的影响。
八、实验感想与实验改进建议这次做的实验名称是《弯扭组合实验》。
材料力学实验是材料力学学习的基础与深化,在其中要用到很多课堂上所学到的理论知识与结果,是将自己所学到的知识付诸实践的一种形式。
在力学实验中,影响实验的因素很多,产生误差的原因也错综复杂,要求我们有一颗严谨的心,严格控制好实验条件等多种途径,以最佳的试验方式呈现力学现象,考验了我们实际动手能力和分析解决问题的能力。
材料力学实验有一定的复杂性,为了在规定的时间内完成老师所要求的实验内容,达到良好的实验结果,需要课前认真的预习,因此在课前,我认真预习了实验讲义上提到的相关步骤与注意事项,了解了仪器的工作原理、性能、正确的操作步骤与各种桥路的接法及其电路原理,写好了实验预习报告。
预习是实验前面必须要完成的工作,但是工作的重点还是在实验过程中。
我在做实验的过程中,格外小心,因为我们所用的万能试验机是一种比较精确地仪器,稍微不注意就会使得机器所施加的力超过我们的预期要求。
我觉得是要过程中老师的指导是必不可少的,在本次试验中,老师给了我们三个她要求检查的地方(三种桥路所测得三种数值),通过老师在实验过程中的检查,能够使我意识到我的实验是否在一路正确的进行下去。
在读数的过程中一定要小心,因为数据具有变动性,不要马虎了事,一定要等数据稳定后在进行读数、这样才能够保证我们所测量的数据的精确性。
试验完成后,要认真清理试验台,把所有的仪器恢复到位。
在实验完成后,我认真的处理了实验数据。
实验数据是定量分析的依据,是探索、验证力学规律的第一手资料。
本次试验我进一步学习了用电脑处理实验数据,刚开始我还不是很熟,但越到后来越发现用电脑处理数据更方便、快捷,可以节省不少时间,而且尤其是在修改错误的时候更有优势,让人开起来清晰明了。
但是用电脑处理数据的前提条件依然是我们对理论知识比较熟悉,而且实验操作过程必须认真完成,记录的数据要准确、有效。