与圆有关的定点、定值、最值与范围问题
微专题12 与圆有关的定点、定值、最值、范围问题

12-
32
2
∴ 82+|8a(--3|6)2=12,
又∵M(a,0)在l的下方,∴8a-3>0,∴8a-3=5,a=1. 故圆M的方程为(x-1)2+y2=1.
10
(2)由已知可设AC的斜率为k1,BC的斜率为k2(k1>k2),则直线AC的方程为y=k1x +t,直线BC的方程为y=k2x+t+6. 由方程组yy==kk12xx++tt,+6, 得 C 点的横坐标为 x0=k1-6 k2. ∵AB=t+6-t=6, ∴S=12k1-6 k2×6=k11-8k2.
的弦长为 3,且圆心 M 在直线 l 的下方. (1)求圆 M 的方程; (2)设 A(0,t),B(0,t+6)(-5≤t≤-2),若圆 M 是△ABC 的内切圆,求△ABC 的面积 S 的最大值和最小值.
9
解 (1)设圆心 M(a,0),由已知得圆心 M 到 l:8x-6y-3=0 的距离为 =12,
23
解 (1)连接OP,OA,OB,因为PA,PB为过点P的圆O的切线,切点为A,B, 所以OA⊥PA,OB⊥PB. 因为∠APB=60°,∠APO=30°,在Rt△APO中,OA=1,所以OP=2. 设点 P 的坐标为(t,t+2 2),则 t2+(t+2 2)2=4,t2+2 2t+2=0,即(t+ 2)2=0, 解得 t=- 2, 所以点 P 的坐标为(- 2, 2).
24
(2)假设存在符合条件的定点R. 设点 M(x,y),R(x0,y0),MMPR22=λ,则 x2+y2=1, 即(x-x0)2+(y-y0)2=λ[(x+ 2)2+(y- 2)2], 整理得-2x0x-2y0y+x20+y20+1=λ(2 2x-2 2y+5), 上式对任意x,y∈R,且x2+y2=1恒成立,
第6讲 与圆有关的定点、定值、最值与范围问题

第6讲 与圆有关的定点、定值、最值与 范围问题一、填空题1.已知实数x ,y 满足⎩⎨⎧y ≥0,x -y ≥0,2x -y -2≥0,则点(x ,y )到圆(x +2)2+(y -6)2=1上点的距离的最小值是________. 答案 42-12.已知x ,y 满足x 2+y 2-4x -6y +12=0,则x 2+y 2最小值为________. 解析 法一 点(x ,y )在圆(x -2)2+(y -3)2=1上,故点(x ,y )到原点距离的平方即x 2+y 2最小值为(13-1)2=14-213.法二 设圆的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =3+sin α则x 2+y 2=14+4cos α+6sin α,所以x 2+y 2的最小值为14-42+62=14-213.答案 14-2133.圆C 的方程为(x -2)2+y 2=4,圆M 的方程为(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ).过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF→的最小值是________.解析 如图所示,连接CE ,CF .由题意,可知圆心M (2+5cos θ,5sin θ),设⎩⎪⎨⎪⎧x =2+5cos θ,y =5sin θ,则可得圆心M 的轨迹方程为(x -2)2+y 2=25,由图,可知只有当M ,P ,C 三点共线时,才能够满足PE →·PF →最小,此时|PC |=4,|EC |=2,故|PE |=|PF |=23,∠EPF =60°,则PE →·PF →=(23)2×cos 60°=6.答案 64.直线2ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间的距离的最大值为________.解析△AOB是直角三角形等价于圆心(0,0)到直线2ax+by=1的距离等于2 2,由点到直线的距离公式,得12a2+b2=22,即2a2+b2=2,即a2=1-b22且b∈[-2,2].点P(a,b)与点(0,1)之间的距离为d=a2+(b-1)2=12b2-2b+2,因此当b=-2时,d取最大值,此时d max=3+22=2+1.答案2+15.已知P是直线3x+4y+8=0上的动点,P A、PB是圆x2+y2-2x-2y+1=0的切线,A、B是切点,C是圆心,那么四边形P ACB面积的最小值是________.解析如图所示,由题意,圆x2+y2-2x-2y+1=0的圆心是C(1,1),半径为1,由P A=PB易知四边形P ACB的面积=12(P A+PB)=P A,故P A最小时,四边形P ACB的面积最小.由于P A =PC2-1,故PC最小时P A最小,此时CP垂直于直线3x+4y+8=0,P为垂足,PC=|3+4+8|5=3,P A=PC2-1=22,所以四边形P ACB面积的最小值是2 2.答案2 26.过圆x2+y2=1上一点作圆的切线与x轴、y轴的正半轴交于A、B两点,则AB的最小值为________.解析设圆上的点为(x0,y0),其中x0>0,y0>0,切线方程为x0x+y0y=1,分别令x =0,y =0,得A ⎝ ⎛⎭⎪⎫1x 0,0、B ⎝ ⎛⎭⎪⎫0,1y 0,所以AB =1x 20+1y 20=(x 20+y 20)⎝ ⎛⎭⎪⎫1x 20+1y 20≥2. 答案 27.若圆C :(x -a )2+(y -1)2=1在不等式x +y +1≥0所表示的平面区域内,则a 的最小值为________.解析由题意,得⎩⎪⎨⎪⎧d =|a +2|2≥1,a +1+1≥0,解得a ≥2-2. 答案2-28.过点P ⎝ ⎛⎭⎪⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A 、B 两点,当∠ACB 最小时,直线l 的方程为________.解析 因点P 在圆C 内,所以当AB 长最小时,∠ACB 最小,此时AB ⊥PC .由k PC =-2可得k AB =12.所以直线l 的方程为2x -4y +3=0. 答案 2x -4y +3=09.过直线x +y -22=0上一点P 作圆O :x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析 因为点P 在直线x +y -22=0上,所以可设点P (x 0,-x 0+22),设其中一个切点为M .因为两条切线的夹角为60°,所以∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2,所以OP 2=4,即x 20+(-x 0+22)2=4,解得x 0= 2.故点P 的坐标是(2,2). 答案 (2,2)10.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为________.解析 由题意,圆(x +2)2+(y +1)2=4的圆心(-2,-1)在直线ax +by +1=0上,所以-2a -b +1=0,即2a +b -1=0.因为(a -2)2+(b -2)2表示点(a ,b )与(2,2)的距离,所以(a -2)2+(b -2)2的最小值为|4+2-1|4+1=5,即(a -2)2+(b -2)2的最小值为5. 答案 5 二、解答题11.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. (1)证明 ∵圆C 过原点O ,∴OC 2=t 2+4t 2. 设圆C 的方程是(x -t )2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t . ∴S △OAB =12OA ·OB =12×⎪⎪⎪⎪⎪⎪4t ×|2t |=4,即△OAB 的面积为定值.(2)解 ∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12,∴直线OC 的方程是y =x2.∴2t =12t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC =5,此时圆心C 到直线y =-2x +4的距离d =95<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时圆心C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4相离,∴t =-2不符合题意舍去.∴圆C 的方程为(x -2)2+(y -1)2=5.12.已知圆C 的方程为(x +4)2+y 2=16,直线l 过圆心且垂直于x 轴,其中G 点在圆上,F 点坐标为(-6,0).(1)若直线FG 与直线l 交于点T ,且G 为线段FT 的中点,求直线FG 被圆C 所截得的弦长;(2)在平面上是否存在定点P ,使得对圆C 上任意的点G 有|GF ||GP |=12?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题意,设G (-5,y G ),代入(x +4)2+y 2=16,得y G =±15,所以FG 的斜率为k =±15,FG 的方程为y =±15(x +6).设圆心C (-4,0)到FG 的距离为d ,由点到直线的距离公式得d =|±215|15+1=152. 则直线FG 被圆C 截得的弦长为216-⎝⎛⎭⎪⎫1522=7. 故直线FG 被圆C 截得的弦长为7.(2)设P (s ,t ),G (x 0,y 0),则由|GF ||GP |=12, 得(x 0+6)2+y 20(x 0-s )2+(y 0-t )2=12,整理得3(x 20+y 20)+(48+2s )x 0+2ty 0+144-s 2-t 2=0.①又G (x 0,y 0)在圆C :(x +4)2+y 2=16上,所以x 20+y 20+8x 0=0.②将②代入①,得(2s +24)x 0+2ty 0+144-s 2-t 2=0.又由G (x 0,y 0)为圆C 上任意一点可知,⎩⎨⎧2s +24=0,2t =0,144-s 2-t 2=0,解得s =-12,t =0.所以在平面上存在定点P (-12,0),使得结论成立.13.已知⊙C 过点P (1,1),且与⊙M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求⊙C 的方程;(2)设Q 为⊙C 上的一个动点,求PQ →·MQ→的最小值;(3)过点P 作两条相异直线分别与⊙C 相交于A 、B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解(1)设圆心C (a ,b ),则有 ⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1.解得⎩⎨⎧a =0,b =0.则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入,得r 2=2. 故圆C 的方程为x 2+y 2=2.(2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2.所以PQ →·MQ→的最小值为-4.(也可由线性规划或三角代换求得) (3)由题意知,直线P A 和直线PB 的斜率存在,且互为相反数,故可设P A :y -1=k (x -1),PB :y -1=-k (x -1). 由⎩⎨⎧y -1=k (x -1),x 2+y 2=2,得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0. 因为点P 的横坐标x =1一定是该方程的解, 故可得x A =k 2-2k -11+k 2.同理,x B =k 2+2k -11+k 2.所以k AB =y B -y A x B -x A =-k (x B -1)-k (x A -1)x B -x A=2k -k (x B +x A )x B -x A=1=k OP .所以直线AB 和OP 一定平行.14. 如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由. 解 (1)∵|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , ∴4a =8,a =2.又∵e =12,即c a =12,∴c =1,∴b =a 2-c 2= 3. 故椭圆E 的方程是x 24+y 23=1. (2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(4k 2+3)x 2+8kmx +4m 2-12=0.∵动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0), ∴m ≠0且Δ=0,即64k 2m 2-4(4k 2+3)(4m 2-12)=0, 化简得4k 2-m 2+3=0.(*) 此时x 0=-4km 4k 2+3=-4k m ,y 0=kx 0+m =3m , ∴P ⎝ ⎛⎭⎪⎫-4k m ,3m .由⎩⎨⎧x =4,y =kx +m ,得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上. 设M (x 1,0),则MP →·MQ→=0对满足(*)式的m ,k 恒成立.。
初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。
求MP+NP的最小值。
例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。
求PC+CD的最小值。
例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。
求PE+PF的最小值。
类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。
例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。
问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。
方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。
与圆有关的最值问题

与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。
与圆有关的定点定值最值与范围问题

抓住2个考点
突破3个考向
揭秘3年高考
【训练 2】 (2012·徐州市调研(一))在平面直角坐标系 xOy 中, 直线 x-y+1=0 截以原点 O 为圆心的圆所得弦长为 6. (1)求圆 O 的方程; (2)若直线 l 与圆 O 切于第一象限,且与坐标轴交于点 D、E, 当 DE 长最小时,求直线 l 的方程; (3)设 M、P 是圆 O 上任意两点,点 M 关于 x 轴的对称点为 N,若直线 MP、NP 分别交 x 轴于点(m,0)和(n,0),问 mn 是否为定值?若是,请求出该定值;若不是,请说明理由.
所
以PPAB22=
xx++95522++yy22=xx22+ +11580xx++92-5+x29+-82x152=
12285··55xx++1177=
9 25
.
从而PB=3为常数. PA 5
抓住2个考点
突破3个考向
揭秘3年高考
法二 假设存在这样的点 B(t,0),使得PPAB为常数 λ,则 PB2= λ2PA2,所以(x-t)2+y2=λ2[(x+5)2+y2],将 y2=9-x2 代入,得 x2-2xt+t2+9-x2=λ2(x2+10x+25+9-x2), 即 2·(5λ2+t)x+34λ2-t2-9=0 对 x∈[-3,3]恒成立,
抓住2个考点
突破3个考向
揭秘3年高考
解 (1)设所求直线方程为 y=-2x+b,即 2x+y-b=0. 因为直线与圆相切, 所以 |2-2+b|12=3,得 b=±3 5. 所以所求直线方程为 y=-2x±3 5. (2)法一 假设存在这样的点 B(t,0). 当点 P 为圆 C 与 x 轴的左交点(-3,0)时,PPAB=|t+2 3|;
故 mn=2 为定值.
专题09 圆中的范围与最值问题(知识梳理+专题过关)(解析版)

专题09圆中的范围与最值问题【知识梳理】涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地:(1)形如ax by --=μ的最值问题,可转化为动直线斜率的最值问题.(2)形如by ax t +=的最值问题,可转化为动直线截距的最值问题.(3)形如22)()(b y a x m -+-=的最值问题,可转化为曲线上的点到点(a ,b )的距离平方的最值问题解决圆中的范围与最值问题常用的策略:(1)数形结合(2)多与圆心联系(3)参数方程(4)代数角度转化成函数值域问题【专题过关】【考点目录】考点1:斜率型考点2:直线型考点3:距离型考点4:周长面积型考点5:长度型【典型例题】考点1:斜率型1.(2021·江西·高二期中(理))已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =()A .2B .12C .2-或12D .2或12-【答案】C【解析】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC =所以圆心C 到直线l :(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --==,=22320k k +-=,解得12k =或2k =-.故选:C2.(2021·山东泰安·高二期中)设点(),P x y 是曲线y =上的任意一点,则24y x --的取值范围是()A .1205⎡⎤⎢⎥⎣⎦,B .21255⎡⎤⎢⎥⎣⎦,C .[]0,2D .2,25⎡⎤⎢⎥⎣⎦【答案】B【解析】曲线y =表示以()1,0为圆心,2为半径的下半圆,如图所示:24y x --可表示点(),P x y 与点()4,2Q 连线斜率k 当直线PQ 与圆相切时:设直线方程为()24y k x -=-,即420kx y k --+=圆心到直线距离2d ==,解得125k =或0k =,又0y ≤,所以125k =,当直线经过点()1,0A -时,2245y x -=-,综上21255k ⎡⎤∈⎢⎥⎣⎦,故选:B.3.(2021·上海市控江中学高二期中)若直线:3(1)l y k x -=-与曲线:C y =不同公共点,则实数k 的取值范围是()A .4,3⎛⎫+∞ ⎪⎝⎭B .43,32⎛⎤⎥⎝⎦C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭【答案】B【解析】直线:3(1)l y k x -=-过定点(1,3),曲线:C y =(0,0)为圆心,1为半径,且位于y 轴上半部分的半圆,如图所示当直线l 过点(1,0)-时,直线l 与曲线有两个不同的交点,此时03k k =-+-,解得32k =.当直线l 和曲线C 相切时,直线和半圆有一个交点,圆心(0,0)到直线:3(1)l y k x -=-的距离1d ==,解得43k =结合图像可知,当4332k <≤时,直线l 和曲线C 恰有两个交点故选:B4.(多选题)(2021·湖北宜昌·高二期中)实数,x y ,满足22++20x y x =,则下列关于1yx -的判断正确的是()A .1yx -B .1yx -的最小值为C .1y x -的最大值为3D .1y x -的最小值为33-【答案】CD【解析】由题意可得方程22++20x y x =为圆心是()10C -,,半径为1的圆,则1yx -为圆上的点与定点()10P ,的斜率的值,设过()10P ,点的直线为()+1y k x =,即+0kx y k -=,则圆心到到直线+0kx y k -=的距离d r =1=,整理可得231k =,解得33k =±,所以1y x ⎡∈⎢-⎣⎦,即1y x -33-.故选:CD.5.(2021·广东·兴宁市叶塘中学高二期中)已知实数x ,y 满足方程22410x y x +-+=,求:(1)yx的最大值;(2)22x y +的最小值.【解析】(1)()222241023x y x x y +-+=⇒-+=,圆心()2,0,半径r =。
专题复习三(与圆有关的最值问题)

问题2:利用几何意义求与圆有关的最值
例:已知实数x, y满足方程x 2 y 2 4 x 1 0 求下列各式的最大值与 最小值: y (1) ; x (2) y x;
涉及与圆有关的最值问 题, 利用数形结合与几何意 义求解 y b 形如u 转化为直线斜率 xa 形如t ax by 转化为直线截距
专题复习三
与圆有关的最值问题
问题1:定点、定直线到圆的最大(小)距离
定点与圆上的点的距离 的最大值与最小值
y D P A
O
•
定直线与圆上点的距离 的最大值与最小值yCຫໍສະໝຸດ DC P BE
A
x
B
x
O
|AB|最短、|AC|最长
|AB|最短、|AC|最 长
问题1:练习题
1.直线y x 1上的点到圆x 2 y 2 4 x 2 y 4 0 的最近距离是__________ __ 变式:圆x 2 y 2 4 x 2 y 4 0上到直线y x 1 距离最近的点的坐标是 __________ __ 2.圆x 2 y 2 4 x 4 y 10 0上的点到直线 x y 14 0 的最大距离与最小距离 的差是 __________ _ 3.点M在圆C1 : x 2 y 2 6 x 2 y 1 0上,点N 在圆C2 : x 2 y 2 2 x 4 y 1 0上,求 MN 的最大值.
(3) x 2 y 2; y 1 ( 4) ; x4 含有x 2与y 2的 转化为两点间距离 (5) x 2 10x y 2 14 y;
问题2:基础训练
1 1. 已知x, y满足( x 1) y , 分别求x 2 y 2、 4 y x y、 的最值. x 2.若x, y满足( x 1) 2 ( y 2) 2 4, 求S 2 x y的最大值与最小值 . y 1 2 2 3.实数x, y满足x y 4 x 2 y 0, 求 和x y的取值范围 . x 1 4.实数x, y满足x 2 y 2 4 x 6 y 12 0, 求下列式子的最值: y (1) ; (2) x 2 y 2 ; (3) x y; (4) x y. x
与圆有关的最值取值范围问题,附详细答案

与圆相关的最值(取值范围)问题,附详尽答案姓名1. 在座标系中,点 A 的坐标为 (3, 0),点 B 为 y 轴正半轴上的一点,点C 是第一象限内一点,且 AC=2.设 tan ∠ BOC=m ,则 m 的取值范围是 _________.2. 如图,在边长为 1 的等边 △ OAB 中,以边 AB 为直径作 ⊙ D ,以 O 为圆心 OA 长为半径作圆 O , C 为半圆 AB 上不与 A 、 B 重合的一动点,射线AC 交 ⊙ O 于点 E , BC=a , AC=b .( 1)求证: AE=b+ a ;( 2)求 a+b 的最大值;(3)若 m 是对于 x 的方程: x 2+ax=b 2+ab 的一个根,求 m 的取值范围.3. 如图,∠ BAC=60 °,半径长为 1 的圆 O 与∠ BAC 的两边相切,P 为圆 O 上一动点,以 P 为圆心, PA 长为半径的圆 P 交射线 AB 、AC 于 D 、 E 两点,连结DE ,则线段 DE 长度的最大值为 (). A .3 B . 63 3C .D .3 324.如图, A 点的坐标为(﹣ 2, 1),以 A 为圆心的⊙A 切 x 轴于点 B, P( m, n)为⊙A 上的一个动点,请研究 n+m 的最大值.5.如图,在Rt△ ABC中,∠ ACB=90 °, AC=4, BC=3,点 D 是平面内的一个动点,且 AD=2,M 为 BD 的中点,在 D 点运动过程中,线段CM 长度的取值范围是.6.如图是某种圆形装置的表示图,圆形装置中,⊙ O 的直径 AB=5,AB 的不一样侧有定点 C 和动点 P,tan ∠ CAB= .其运动过程是:点 P 在弧 AB 上滑动,过点 C 作 CP 的垂线,与PB的延伸线交于点Q.(1)当 PC=时,CQ与⊙O相切;此时CQ=.(2)当点 P 运动到与点 C 对于 AB 对称时,求 CQ的长;(3)当点 P 运动到弧 AB 的中点时,求 CQ 的长.(4)在点 P 的运动过程中,线段CQ 长度的取值范围为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抓住2个考点
突破3个考向
揭秘3年高考
5.(2013·连云港模拟)一束光线从点A(-1,1)出发经x轴反射,到 达圆C:(x-2)2+(y-3)2=1上一点的最短路程是________. 解析 因为点 A(-1,1)关于 x 轴的对称点为 B(-1,-1),圆心 为(2,3),所以从点 A(-1,1)出发经 x 轴反射,到达圆 C 上一点 的最短路程为 -1-22+-1-32-1=4.
BN,得A→M·B→N=0,即(3,t1)·(1,t2)=0,所以 3+t1t2=0,即 t1t2
=-3.
所以 MN=t1-t2=t1+(-t2)≥2 -t1t2=2
当且仅当 t1= 3,t2=- 3时等号成立.
故 MN 的最小值为 2 3.
抓住2个考点
3.
突破3个考向
揭秘3年高考
(2)证明 由(1)得 t1t2=-3.以 MN 为直径的圆的方程为(x-2)2 +(y-t1)(y-t2)=0, 即(x-2)2+y2-(t1+t2)y+t1t2=0, 也即(x-2)2+y2-(t1+t2)y-3=0.
第6讲 与圆有关的定点、定值、最值与 范围问题
抓住2个考点
突破3个考向
揭秘3年高考
考点梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
相离
相切
相交
图形
量化
方程观点 几何观点
Δ_<__0 d_>__r
Δ_=__0 d_=__r
Δ_>__0 d_<__r
抓住2个考点
突破3个考向
揭秘3年高考
答案 4
抓住2个考点
突破3个考向
揭秘3年高考
考向一 与圆有关的定点问题
【例 1】 已知⊙M:x2+(y-2)2=1,Q 是 x 轴上的动点,QA, QB 分别切⊙M 于 A,B 两点. (1)若|AB|=43 2,求|MQ|、Q 点的坐标以及直线 MQ 的方程; (2)求证:直线 AB 恒过定点.
揭秘3年高考
[方法总结] 与圆有关的定点问题最终可化为含有参数的动 直线或动圆过定点.解这类问题关键是引入参数求出动直 线或动圆的方程.
抓住2个考点
突破3个考向
揭秘3年高考
【训练1】 已知圆x2+y2=1与x轴交于A、B两 点,P是该圆上任意一点,AP、PB的延长线 分别交直线l:x=2于M、N两点. (1)求MN的最小值; (2)求证:以MN为直径的圆恒过定点,并求 出该定点的坐标. (1)解 设 M(2,t1),N(2,t2),则由 A(-1,0),B(1,0),且 AM⊥
抓住2个考点
突破3个考向
揭秘3年高考
4.(2012·盐城模拟)与直线x=3相切,且与圆(x+1)2+(y+1)2= 1相内切的半径最小的圆的方程为________. 解析 要使圆的半径最小,则所求圆的圆心为12,-1,此时 r =3-2-2=52,故所求圆的方程为x-122+(y+1)2=245.
由yx=-02,2-3=0,
得x=2+ y=0
3,
或x=2- y=0.
3,
故以 MN 为直径的圆恒过定点(2+ 3,0)和(2- 3,0).
2.圆与圆的位置关系(圆O1、圆O2半径r1、r1,d=O1O2)
相离
外切
相交 内切 内含
图形
几何 量 观点 化
方程 观点
d> _r_1_+__r2_
Δ_<__0
d= _r_1+__r_2_
Δ_=__0
|r1-r2| <d<r1
+r2 Δ_>__0
d= _|r_1-__r_2_|
Δ_=__0
d< _|r_1_-__r_2|
Δ_<_ห้องสมุดไป่ตู้0
抓住2个考点
突破3个考向
揭秘3年高考
【助学·微博】 一个考情分析
与圆有关的综合性问题,其中最重要的类型有定点问题、定值 问题、最值与范围问题. 解这类问题可以通过建立目标函数、利用几何意义、直接求解 或计算求得.
抓住2个考点
突破3个考向
揭秘3年高考
考点自测
1.已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+ 2y-8=0,则经过两圆交点且面积最小的圆的方程为 ________________.
抓住2个考点
突破3个考向
揭秘3年高考
(2)证明 设点 Q(q,0),由几何性质,可知 A、B 两点在以 QM 为直径的圆上,此圆的方程为 x(x-q)+y(y-2)=0, 而线段 AB 是此圆与已知圆的公共弦,即为 qx-2y+3= 0,所以直线 AB 恒过定点0,32.
抓住2个考点
突破3个考向
抓住2个考点
突破3个考向
揭秘3年高考
(1)解 设直线 MQ 交 AB 于点 P,则|AP|=23 2, 又|AM|=1,AP⊥MQ,AM⊥AQ,
得|MP|= 12-89=13, 又∵|MQ|=||MMAP||2,∴|MQ|=3. 设 Q(x,0),而点 M(0,2), 由 x2+22=3,得 x=± 5, 则 Q 点的坐标为( 5,0)或(- 5,0). 从而直线 MQ 的方程为 2x+ 5y-2 5=0 或 2x- 5y+2 5=0.
解析 即求两圆公共弦为直径的圆的方程.两圆的公共弦所
在直线的方程 l:x-2y+4=0.圆 C1 的半径 r1=5 2,圆心 (1,-5)到 l 的距离.d=|1+105+4|=3 5,则公共弦长为 l =2 r21-d2=2 50-45=2 5,连心线的方程 l1:2x+y+3 =0,与 l 的交点为(-2,1). 答案 (x+2)2+(y-1)2=5
揭秘3年高考
3.已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a, b∈R)对称,则ab的取值范围是________. 解析 由题意知,圆的方程为(x+1)2+(y-2)2=4,圆心坐标 为(-1,2),将圆心坐标代入直线方程得 2a+2b=2,即 a+b=
1≥2 ab,所以 ab≤14. 答案 -∞,14
抓住2个考点
突破3个考向
揭秘3年高考
2.若直线 y=x+b 与曲线 y= 1-x2有两个公共点,则 b 的取值
范围是________.
解析 如图,当直线介于 l1 与 l2 之间时满
足题意,即圆心到直线
y=x+b
的距离
2 2
≤ |b|<1,解得 1≤b< 2. 2
答案 [1, 2)
抓住2个考点
突破3个考向