甲醇制氢生产装置设计

合集下载

甲醇裂解制氢装置VPSA脱碳部分的操作规程

甲醇裂解制氢装置VPSA脱碳部分的操作规程

甲醇裂解制氢装置VPSA脱碳部分的操作规程一、VPSA部分介绍1.装置规模公称产氢能力:10000Nm3/h;装置操作弹性:60〜110%;年生产时数:8000小时2.装置组成本单元由10台脱碳吸附塔和3台真空泵等设备组成。

3.工艺流程来自甲醇裂解部分的甲醇裂解气自塔底进入脱碳吸附塔。

其中绝大部分CO2 及一些杂质气体被吸附下来,脱碳后的氢气等气体进入提氢单元。

吸附塔吸附的CO2等气体通过真空泵抽真空被解吸后高点排放。

4.原料气规格本装置的设计允许原料气组分和压力在较宽的范围内变化,但在不同的原料气条件下吸附参数应作相应的调整以保证产品的质量,同时产品氢收率也将随原料而变化。

当原料气条件变化时,物料平衡也将发生相应的变化。

在原料气条件不变的情况下,所有的调节均可由计算机自动完成。

本单元设计的原料气为:甲醇裂解气其详细规格如下:5.产品规格本单元的主要产品为脱碳气,副产品为脱碳解吸气。

在实际生产中,脱碳气的纯度可通过改变PSA单元的操作条件进行调节,而解吸气的组成也会随原料气和产品气的不同而略有不同。

以下为设计的产品气规格:脱碳气脱碳气纯度:CO2 <3.98 v%脱碳气产量:13650Nm3/h脱碳气温度:40℃脱碳气压力:2.5MpaG脱碳解吸气脱碳解吸气温度:40℃脱碳解吸气压力:0.02MpaG二、工艺过程说明1.基本原理吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。

具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。

吸附按其性质的不同可分为四大类,即:化学吸着、活性吸附、毛细管凝缩、物理吸附。

其中物理吸附是指依靠吸附剂与吸附质分子间的分子力(即范德华力)进行的吸附。

其特点是:吸附过程中没有化学反应,吸附过程进行得极快,参与吸附的各相物质间的平衡在瞬间即可完成,并且这种吸附是完全可逆的。

氢气站设计规范

氢气站设计规范

总则1.0.1 本条是本规范的宗旨。

鉴于氢气是可燃气体,且着火、爆炸范围宽,下限低,氢气站的安全生产十分重要。

各种制氢方法均需消耗一定数量的能量,有的制氢方法需消耗比较多的一次能源或二次能源,如水电解制氢需消耗较多的电能,因此,应十分注意降低能量消耗,节约能源。

氢气目前主要广泛应用于冶金、电子、化工、电力、轻工、玻璃等行业,用作保护气体、还原气体、原料气体等,由于在生产过程中的作用不同,对氢气的质量要求也各不相同,应充分满足生产对氢气质量的要求。

氢能被誉为21世纪的“清洁能源”,随着科学技术的发展,氢能的应用将会逐步得到推广。

因此,氢气站、供氢站设计,必须认真贯彻各项方针政策,切实采取防火、防爆安全技术措施;认真分析比较,采用先进、合理的氢气生产流程和设备;认真执行本规范的各项规定,使设计做到安全可靠,节约能源,保护环境,满足生产要求,达到技术先进,经济上合理。

1 近年来,国内工业氢气制取方法主要有:水电解制氢、含氢气体为原料的变压吸附法提纯氢气、甲醇蒸气转化制氢以及各种副产氢气的回收利用等。

各种制氢方法因工作原理、工艺流程、单体设备的不同,各具特色和不同的优势,各地区、行业和企业应根据自身的实际情况和具体条件,经技术经济比较后合理选择氢气制取方法。

如上海××钢铁公司,在一期工程时,采用水电解制氢方法,装设2台氢气产量为200Nm3/h的水电解制氢装置,由于生产发展的需要,氢气需求量大幅度增加,该公司在扩建工程中采用于利用公司内焦化厂的副产焦炉煤气(含氢气50%~60%)为原料气的变压吸附提纯氢气系统,氢气产量为2000Nm3/h、氢气纯度大于99.99%。

变压吸附提纯氢气技不及装置已在我国石化、冶金、电子等行业推广应用,取得了良好的能源效益、经济效益。

甲醇蒸气转化制氢也在国内外得到积极应用,据了解国内有多家制造单位已商品化生产,仅北京、天津就有多套500Nm3/h左右的甲醇蒸气转化制氢系统正在运行中。

甲醇在线制氢装置 标准

甲醇在线制氢装置 标准

甲醇在线制氢装置标准
甲醇在线制氢装置的标准是指对于甲醇在线制氢装置的设计、生产、运行等方面所需遵循的一系列规定和要求。

这些标准的制定旨在确保甲醇在线制氢装置的安全、高效运行,保护环境和人员的健康。

首先,甲醇在线制氢装置的标准要求装置的设计和制造必须符合相关的技术规范和标准,确保设备的可靠性、稳定性和安全性。

制造商需要按照规定的程序和要求进行质量控制,确保装置符合所有的技术要求,并通过验收测试。

其次,标准要求甲醇在线制氢装置必须符合环保要求,减少污染物的排放。

装置应该采用先进的净化和处理技术,以减少甲醇和氢气生产过程中的废水、废气、废渣等排放物,并且需要符合国家和地方的环境保护法规。

另外,标准要求甲醇在线制氢装置的操作和维护必须符合安全要求。

操作人员需要经过专业培训,熟悉装置的运行原理、操作程序和安全规程,严格遵守操作规程,确保装置的安全运行。

同时,需要定期对装置进行检查、维护和保养,确保设备的正常运行和使用寿命。

此外,标准还要求甲醇在线制氢装置的监测和控制系统必须可靠和精确。

装置应该配备先进的监测仪器和仪表,对关键参数进行实时监测和控制,并能够及时报警和自动切断设备运行,以防止事故的发生。

综上所述,甲醇在线制氢装置的标准主要包括对装置的设计、制造、环保、安全操作和监测控制等方面的要求。

只有符合这些标准,才能保证装置的安全、高效运行,降低生产过程中的环境污染,保护人员的健康和安全。

甲醇裂解制氢气生产流程的设备

甲醇裂解制氢气生产流程的设备

甲醇裂解制氢气生产流程的设备一、反应器甲醇裂解制氢气的核心设备是反应器。

反应器是一个密封的容器,用于进行甲醇的裂解反应。

反应器通常由高温合金材料制成,具有良好的耐高温性能和抗腐蚀性能。

反应器内部设置有加热器和冷却器,用于控制反应温度。

二、加热器加热器是用来提供反应所需的高温热源。

甲醇裂解反应需要高温条件才能进行,通常需要在400-600摄氏度的温度范围内进行反应。

加热器可以使用电加热、燃气加热或者其他方式提供热源,将反应器内的温度升高到所需的反应温度。

三、冷却器冷却器用于控制反应器内的温度,防止反应温度过高引起不良反应。

冷却器通常采用水冷方式,通过水的循环来降低反应器内部的温度。

冷却器能够有效地控制反应器的温度,保证反应的顺利进行。

四、分离器分离器是用来分离反应产物中的氢气和其他组分的设备。

在甲醇裂解制氢气的过程中,反应产物中除了氢气外,还有一些副产物和未反应的甲醇。

分离器通过物理或化学方法将氢气与其他组分进行分离,得到纯净的氢气。

常用的分离方法包括压力摩擦吸附法(PSA)和膜分离法。

五、压缩机压缩机用于将产出的氢气进行压缩,使其达到所需的压力。

压缩机可以采用多级压缩的方式,将氢气逐级压缩至目标压力。

压缩机通常由高强度材料制成,具有良好的密封性和耐压性能。

六、储氢罐储氢罐用于存储压缩后的氢气。

储氢罐通常由高压容器制成,具有良好的密封性和耐压性能。

储氢罐可以根据需要选择不同的材料,如钢制储氢罐、复合材料储氢罐等。

七、安全设备甲醇裂解制氢气的生产过程中需要设置一系列的安全设备,以确保生产过程的安全性。

常见的安全设备包括防爆装置、泄漏报警装置、火焰监测装置等。

这些设备能够及时发现和处理可能出现的安全隐患,保障生产过程的安全运行。

甲醇裂解制氢气的生产流程涉及多个设备,包括反应器、加热器、冷却器、分离器、压缩机、储氢罐和安全设备等。

这些设备的合理选择和正确运行,对于保证甲醇裂解制氢气的生产效率和安全性具有重要意义。

甲醇制氢生产装置设计

甲醇制氢生产装置设计

机械与动力工程学院过程装备与控制工程专业课程设计设计题目:生产能力为800N m³/h甲醇制氢生产装置设计设计人:指导教师:班级:组号:第一组设计时间: 2012年12月24日至2013年1月18日前言氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。

依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。

其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。

随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。

甲醇蒸气转化制氢具有以下特点:(1)与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。

(2)与电解水制氢相比,单位氢气成本较低。

(3)所用原料甲醇易得,运输、贮存方便。

(4)可以做成组装式或可移动式的装置,操作方便,搬运灵活。

对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。

本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。

目录前言 (2)设计任务书 (4)第一章甲醇制氢工艺设计 (5)1.1甲醇制氢工艺流程 (5)1.2物料衡算 (5)1.3热量衡算 (6)第二章反应器设计计算 (9)2.1工艺计算 (9)2.2结构设计 (12)2.3.SW6校核 (16)第三章管道设计 (35)3.1管子选型 (35)3.2阀门选型 (39)3.3管道法兰选型 (40)3.4仪表选型 (41)第四章泵的选型 (44)4.1计量泵的选择 (44)4.2离心泵的选型 (45)第五章反应器控制方案设计 (47)5.1被控参数选择 (47)5.2控制参数选择 (47)5.3过程检测仪表的选用 (48)5.4温度控制系统流程图及其控制系统方框图 (48)5.5调节器参数整定 (49)5.6如何实现控制过程的具体说明 (49)第六章技术经济评价 (49)6.1甲醇制氢装置的投资估算 (49)6.2总成本费用估算与分析 (51)6.3财务评价 (52)参考文献: (54)设计任务书一、题目:生产能力为800N m³/h甲醇制氢生产装置。

1.5万方甲醇裂解制氢项目可行性

1.5万方甲醇裂解制氢项目可行性
1.1.2编制依据
1.1.2.1《盘锦浩业化工有限公司1万5千方/小时甲裂制氢装置》项目建议书;
1.1.2.2《盘锦浩业化工有限公司1万5千方/小时甲裂制氢装置》可行性研究报告技术服务合同;
1.1.2.3建设单位提供的地质资料、气象水文资料及其他相关资料;
1.1.2.4《盘锦浩业化工有限公司1万5千方/小时甲裂制氢装置》可行性研究报告编制委托书;
氢气价格参考当地供氢价格,本可研报告氢气暂定为2.00元/Nm3
3生产规模及生产技术方案
3.1生产规模及生产方案
3.1.1生产规模
设计规模: 15000m3n/h,
操作弹性: 30%~110%,
年运行时数: 8400小时。
3.2工艺技术方案选择
3.2.1制氢工艺技术方案选择
目前国内生产H2的生产方法主要有以下三种:
公司采用无溶剂制蜡工艺,经压榨脱蜡、发汗脱油、白土精制等一系列过程生产出高纯度工业用蜡,广泛用于制造合成脂肪酸和高级醇及制造火柴、蜡烛、蜡笔、防水剂、软管、纤维板、橡胶等。随着国民生活水平的提高,石蜡的二次开发也逐步有所增加。在食品、药品、化妆品、电线、电缆、电池等行业的应用日益增加。
公司1997年被中华人民共和国农业部评为“二档乡镇企业”;2003年被盘山县政府列为“县民营企业重点保护单位”;同时也是市重点扶持的民营企业,2003年被盘锦市政府评为“先进集体”;2005年被盘锦市人民政府授予“经济社会发展贡献奖”;2007年被盘锦市人民政府评为“纳税贡献企业”;2008年被盘山县人民政府评为“文明企业”;连续五年被市、县工商局评为“守合同、重信用”单位。
本项目为盘锦浩业化工有限公司1万5千方/小时甲裂制氢装置。其主要原料为外购甲醇。
1.1.1.2项目建设地址

GB50177-2005氢气站设计规范GB

GB50177-2005氢气站设计规范GB

氢气站设计规范GB 50177-2005中华人民共和国建设部公告第330号建设部关于发布国家标准《氢气站设计规范》的公告现批准《氢气站设计规范》为国家标准,编号为GB 50177-2005,自2005年10月1日起实施。

其中,第1.0.3、3.0.2、 3.0.3、 3.0.4、 4.0.3(1)、 4.0.8、4.0.10、 4.0.11、 4.0.13、 4.0.15、 6.0.2、 6.0.3、 6.0.5、 6.0.10、7.0.3、 7.0.6、 7.0.10、 8. 0.2、 8.0.3、 8.0.5、 8.0.6、 8.0.7(4)、9.0.2、 9.0.4、9. 0.5、 9.0.6、 9.0.7、 11.0.1、 11.0.5、 11.0.7、12. 0.9、12.0.10(2)(5)、12. 0.12(4)(5)、12.0.13为强制性条文,必须严格执行。

原《氢氧站设计规范》GB 50177-93及其强制性条文同时废止。

1 总则1.0.1 为在氢气站、供氢站的设计中正确贯彻国家基本建设的方针政策,确保安全生产,节约能源,保护环境,满足生产要求,做到技术先进,经济合理,制定本规范。

1.0.2 本规范适用于新建、改建、扩建的氢气站、供氢站及厂区和车间的氢气管道设计。

1.0.3 氢气站、供氢站的生产火灾危险性类别,应为“甲”类。

氢气站、供氢站内有爆炸危险房间或区域的爆炸危险等级应划分为1区或2区,并应符合本规范附录A的规定。

1.0.4 氢气站、供氢站和氢气管道的设计,除执行本规范外,尚应符合国家现行有关标准的规定。

2 术语2.0.1 氢气站 hydrogen station采用相关的工艺(如水电解,天然气转化气、甲醇转化气、焦炉煤气、水煤气等为原料气的变压吸附等)制取氢气所需的工艺设施、灌充设施、压缩和储存设施、辅助设施及其建筑物、构筑物或场所的统称。

2.0.2 供氢站 hydrogen supply station不含氢气发生设备,以瓶装或/和管道供应氢气的建筑物、构筑物、氢气罐或场所的统称。

1800Nm3-h甲醇制氢装置设计依据

1800Nm3-h甲醇制氢装置设计依据

1800Nm3/h甲醇制氢装置设计依据甲醇蒸汽转化制氢和二氧化碳技术1前言氢气在工业上有着广泛的用途。

近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。

对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。

对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。

西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。

第一套600Nm3/h制氢装置于1993年在广州金珠江化学有限公司首先投产开车,在得到纯度%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。

此项目于93年获得化工部优秀设计二等奖94年获广东省科技进步二等奖。

2工艺原理及其特点本工艺以来源方便的甲醇和脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢和二氧化碳转化气,其原理如下:主反应:CH3OH=CO+2H2+ KJ/molCO+H2O=CO2+H2KJ/mol总反应:CH3OH+H2O=CO2+3H2+ KJ/mol副反应:2CH3OH=CH3OCH3+H2O KJ/molCO+3H2=CH4+H2O -+mol上述反应生成的转化气经冷却、冷凝后其组成为H2 73~74%CO2 23~%CO ~%CH3OH 300ppmH2O 饱和该转化气很容易用变压吸附等技术分离提取纯氢。

广州金珠江化学有限公司600Nm3/h制氢装置自93年7月投产后,因后续用户双氧水的扩产,于97年4月扩产1000Nm3/h 制氢装置投产,后又扩产至1800Nm3/h,于2000年3月投产。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生产能力为2800 m³/h 甲醇制氢生产装置设计前言氢气是一种重要的工业用品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量也有着不同的要求。

近年来随着中国改革开放的进程,随着大量高精产品的投产,对高纯氢气的需求量正在逐渐扩大。

烃类水蒸气转化制氢气是目前世界上应用最普遍的制氢方法,是由巴登苯胺公司发明并加以利用,英国ICI公司首先实现工业化。

这种制氢方法工作压力为2.0-4.0MPa,原料适用范围为天然气至干点小于215.6℃的石脑油。

近年来,由于转化制氢炉型的不断改进。

转化气提纯工艺的不断更新,烃类水蒸气转化制氢工艺成为目前生产氢气最经济可靠的途径。

甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。

它具有以下的特点:1、与大规模天然气、轻油蒸气转化制氢或水煤气制氢比较,投资省,能耗低。

2、与电解水制氢相比,单位氢气成本较低。

3、所用原料甲醇易得,运输储存方便。

而且由于所用的原料甲醇纯度高,不需要在净化处理,反应条件温和,流程简单,故易于操作。

4、可以做成组装式或可移动式的装置,操作方便,搬运灵活。

前言 ----------------------------------------------- 2 目录 ----------------------------------------------- 3 摘要 ----------------------------------------------- 3 设计任务书 ----------------------------------------- 4 第一章工艺设计 ------------------------------------------ 51.1.甲醇制氢物料衡算 --------------------------------------1.2.热量恒算 ----------------------------------------------第二章设备设计计算和选型:塔、换热设备、反应器 ----- 82.1.解析塔的选择 ------------------------------------------2.2.换热设备的计算与选型 ----------------------------------2.3.反应器的设计与选型 ------------------------------------第三章机器选型------------------------------------------ 13 3.1.计量泵的选择 ------------------------------------------ 153.2.离心泵的选型第四章设备布置图设计---------------------------------- 15 4.1.管子选型 ---------------------------------------------- 17 4.2.主要管道工艺参数汇总一览表 ---------------------------- 84.3.各部件的选择及管道图 ----------------------------------第五章管道布置设计 ------------------------------- 16 5.1.选择一个单参数自动控制方案 ---------------------------- 21 5.2.换热器温度控制系统及方块图课设总结 ------------------------------------------- 28本次课程设计是设计生产能力为2800m3/h甲醇制氢生产装置。

在设计中要经过工艺设计计算,典型设备的工艺计算和结构设计,管道设计,单参数单回路的自动控制设计,机器选型和技术经济评价等各个环节的基本训练。

在设计过程中综合应用所学的多种专业知识和专业基础知识,同时获得一次工程设计时间的实际训练。

课程设计的知识领域包括化工原理、过程装备设计、过程机械、过程装备控制技术及应用、过程装备成套技术等课程。

本课程设计是以甲醇制氢装置为模拟设计对象,进行过程装备成套技术的全面训练。

设计包括以下内容和步骤:1、工艺计算。

2、生产装置工艺设计。

3、设备设计。

分组进行。

4、机器选型。

5、设备不知设计。

6、管道布置设计。

7、绘制管道空视图。

8、设计一个单参数、单回路的自动控制方案。

9、对该装置进行技术经济评价。

10、整理设计计算说明书。

设计任务书一、题目:生产能力为2800 m3/h甲醇制氢生产装置。

二、设计参数:生产能为2800 m3/h 。

三、计算内容:1、工艺计算:物料衡算和能量衡算。

2、机器选型计算。

3、设备布置设计计算。

4、管道布置设计计算。

四、图纸清单:1、物料流程图2、工艺流程图3、换热器总装图4、换热器零件图5、管道布置图6、管道空视图(PL0102-20L1B)第一章工艺设计1.1.甲醇制氢物料衡算.(1)依据甲醇蒸气转化反应方程式:CH3OH—→CO↑ + 2H2↑CO + H2O —→CO2↑ + H2CH3OHF分解为CO,转化率99%,CO变换转化率99*,反应温度 280℃,反应压力为1. 5 MPa,醇水投料比1:1.5(mol)。

(2)投料量计算代如转化率数据CH3OH —→ 0.99 CO↑ + 1.98 2H2↑ +0.01 CH3OHCO + 0.99 H2O —→ 0.99 CO2↑ + 0.99 H2↑+ 0.01 CO↑合并得到CH3OH + 0.9801 H2O —→0.9801 CO2↑ + 2.9601 H2↑ + 0.01 CH3OH+ 0.0099 CO氢气产量为:2800 m³/h=125 kmol/h甲醇投料量为: 125/2.9601 * 32=1351.312 kg/h水投料量为:1351.312/32 * 1.5 * 18=1140.168 kg/h(3)原料储液槽 (V0101)进:甲醇 1351.312 kg/h,水1140.168 kg/h。

出:甲醇 1351.312 kg/h,水 1140.168 kg/h。

(4) 换热器(E0101),汽化塔(T0101)、过热器(E0103)没有物流变化(5) 转化器(R0101)进:甲醇 1351.312 kg/h,水 1140.168 kg/h,总计2491.48 kg/h出:生成CO2 1351.312/32 * 0.9801 * 44=1821.48 kg/hH2 1351.312/32 * 2.9601 * 2=250 kg/hCO 1351.312/32 * 0.0099 * 28=11.704 kg/h剩余甲醇1351.312/32 * 0.01 * 32=13.512 kg/h剩余水 1140.168- 1351.312/32 * 0.9801 * 18 =395.181kg/h总计2491.48 kg/h(6)吸收和解析塔吸收塔总压为1.5Mpa,其中CO2分压为0.38Mpa,操作温度为常温(25℃)。

此时每m³吸收液可溶解CO211.77 m³.解吸塔的操作压力为0.1MPa, CO2 溶解度为2.32 ,则此时吸收塔的吸收能力为:11.77-2.32=9.450.4MPa压力下ρCO2 = pM /RT =4 * 44/[0.082 * (273.15 + 25)] =7.20 kg/m ³CO2体积重量 V CO2 =1821.48/7.20 =252.98 m³/h据此,所需吸收液的量为 252.98/9.45 =26.764 m³/h考虑吸收塔效率以及操作弹性需要,取吸收液量为26.764 * 3=80.296m³/h系统压力降至0.1MPa时,析出CO2 量为 346.04 m³/h = 1821.48 kg/h(7)PSA系统略。

(8)各节点的物料量综合上面的工艺物料恒算结果,给出物料流程图及各节点的物料量。

1.2热量恒算(1)气化塔顶温度确定要使甲醇完全汽化,则其气相分率必然是甲醇40%,水60%(mol),且已知操作压力为1.5MPa,设温度为T,根据汽液平衡关系有:0.4p甲醇 + 0.6 p水=1.5MPa初设 T=170℃ p甲醇=2.19MPa; p水 =0.824MPap总 =1.3704MPa < 1.5MPa再设 T=175℃p甲醇=2.4MPA; p水 0.93MPap总 =1.51MPa蒸气压与总压基本一致,可以认为操作压力为 1.5MPa时,汽化塔塔顶温度为175℃(2)转化器(R0101)两步反应的总反应热为49.66 kj/mol,于是在转化器内需要共给热量为:Q反应=1351.312*0.99/32*1000*(-49.66)=-2.076*106 kj/h此热量有导热油系统带来,反应温度为280℃,可以选用导热油温度为320℃,导热油温降设定为5℃,从手册中查到导热油的物性参数,如必定压热容与温度的关系,可得:Cp320℃=4.1868*0.68=2.85 kj/(kg.K),Cp300℃=2.81 kj/(kg.K)取平均值Cp=2.83 kj/(kg.K)则导热油的用量 w=Q反应 /(CpΔt)= 2.076*106 / (2.83*5)=1.467*105 kg/h (3)过热器(E0102)甲醇和水的饱和正气在过热器中175℃过热到280℃,此热量由导热油供给。

气体升温所需热量为Q=ΣCp mΔt=(1.90*1351.312+4.82*1140.168*(280-175)=8.446*105 kj/h导热油 Cp=2.825 kj/(kg.K),于是其温度降为Δt=Q/(Cp m)= 2.117 * 105 /(2.86 * 3.668*104 )=2.042℃导热油出口温度为:315-2.042=312.958(4)汽化塔(T0101)认为汽化塔仅有潜热变化。

175℃甲醇H=727.2 kj/kg 水 H=2031 kj/kgQ=1351.312 *727.2 +2031*1140.168=3.298*106 kj/h以300℃导热油Cp计算 Cp=2.76 kj/(kg.K)Δt=Q/(Cp m)=3.298*106 /2.76*1.467*105)=8.15℃则导热油出口温度t2 =312.958-8.15=304.808℃导热油系统温差为ΔT=320-304.808=15.192℃基本合适(5)换热器(E0101)壳程:甲醇和水液体混合物由常温(25℃)升至175℃液体混合物升温所需的热量Q=ΣcpmΔt=(1351.312*3.14 + 1140.168 *4.30)*(175-25)=1.372*105 kj/h管程:取各种气体的比定压热容为:CpCO2 ≈ 10.47 kj/(kg.K)CPH2 ≈ 14.65 kj/(kg.K)CPH20 ≈ 4.19 kj/(kg.K)则管程中反应后其体混合物的温度变化为:Δt=Q/(Cp * m)= 1.372*105 /(10.47*1821.104+14.65*250+4.19*395.2)= 56.26℃换热器出口温度 280-56.26=223.74℃(6)冷凝器(E0103)①CO2 、CO 、H2的冷却Q=ΣcpmΔt=(10.47*1821.104+14.65*250+4.19*11.704)*(223.736-40)=3.511 15*10 6 kj/h②压力为1.5MPa时水的冷凝热为:H=2135kj/kg,总冷凝热Q2 =H * m=2135 *395.2=8.438*105 kj/h水显热变化 Q3 =cpmΔt=4.19* 395.2*(223.74-40)=3.0417*105 kj/hQ= Q1+ Q2+ Q3=4.6594*106 kj/h冷却介质为循环水,才用中温型凉水塔,则温差ΔT=10℃用水量 w=Q/(cpΔt)= 4.6594*106/(4.19*10)=1.112*105 kg/h第二章设 备设计计算和选型2.1.选择解析塔工艺计算和结构设计如下:1) 工艺计算已知进入吸收塔的混合气体的质量流量为2082.8 kg/h,操作压力为1.5Mpa,气体的入口温度为40℃,用碳酸丙烯酯吸收CO2,吸收率为99%。

相关文档
最新文档