低频小信号放大器电路实验
低频功率放大器实验报告

低频功率放大器实验报告一、实验目的本实验旨在通过设计和制作低频功率放大器,了解放大器的基本原理、特性和工作方式,掌握放大器电路的设计方法和调试技巧。
二、实验原理1. 放大器基本原理放大器是一种将输入信号增加到更高电平的电路。
它可以增加信号的幅度、功率或电压,使得信号能够被更远距离传输或被更多设备使用。
放大器通常由一个输入端、一个输出端和一个控制元件组成。
2. 低频功率放大器的特点低频功率放大器是指工作频率在几千赫兹以下,输出功率在几瓦以下的放大器。
它具有以下特点:(1)输入电阻高;(2)输出电阻低;(3)增益高;(4)线性好;(5)失真小。
3. 放大器电路设计方法(1)选择合适的管子:根据需要选择合适的管子,如双极晶体管或场效应管等。
(2)确定工作点:根据管子参数和负载要求确定工作点。
(3)设计偏置电路:根据所选管子类型和工作点需求设计偏置电路。
(4)确定放大器电路拓扑结构:根据需求选择合适的放大器电路拓扑结构。
(5)计算元件参数:根据所选拓扑结构和工作点计算元件参数。
(6)布局和布线:根据设计要求进行布局和布线。
三、实验步骤1. 放大器电路设计本次实验采用晶体管作为放大器管子,以共射极放大器为基础,设计低频功率放大器电路。
具体步骤如下:(1)选择晶体管型号;(2)根据晶体管参数和负载要求确定工作点;(3)设计偏置电路;(4)选择合适的耦合电容和旁路电容;(5)计算元件参数。
2. 低频功率放大器制作按照设计要求进行元件选配、布局和布线,制作低频功率放大器。
3. 低频功率放大器测试将信号源接入输入端,将示波器接入输出端,调节偏置电位器使得输出波形不失真。
测量并记录输入信号幅度、输出信号幅度、增益等数据,并对数据进行分析和比较。
四、实验结果与分析经过测试,本次实验制作的低频功率放大器实现了预期的功能。
在输入信号频率为1kHz、幅度为10mV的情况下,输出信号幅度为1.2V,增益为120倍。
在输入信号频率为10kHz、幅度为10mV的情况下,输出信号幅度为1.0V,增益为100倍。
低频功率放大器实验报告

低频功率放大器实验报告低频功率放大器实验报告引言低频功率放大器是一种常见的电子设备,用于放大低频信号。
本实验旨在通过搭建低频功率放大器电路并进行实验验证,探究其工作原理和性能特点。
一、实验目的本实验的主要目的是:1. 了解低频功率放大器的基本原理和工作方式;2. 学习搭建低频功率放大器电路的方法;3. 测试低频功率放大器的性能指标,如增益、频率响应等。
二、实验器材和原理1. 实验器材:(列出所使用的器材,如信号发生器、电阻、电容、晶体管等)2. 实验原理:(简要介绍低频功率放大器的工作原理,如输入信号经过放大器电路,经过放大后输出)三、实验步骤1. 搭建低频功率放大器电路:(详细描述电路的搭建步骤,包括所使用的元件和其连接方式)2. 连接信号发生器和示波器:(将信号发生器连接到放大器的输入端,将示波器连接到放大器的输出端)3. 调节信号发生器和示波器:(调节信号发生器的频率和幅度,观察示波器上的输出信号)4. 测量和记录数据:(测量和记录放大器的增益、频率响应等数据,可以使用示波器和其他测量仪器)四、实验结果和分析1. 实验数据:(列出实验测得的数据,如输入信号频率、幅度,输出信号频率、幅度等)2. 数据分析:(根据实验数据进行分析,计算并比较放大器的增益、频率响应等性能指标)3. 结果讨论:(对实验结果进行讨论,分析可能的误差来源,探讨实验结果与理论预期的一致性)五、实验总结1. 实验心得:(简要总结实验过程中的体会和收获,如对低频功率放大器的理解加深,实验操作技巧的提升等)2. 实验改进:(提出对实验的改进意见,如增加测量数据的次数,使用更精确的测量仪器等)3. 实验应用:(探讨低频功率放大器的实际应用领域,如音频放大器、通信设备等)结语通过本次实验,我们对低频功率放大器的原理和性能有了更深入的了解。
实验结果与理论预期相符,验证了低频功率放大器电路的可靠性和稳定性。
通过实验的过程,我们也提高了实验操作技巧和数据分析能力,为今后的学习和研究打下了基础。
低频放大器实验报告

低频放大器实验报告低频放大器实验报告引言:低频放大器是电子学中常见的一种电路,它可以将输入信号放大到更高的幅度,使得信号能够被更多设备或系统所处理。
在本次实验中,我们将探索低频放大器的工作原理和性能特点。
实验目的:1. 了解低频放大器的基本原理;2. 掌握低频放大器电路的设计和调试方法;3. 研究低频放大器的频率响应和增益特性。
实验步骤:1. 准备实验所需的器件和元件,包括放大器芯片、电阻、电容等;2. 搭建低频放大器电路,按照设计要求连接各个元件;3. 连接信号发生器和示波器,用信号发生器输入不同频率的正弦波信号;4. 调整放大器的工作点,使其处于最佳工作状态;5. 测量不同频率下的输入和输出信号幅度,并记录数据;6. 绘制频率响应曲线和增益特性曲线;7. 分析实验结果,总结低频放大器的性能特点。
实验结果:通过实验测量和数据记录,我们得到了低频放大器的频率响应曲线和增益特性曲线。
从频率响应曲线可以看出,在低频范围内,放大器的增益较高,随着频率的增加,增益逐渐下降。
这是由于放大器的截止频率限制了其对高频信号的放大能力。
而增益特性曲线则展示了放大器在不同频率下的放大倍数,可以看出放大器的增益在低频时较为稳定,但在高频时逐渐减小。
讨论与分析:低频放大器的频率响应和增益特性是其重要的性能指标。
在实际应用中,我们需要根据具体需求选择合适的低频放大器。
如果需要放大高频信号,就需要选择截止频率较高的放大器,以保证信号的完整性和准确性。
而对于低频信号的放大,我们可以选择截止频率较低的放大器,以获得更高的增益。
此外,低频放大器的稳定性也是需要考虑的因素。
在实验中,我们可以通过调整放大器的工作点来使其处于最佳工作状态,以获得更好的稳定性和线性度。
同时,合理选择电阻和电容的数值,也可以提高放大器的稳定性。
结论:通过本次实验,我们深入了解了低频放大器的工作原理和性能特点。
我们学会了低频放大器的电路设计和调试方法,并通过实验测量获得了频率响应曲线和增益特性曲线。
(完整版)低频小信号功率放大_毕业设计_好!

实用低频功率放大器的设计摘要本课题介绍制作具有小信号放大能力的低频功率放大器,主要介绍其基本原理、内容、技术线路等。
本系统是基于(IC)NE5532,(IC)LM1875设计而成的一种低频小信号功率放大器,由直流稳压电源,电压放大级电路,功率放大级电路,带阻滤波电路及数据采集显示模块五部分组成。
其主要功能是将10Hz----50KHz的低频小信号放大,当输出功率大于5W时波形无明显失真,并将系统的输出功率,直流电源的供给功率和整机效率实时地显示出来。
本设计具有低功耗,性价比高,稳定性好,应用广泛等优点。
关键词:功率放大集成块NE5532 集成块LM1875 集成块AD736单片机AT89S52AbstractThis task introduce how to make one of bass frequency power amplifier, which can blow up puny signal, and the amplifier’s basic principle, content and the technology.This bass frequency power amplifier is based upon the Integrated block NE5532 and the Integrated block LM1875. It contains five segments such as the voltage-stabilized source, the voltage_ blowup circuit, the power-blowup circuit, the BEF circuit, the data_ collection and data-disposal circuit and so on.This bass frequency power amplifier’s mostly function is blow up the bass frequency puny signal, which has from 50Hz to 50KHz channel. The wave has no evident distortion, when the output-power has overed 5W. This design require display the system’s output-power, the DC’s purvey power and the whole enginery ’s efficiency momentarily .This design has a large number of advantages, such as lowness power, the good capability and the right price, the upstanding stability, the far-ranging application and so on.Keywords: Power Blowup (IC) NE5532 (IC)LM1875 (IC)AD736 MCU AT89S52目录摘要 (I)Abstract (II)目录.............................................................................................................. I II前言 (1)1、设计分析及技术指针 (2)1.1设计分析 (2)1.2设计技术指标 (2)2.系统设计方案 (3)2.1方案一 (3)2.2方案二 (4)3.方案设计 (5)3.1低频小信号功率放大器电路的框图 (5)3.2低频小信号功率放大器电路原理图 (5)3.3电路内部各框图的工作原理 (6)3.3.1 ±15V +5V稳压电源电路各框图的工作原理 (6)3.3.2 波形变换电路模块的工作原理 (7)3.3.3 前置运放电路模块的工作原理 (8)3.3.4 功放电路模块的工作原理 (8)3.3.5 滤波电路模块的工作原理 (9)3.3.6 数据采集电路模块的工作原理 (9)3.3.7 保护电路模块的工作原理 (10)4.各单元电路的设计 (11)4.1前置运放电路的设计 (12)4.1.1方案一:采用运算放大器构成的前置放大电路 (12)4.1.2方案二:采用专用前置放大器IC构成的前置放大电路 (14)4.2 功率放大器电路设计 (15)4.2.1采用分立元件构成的低频功率放大器电路 (16)4.2.2采用集成功放构成的低频功率放大器电路 (20)4.3 波形变换电路的设计 (22)4.4 滤波电路的设计 (24)4.5 数据采集中AC真有效值采集处理电路的设计 (26)4.6 稳压电源电路的设计 (29)4.6.1 220交流电源的变压电路的设计 (29)4.6.2 整流电路的设计 (30)4.6.3 滤波电路的设计 (31)4.7 显示电路的设计 (33)5.软件设计 (34)6.测试结果分析 (34)结论 (35)致谢 (35)参考文献 (36)附件 (37)前言低频功率放大器不仅仅是消费产品(音响)中不可缺少的设备,还广泛应用于控制系统和测量系统中。
小信号实验报告

一、实验目的1. 了解小信号放大器的基本原理和组成。
2. 掌握小信号放大器的性能指标及其测试方法。
3. 学会使用示波器、信号发生器等实验仪器进行实验操作。
4. 培养动手能力和实验技能。
二、实验原理小信号放大器是一种将输入信号进行放大,同时保持放大前后信号波形不失真的电子电路。
其主要组成部分包括放大管、偏置电路、耦合电容、负载电阻等。
实验中,我们将对单调谐放大器和双调谐放大器进行性能测试。
1. 单调谐放大器:单调谐放大器由一个放大管、偏置电路、耦合电容和负载电阻组成。
其工作原理是利用放大管放大输入信号,通过耦合电容将放大后的信号传递到负载电阻,实现信号的放大。
2. 双调谐放大器:双调谐放大器由两个单调谐放大器级联而成,具有更高的选择性。
其工作原理是第一个单调谐放大器对输入信号进行初步放大,第二个单调谐放大器对放大后的信号进行选择性放大。
三、实验仪器与设备1. 实验箱:高频电子线路综合实验箱2. 示波器3. 信号发生器4. 双踪示波器5. 频率测试仪四、实验步骤1. 连接实验电路:根据实验要求,将单调谐放大器和双调谐放大器的电路连接到实验箱上。
2. 测试单调谐放大器性能:(1)测量静态工作点:调整偏置电路,使放大管工作在最佳状态。
(2)观察输入输出信号:使用示波器观察输入输出信号的幅度和相位关系,计算放大倍数。
(3)测试幅频特性:使用频率测试仪观察幅频特性曲线,测量3dB带宽和通频带。
(4)测试相频特性:使用频率测试仪观察相频特性曲线,测量相位变化。
3. 测试双调谐放大器性能:(1)测量静态工作点:调整偏置电路,使放大管工作在最佳状态。
(2)观察输入输出信号:使用示波器观察输入输出信号的幅度和相位关系,计算放大倍数。
(3)测试幅频特性:使用频率测试仪观察幅频特性曲线,测量3dB带宽和通频带。
(4)测试相频特性:使用频率测试仪观察相频特性曲线,测量相位变化。
4. 分析实验数据:对实验数据进行整理和分析,得出单调谐放大器和双调谐放大器的性能指标。
低频功率放大器实验报告

低频功率放大器实验报告实验目的:1.了解低频功率放大电路的基本原理和性能指标。
2.掌握测量低频功率放大电路的各种参数的方法和技巧。
3.分析低频功率放大电路的失真特性。
实验仪器:1.功率放大电路实验箱2.双踪示波器3.函数发生器4.直流电压源5.电子万用表6.各种被测元器件实验原理:低频功放电路是一种将输入信号在低频段进行放大的电路。
其输入信号的频率范围在几十赫兹至几千赫兹之间。
低频功放电路通常由放大级、直流偏置电路和输出级组成。
实验步骤:1.搭建低频功放电路。
2.设置函数发生器的输出信号频率为所需频率,幅度为所需幅度。
3.连接被测电路的输入端和输出端到示波器上。
4.调节函数发生器的频率和幅度,观察示波器上输出信号的波形和幅度。
5.测量放大电路的输入阻抗、输出阻抗和放大倍数。
6.通过调整放大电路中的元器件值,观察输出波形的变化。
7.测量放大电路的频率响应和失真程度。
实验结果和分析:通过实验测得的放大电路参数和实测的波形可以得出以下结论:1.输入阻抗:输入阻抗是指电路对信号源的等效输入电阻,通常用输入端电阻表示。
在本实验中,测得的输入阻抗为XXX欧姆。
2.输出阻抗:输出阻抗是指电路对负载的等效输出电阻,是输出端电压与输出端电流之比。
在本实验中,测得的输出阻抗为XXX欧姆。
3.放大倍数:放大倍数是指输出端电压与输入端电压之比。
在本实验中,测得的放大倍数为XXX倍。
4.频率响应:频率响应是指电路的增益随频率变化的情况。
在本实验中,通过测量不同频率下的放大倍数,绘制出了频率响应曲线。
5.失真程度:失真是指信号在放大过程中发生的非线性失真,表现为输出信号的非线性变形。
在本实验中,通过观察输出波形的变化,可以分析失真的特点和程度。
实验结论:通过实验,我们深入了解了低频功率放大电路的基本原理和性能指标。
掌握了测量和分析低频功放电路的各种参数的方法和技巧,并分析了低频功放电路的失真特性。
实验结果表明,我们所搭建的低频功放电路在一定频率范围内具有较好的放大性能和较低的失真程度,可以满足实际应用的需求。
实验实训三 低频信号电压放大器

实验实训三低频信号电压放大器一、实验实训目的1、了解晶体管放大器静态工作点变动对其性能的影响;观察工作点偏移过大时输出波形的失真情况;2、进一步加深对放大器工作原理的理解;3、掌握静态工作点的调整与测试方法;4、掌握放大器电压放大倍数A V、输入电阻、输出电阻及最大不失真输出电压的测试方法;5、了解R C、β、I C、R L的变化对AV的影响;6、实践简单电路的安装;7、进一步熟悉示波器、低频信号发生器(或函数发生器)的使用方法。
二、实验实训器材1、+12V直流稳压电源;2、函数信号发生器(低频信号发生器);3、双踪示波器;4、交流毫伏表;5、直流电压表;6、直流毫安表;7、频率计;8、万用电表;9、晶体三极管3DG6×1(β=50~100)或9011×1(管脚排列如图3.3.9所示)。
三、预习要求1、复习《电子技术基础》相关内容,弄懂放大器静态工作点的调整方法、放大倍数的计算方法,以及失真问题。
2、复习示波器、低频信号发生器使用说明。
3、按图3.3.1所给数值估算其静态工作点(预习时测量所用晶体管的)。
4、掌握放大器的实验原理、步骤、仪器的连接及使用方法。
四、实验实训原理说明设计放大器欲达到预期的指标,往往要经过计算、测量、调试等多次反复才能完成。
因此,掌握放大器的测量技术是很重要的。
放大器的一个基本任务是将输入信号进行不失真的放大。
这就要求晶体管放大器必须设置合适的静态工作点(否则就要出现截止失真或饱和失真)。
1、常用的偏置电路有分压式偏置和固定基流偏置,如图3.3.1和图3.3.2所示。
图3.3.1分压式稳定偏置放大器图3.3.2固定基流偏置放大器图中若忽略偏置电阻的分流影响,二者的源电压放大倍数是:如果不考虑电源内阻的影响,则放大倍数是:式中由上分析可知,R L、R C、I C变化时,A V、A VS也随之变化。
2、图3.3.3为电阻分压式工作点稳定单管放大器实验电路图。
小信号放大器实验

高频实验小信号调谐放大器实验报告一 实验目的1. 进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。
2. 掌握高频小信号调谐放大器的调试方法。
3. 掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。
二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源三、实验基本原理与电路1、 小信号调谐放大器的基本原理小信号调谐放大器是构成无线电通信设备的主要电路, 其作用是有选择地对某一频率范围的高频小信号信号进行放大 。
所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。
这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。
图1.1 高频小信号调谐放大器的频率选择特性曲线K ( f ) / K 010.7070.1f 0B 0.7B 0.1f小信号调谐放大器技术参数如下:1.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B 0.7表示。
衡量放大器的频率选择性,通常引入参数——矩形系数K 0.1,它定义为式中,B 0.1为相对放大倍数下降到0.1处的带宽,如图1.1所示。
显然,矩形系数越小,选择性越好,其抑制邻近无用信号的能力就越强。
3稳定性:电路稳定是放大器正常工作的首要条件。
不稳定的高频放大器,当电路参数随温度等因素发生变化时,会出现明显的增益变化、中心频率偏移和频率特性曲线畸变,甚至发生自激振荡。
由于高频工作时,晶体管内反馈和寄生反馈较强,因此高频放大器很容易自激。
因此,必须采取多种措施来保证电路的稳定,如合理地设计电路、限制每级的增益和采取必要的工艺措施等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低频小信号放大器电路实验
〈1〉实验目的
1、加深对共射极单级小信号放大器特性的理解。
2、掌握单级小信号放大器的调试方法和特性测量。
3、熟悉示波器等常用电子仪器的使用方法。
〈2〉实验前准备
复习晶体管放大器工作原理,掌握单级放大器基本线路和放大倍数的计算方法。
熟悉基本偏置电流大小与晶体管工作状态关系,以及对输出波形的影响。
〈3〉实验原理
1、晶体管单级放大器是组成各放大电路的基本单元,原理图见图1。
2、放大器静态工作点和负载电阻是否恰当将影响放大器的增益和输出波形。
所
以当放大器的Vcc及Rc确定后,正确调整静态工作点是很重要的。
3、调节图中的R1可改变放大器的工作点。
4、静态工作点一般测量Ie、Vce和Vbe.
〈4〉实验器材
1、XST电学实验台。
2、示波器、万用表各一只。
3、其他按图选用元器件模块及导线。
〈5〉实验步骤
1、在通用电路板上按图1所示联接电路。
2、检查电路联接无误后,将实验台的Ⅰ组支稳压直流电源电压调至与电路需求
电压相同并接入电路中。
3、调节R1使集电极电流为1.5mA左右。
4、在输入端加入f=1KHz,Vi=10mV的正玄信号。
用示波器观察输入与输出波
形。
5、调节R1,当输出波形的正峰或负峰刚要出现削波失真时,切断输入信号,分
别记下Ib和Vce的值。
6、接上信号源,保持输入信号f=1KHz,逐渐增大低频信号发生器输出信号幅度,
调节R1,使放大器输出波形正峰与负峰恰好出现削波失真为止,此时工作点已经调正确。
7、放大倍数测试:当R4=1K时,给f =1KHz,10mV信号电压,用示波器观察V o
的波形。
在不失真的条件下,测定R L=∞及R L=5.1K时,电压放大倍数,并记录在表2中。
8、观察集电极负载电阻的改变,对放大器的输出波形的影响:
不接R L逐渐增大输入信号,使输出波形恰好不失真。
改变Rc阻值为510Ω和10KΩ观察,对输出波形的影响,并记录在表4中。
〈6〉实验报告
复制下列表格,把实验数据记录在表中,完成实验报告。