二次函数y=ax2+bx+c的配方法
解二次函数的方法

解二次函数的方法解二次函数的方法有以下几种:1. 因式分解法:对于形如y = ax^2 + bx + c的二次函数,当a≠0时,可以尝试以因式分解的方式将其拆解成两个一次函数的乘积形式。
具体步骤如下:- 将二次项ax^2分解成两个一次函数的乘积形式,即找到两个数m和n,使得:m*n = a 且m + n = b;- 根据上述分解结果,将二次函数y = ax^2 + bx + c写成因式乘积形式,即y = (mx + p)(nx + q);- 求解得到m、n、p、q的值,得到最终的因式分解结果。
2. 完全平方公式法:通过完全平方公式,可以将二次函数表示成一个平方项加上一个常数的形式。
具体步骤如下:- 将二次函数y = ax^2 + bx + c变形成y = a(x-h)^2 + k的形式;- 根据变形后的形式可得,h = -b/(2a),k = c - b^2/(4a);- 根据上述求得的h和k的值,将二次函数写成完全平方的形式。
3. 配方法:对于一般形如y = ax^2 + bx + c的二次函数,当a≠0时,可以通过配方法来解。
具体步骤如下:- 首先将二次函数的二次项系数a提取出来,并将方程变形为y = a(x^2 + (b/a)x) + c;- 进一步变形为y = a(x^2 + (b/a)x + b^2/(4a^2)) + c - b^2/(4a);- 再次变形为y = a(x + b/(2a))^2 + (4ac - b^2)/(4a);- 根据上述变形,可以将二次函数表示为(x + b/(2a))^2的形式,并求出平移向量及其他信息。
4. 求根公式法:对于一般形如y = ax^2 + bx + c的二次函数,可以通过求根公式来解。
求根公式是利用一元二次方程的求根公式,得到二次函数的根的表达式。
一元二次方程的求根公式为:x = (-b ±√(b^2 - 4ac))/(2a) ;根据上述公式,可以求得二次函数的根的值。
二次函数y=ax2+bx+c的图像与性质

◆本节课内容一、二次函数y=ax2+bx+c1、二次函数y=ax2+bx+c可以用配方法转化为y=a(x-h)2+k的形式:2、二次函数y=ax2+bx+c的图像的作法:二次函数y=ax2+bx+c的图像是一条对称轴平行于y轴的抛物线。
它的图像常见作法有两种:五点法和平移法。
方法一:五点法先用配方法将y=ax2+bx+c(a≠0)化为y=a(x-h)2+k(a≠0)的形式,确定抛物线的顶点、开口方向、再以顶点为中心,在对称轴的两侧对称地各取两对值进行列表,最后描点画图。
方法二:平移法利用平移法作二次函数y=ax2+bx+c的图像的一般步骤如下:(1)利用配方法将二次函数y=ax2+bx+c化为y=a(x-h)2+k的形式,确定其顶点为(h,k);(2)作出二次函数y=ax2的图像;(3)将函数y=ax2的图像平移,使其顶点(0,0)平移到(h,k),平移后的图像即是二次函数y=ax2+bx+c的图像。
3、二次函数y=ax2+bx+c的图像及性质如下表:二、二次函数y=ax2+bx+c(a≠0)的图像特征与系数a,b,c的符号关系注意:(1)b的符号由a的符号和对称轴的位置来决定(2)a+b+c(或a-b+c)可以看成是x=1(或x=-1)时的函数值。
三、二次函数解析式的求法求二次函数的解析式y=ax2+bx+c,需求出a,b,c的值。
由已知条件(如二次函数图像上三点的坐标)列出关于a,b,c的方程组,求出a,b,c的值,就可以写出二次函数的解析式。
◆课堂练习题型一利用公式法直接求抛物线的顶点、对称轴及最值1、求二次函数y=(x+5)(x-1)的对称轴、顶点及最值。
题型二、由抛物线的顶点、对称轴及最值求字母或代数式的取值范围2、二次函数y=ax2+bx+1(a≠0)的图像的顶点在第一象限,且过点(-1,0)。
设t=a+b+1,则t 的取值范围是()A、0<t<1B、0<t<2C、1<t<2D、-1<t<1题型三、二次函数图像平移规律的直接应用3、抛物线y=-2x2-4x-5经过平移得到抛物线y=-2x2,平移的方法是()A、向左平移1个单位,再向下平移3个单位B、向左平移1个单位,再向上平移3个单位C、向右平移1个单位,再向下平移3个单位D、向右平移1个单位,再向上平移3个单位题型四、根据抛物线的平移求字母的值4、已知抛物线y=x2+4x+1向上平移m(m>0)个单位得到的新抛物线过点(1,8),求m的值1题型五、利用二次函数y=ax2+bx+c的图像判断各项系数的符号5、二次函数y=ax2+bx+c的图像如图,那么abc,2a+b,a+b+c这3个代数式中,值为正数的有( c )A、3个B、2个C、1个D、0个题型六、利用二次函数的性质比较函数值得大小6、若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5的图像上的三点,则y1,y 2,y3的大小关系是()题型七、利用二次函数的增减性求字母的取值范围7、已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,求m的取值范围。
用几何画板探究二次函数y=ax2+bx+c的图象和性质

用几何画板探究二次函数c bx ax y ++=2的图象和性质资料编号:202211051045在探究二次函数()02≠++=a c bx ax y 的图象及其性质时,我们可以利用配方法把一般式化为顶点式进行探究,配方过程如下:c a b a b x a b x a c x a b x a c bx ax y +⎪⎪⎭⎫ ⎝⎛-++=+⎪⎭⎫ ⎝⎛+=++=222222244 a b ac a b x a 44222-+⎪⎭⎫ ⎝⎛-=∴二次函数()02≠++=a c bx ax y 的顶点式为a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛-=,其图象的对称轴为直线a b x 2=,顶点坐标为⎪⎪⎭⎫ ⎝⎛-a b ac a b 44,22.当a b x 2=时,函数取得最值,最值为a b ac y 442-=:当0>a 时,a b ac y 442min -=;当0<a 时,ab ac y 442max -=.虽然我们可以用学习顶点式的成果来研究一般式,但我们还不能对一般式有一个全面的了解和掌握,如b a ,的符号与对称轴的位置关系、抛物线与y 轴的交点与c 的关系以及抛物线与x 轴的相交情况等.下面,我们通过制作几何画板课件,设置c b a ,,三个参数,来探究一下二次函数()02≠++=a c bx ax y 的图象及其性质.几何画板课件制作1.打开几何画板,单击“绘图”,选择“定义坐标系”,单击“点工具”,在x 轴上任意作出一点A ,选中点A 和x 轴,依次单击“构造”、“垂线”,作出x 轴的垂线.单击“点工具”,在x 轴上方的垂线上任取一点B ,在x 轴下方的垂线上任取一点C .选中点B 、C ,依次单击“构造”、“线段”,作出线段BC .选中垂线BC 并隐藏.单击“点工具”,在线段BC 上任取一点,标签设为a .选中点a ,依次单击“度量”、“纵坐标”,量出点a 的纵坐标.选中点a 纵坐标的度量值,右单击,选择“度量值的标签”,在“标签”中输入a .如图1所示.单击确定.2.用同样的方法制作参数c b ,.依次单击“绘图”、“隐藏网格”,如图2所示.3.依次单击“绘图”、“绘制新函数”,在弹出的对话框中依次输入“a的值”、“*”、“x”、“∧”、“2”、“+”、“b的值”、“*”、“x”、“+”、“c的值”,如图3所示.单击确定,作出函数()c+=2的图象.如图4所示.f+bxaxx4.选中函数的图象,修改线型为“中等”.选中函数解析式,右单击,选中“函数的标签”,在“标签”中输入“y”,如图5所示.单击“确定”.5.单击“点工具”,在抛物线上任取一点P,选中点P和x轴,依次单击“构造”、“平行线”,交抛物线于另一点Q.双击点P,选中点Q,依次单击“变换”、“缩放”,设置“固定比”为“1/2”,如图6所示.单击“确定”,作出线段PQ的中点'Q.6.选中直线PQ、点P、点Q并隐藏,选中点'Q和x轴,依次单击“构造”、“垂线”,作出抛物线的对称轴.选中对称轴,修改线型为“细线/虚线”,颜色为红色.选中点'Q并隐藏.如图7所示.7.单击抛物线与y轴的交点处,得到点M.选中点M,依次单击“度量”、“纵坐标”,量出点M的纵坐标.如图8所示.8.选中点a,修改点的颜色为浅蓝色;选中点b,修改点的颜色为粉红色;选中点c,修改点的颜色为浅绿色.如图8所示.经此一步,完成作图.课件探索对于二次函数()02≠++=a c bx ax y ,课件设置了三个参数c b a ,,,通过拖动点c b a ,,,使这三个参数可以在一定范围内变化,以观察函数图象的变化与这三个参数之间的关系.探究参数a 对函数图象的影响(1)拖动点a 在线段AB 上移动,此时0>a ,观察函数图象的变化,不难发现函数图象开口_________,且a 的值越小,函数图象的开口越_________;(2)拖动点a 在线段AC 上移动,此时0<a ,观察函数图象的变化,不难发现函数图象开口_________,且a 的值越大,函数图象的开口越_________.对于二次函数()02≠++=a c bx ax y ,当0>a 时,函数图象开口_________,当0<a 时,函数图象开口_________,并且a 越小,函数图象的开口越_________,a 越大,函数图象的开口越_________.探究参数b a ,对函数图象的影响在由二次函数的一般式化为顶点式的过程中,我们得到函数图象的对称轴为直线ab x 2-=,这说明抛物线的对称轴与b a ,有着直接的关系,同时参数b a ,的改变也必将影响抛物线的变化.我们来实际操作一下.(3)把点a 移动到线段AB 上,此时0>a ,拖动点b 在线段EF 上移动,可以发现:当点b 在线段DE 上移动,即0>b 时,抛物线的对称轴在y 轴的左侧;当点b 在线段DF 上移动,即0<b 时,抛物线的对称轴在y 轴的右侧.(4)把点a 移动到线段AC 上,此时0<a ,拖动点b 在线段EF 上移动,可以发现: 当点b 在线段DE 上移动,即0>b 时,抛物线的对称轴在y 轴的右侧;当点b 在线段DF 上移动,即0<b 时,抛物线的对称轴在y 轴的左侧.对于二次函数()02≠++=a c bx ax y ,当0,0>>b a 或0,0<<b a 时,函数图象的对称轴在y 轴的_________侧;当0,0<>b a 或0,0><b a 时,函数图象的对称轴在y 轴的_________侧.特别地,当0=b 时,函数图象的对称轴是_________.由此,我们可以根据b a ,的符号确定抛物线对称轴与y 轴的相对位置关系,也可以根据抛物线的对称轴与y 轴的相对位置关系,确定b a ,的符号.实际上,当b a ,同号时,02<-=a b x ,抛物线的对称轴位于y 轴的左侧;当b a ,异号时,02>-=ab x 抛物线的对称轴位于y 轴的右侧.如此,我们探究参数b a ,对二次函数图象影响的过程,经历了由观察到推理,由感性认识到理性认识的过程.探究参数c 对函数图象的影响(5)拖动点c 在线段HI 上移动,观察函数图象的变化,不难发现,函数图象与y 轴的交点的纵坐标,等于_________的值.当0>c 时,函数图象与y 轴的_________轴相交;当0=c 时,函数图象经过_________;当0<c 时,函数图象与y 轴的_________轴相交.因此,参数c 的值,决定了函数图象与y 轴的相交情况.实际上,对于二次函数()02≠++=a c bx ax y ,当函数图象与y 轴相交时,令0=x ,则=y _________,所以函数图象与y 轴的交点为_________.二次函数c bx ax y ++=2的图象及性质二次函数c bx ax y ++=2的图象及性质的应用例1. 用配方法将二次函数6422++-=x x y 化为()k h x a y +-=2的形式,则k h a ++的值为【 】(A )5 (B )7 (C )1- (D )2-解析 ∵()()81261122642222+--=+-+--=++-=x x x x x y ∴8,1,2==-=k h a ∴7812=++-=++k h a ∴选择答案【 B 】.例2. 关于抛物线122+-=x x y ,下列说法错误的是【 】(A )开口向上(B )顶点在x 轴上(C )对称轴是直线1=x(D )当1>x 时,y 随x 的增大而减小解析 ()22112-=+-=x x x y .对于(A ),01>=a ,抛物线开口向上.故(A )正确;对于(B ),抛物线顶点坐标为()0,1,在x 轴上.故(B )正确;对于(C ),抛物线的对称轴为直线1=x .故(C )正确;对于(D ),当1>x 时,y 随x 的增大而增大.故(D )错误.∴选择答案【 D 】.例3. 若二次函数a x ax y ++=42的最大值是3,则=a _________。
二次函数y=ax^2+bx+c的配方法最值(成都市东湖中学九上数学)

2
1 a 1 0 有最小值为 4
2
y 2x2 8x 3
2
2 配方得 y 2 x 8 x 3 2 x 2 5
a 2 0 有最大值为5
例.求下列二次函数图像的开口、顶点、对称轴,并画 出草图:
①y=2x2-5x+3
请画出草图:
∴ 对称轴是直线x=-3,当 x>-3 时,y随x的增大而减小。
例7 已知二次函数 2 y m 1 x 2mx 3m 2 m 1 的最大值是0,求此函数的解析式.
解:此函数图象开口应向下,且顶点纵坐 标的值为0.所以应满足以下的条件组.
m 1 0, ① 2 4 m 1 3m 2 2m 0 4 m 1 ②
求函数 解 配方:
y
1 2 x 2x 1 2
的最大值
y
1 2 x 2x 1 2 1 x 2 4 x 22 22 1 2
1 1 2 x 2 4 1 2 2
1 2 x 2 1 2
顶点坐标是(2,1),于是当x=2时,y达到最大值1.
二次函数
开口方向
对称轴
顶点坐标
y=2(x+3)2+5 y = -3x(x-1)2 -2 y = 4(x-3)2 +7
向上
直线x=-3 直线x=1
(-3,5) (1,-2) ( 3, 7 )
向下
向上
直线x=3 直线x=2
y = -5(2-x)2 - 6
向下
(2,-6)
在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0) 的图象可能是( )
二次函数的配方法

二次函数的配方法二次函数也被称为二次方程,是一个常见的函数类型,在数学中有重要的应用。
二次函数的通用形式可以表示为y = ax^2 + bx + c。
其中,a、b和c是实数常数,a不等于零。
配方法是一种用于求解二次方程的工具,它可以将一个二次方程转化成一个可以因式分解的形式。
通过配方法,我们可以找到二次方程的根。
下面将详细介绍二次函数的配方法。
步骤一:确定二次项系数a和常数项c在配方法中,我们需要确定二次项系数a和常数项c的值。
在已知二次函数的形式y = ax^2 + bx + c时,a和c的值可以直接读取出来。
例如,对于二次函数y=2x^2+3x+1,其中a=2,c=1步骤二:计算配方项配方法的关键在于计算配方项,配方项用于将二次项系数a转化成一个完全平方的形式。
配方项可以通过以下公式计算得到:配方项=(一次项系数的一半)^2一次项系数是指二次项系数b的一半。
例如,如果b=3,则一次项系数为1.5例如,在二次函数y=2x^2+3x+1中,一次项系数为1.5,那么配方项为1.5^2=2.25步骤三:将配方项加入二次函数将计算得到的配方项加入二次函数中,形成一个新的表达式。
例如,在二次函数y=2x^2+3x+1中,配方项为2.25、将其加入二次函数得到新的表达式y=2x^2+3x+2.25步骤四:将新的二次函数转化成完全平方形式通过将新的二次函数转化成一个完全平方的形式,即(x+p)^2,其中p是一个实数常数。
为了将新的二次函数转化成完全平方形式,我们可以以配方项为线索。
将配方项开平方,得到一个实数。
例如,在新的二次函数y=2x^2+3x+2.25中,配方项为2.25、将它开平方得到1.5步骤五:完成配方法将新的二次函数转化成完全平方形式后,配方项的系数前面应该是1、所以我们需要将二次函数除以a的值,这将产生一个常数p。
例如,在新的二次函数y=2x^2+3x+2.25中,a的值为2、将二次函数除以2,得到y=(x+1.5)^2于是,我们成功地将二次函数转化成一个完全平方的形式。
二次函数的解的公式

二次函数的解的公式二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为实数且a≠0。
解二次函数的关键就是求出它的根,即满足方程y=ax^2+bx+c=0的x 值。
解二次函数的公式又称为求根公式,它的一般形式为:x = (-b±√(b^2-4ac))/(2a)这个公式被称为二次函数的解的公式,其中±表示两种可能的根。
配方法的基本思想是将二次函数写成一个完全平方的形式,即将x^2项与x项的系数配对,使它们相加或相减时得到一个平方。
如果可以将二次函数写成完全平方的形式,我们就可以很容易地求得它的根。
首先,将二次函数y=ax^2+bx+c=0进行配方,我们需要找到一个数k,使得:ax^2+bx+c=a(x^2+((b/a)x+c/a))=a((x+(b/2a))^2-(b^2/4a^2)+c/a)接下来,我们可以将这个完全平方形式化简为:a((x+b/2a)^2+(4ac-b^2)/4a^2)现在,我们看到在这个完全平方中,有一个常数项(4ac-b^2)/4a2 ,它会影响到平方的结果。
如果这个常数项为0,则可以很容易地将这个二次函数写成完全平方的形式。
但是,在一般情况下,这个常数项不为0,所以我们需要进行后续的推导。
现在,我们希望要求出的根就是在完全平方形式中的平方项消失时的x值。
所以有:(x+(b/2a))^2=-(4ac-b^2)/4a^2现在我们对上式两侧开方,得到:x+(b/2a)=±√(-(4ac-b^2))/2a接下来,我们将b/2a移项,并整理得到最终的解的公式:x=(-b±√(b^2-4ac))/(2a)这就是解二次函数的公式。
通过这个公式,我们可以很方便地计算二次函数的根。
在实际问题中,我们可以利用这个公式来解决一系列与二次函数相关的问题,比如求极值、求范围等。
同时,我们也可以通过解的公式来判断二次函数的根的情况,例如当b^2-4ac>0时,二次函数有两个不同的实根;当b^2-4ac=0时,二次函数有一个重根;当b^2-4ac<0时,二次函数没有实根。
二次函数复习总结归纳

y xO二次函数复习归纳(培优)1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最 值 增减性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k= .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系:; 4.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴或最值,通常选择顶点式.求抛物线的顶点、对称轴的方法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(3)交点式:已知图像与x 轴交点的横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=(4)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、知识要点2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()aa acb a ca b x x x xx xx x AB ∆=-=-⎪⎪⎭⎫ ⎝⎛-=-+=-=-=4442221221221215.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小:a >0,开口向上;a <0,开口向下;α越大,开口越小 (2)b 和a 决定抛物线对称轴(左同右异)①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧; ③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 决定抛物线与y 轴交点的位置.c >0时,与y 轴正半轴相交;c <0时,与y 轴负半轴相交。
求二次函数解析式的方法

求二次函数解析式的方法
一、利用顶点坐标求解析式。
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a, c-b^2/4a)。
因此,我们可以通过已知的顶点坐标来求解析式。
例如,如果已知
顶点坐标为(2, 3),则可以列出方程组:
a2^2+b2+c=3。
a2+b=0。
通过解方程组,即可求得二次函数的解析式。
二、利用描点法求解析式。
描点法是通过已知的函数图像上的点来求解析式的一种方法。
如果已知二次函数上的两个点的坐标分别为(x1, y1)和(x2, y2),
则可以列出方程组:
ax1^2+bx1+c=y1。
ax2^2+bx2+c=y2。
通过解方程组,即可求得二次函数的解析式。
三、利用配方法求解析式。
对于一般的二次函数y=ax^2+bx+c,我们可以利用配方法将其写成完全平方的形式。
例如,对于函数y=x^2+2x+1,我们可以将其写成(y+1)=(x+1)^2的形式,从而得到解析式y=(x+1)^2-1。
四、利用判别式求解析式。
二次函数的判别式Δ=b^2-4ac可以用来判断二次函数的解的情况。
当Δ>0时,函数有两个不相等的实数根;当Δ=0时,函数有两个相等的实数根;当Δ<0时,函数没有实数根。
因此,我们可以通过判别式来求解析式。
以上是几种常用的求二次函数解析式的方法,当然还有其他一些方法,如利用导数、利用函数的对称性等。
通过这些方法,我们可以灵活地求得二次函数的解析式,从而更好地理解和应用二次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与抛物线y=x2 形状相同,但开
口方向相反,且顶点坐标为
(-1,5)的函数解析式为
.
6.不画图象,说明抛 物线y=-x2+4x+5可由 抛物线y=-x2经过怎 样的平移得到?
例2.求下列二次函数图像的开口、顶点、
对称轴,并画出草图:
①y=2x2-5x+3
②y=-
1 2
x2+4x-9
请画出草图:
③y=(x-3)(x+2)
3
-9
-6
学以致用
1、当x取何值时,二次函 数 y 2x2 8x 1 有最大值或
最小值,最大值或最小值
是多少?
2、已知函数
y
1 2
x2
3x
1 2
开口方 对称轴 向
顶点坐标
向上 直线x=–3 (-3,5)
y = -3x(x-1)2 -2 向下 直线x=1 (1,-2)
y = 4(x-3)2 +7 向上 直线x=3 (3,7 )
y = -5(2-x)2 - 6 向下 直线x=2 (2,-6)
二次函数y=ax2+bx+c 图象和性质
y
o
x
如何画出y 1 x2 6x 21的图象呢? 2
当x为何值时,函数值y随自
变量的值的增大而减小。
3、已知抛物线y= ax2+bx+c
与抛物线 y=-2x2 形状相同,
且顶点坐标为(1,-5)的函数解
析式为
.
4、若抛物线y=a(x-m )2+n的图
象与函数y=2x2的图象的形状
相同,且顶点为(-3,2),则函数的
解析式为
.
5、已知抛物线y= ax2+bx+c
y=ax2 +bx+c(a≠0)
a>0
a<0
开口方向 顶点坐标
对称轴 增 减 性
极值
向上
向下
(- b , 4ac-b2 )
2a 4a
x= - b
2a
(- b , 4ac-b2 )
2a 4a
x= - b
2a
在对称轴的左侧,
在对称轴的左侧,
y随着x的增大而减小。 y随着x的增大而增大。
在对称轴的右侧,
在对称轴的右侧,
y随着x的增大而增大。 y随着x的增大而减小。
x= - b
2a
y最小值=
4ac-b2 4a
x= - b
2a
y最大值=
4ac-b2 4a
例1. 说出下列函数的开口方向、对称轴、 顶点坐标,最值,增减性:
y 3x2 4x 1
y 2x2 x 3
练习
指出抛物线: y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标,最值以及增减性。
y= —1 (x―6)2 +3 2
你能把 y ax2 bx c 改写成 y a(x h)2 k 吗?
用配方法
你知道吗?
y ax2
x
c a
)
a
x2
b a
x
b 2a
2
b 2a
2
c a
a(x
b )2 2a
4ac4 a2
b2
a(
x
b )2 2a
4ac 4a
b2
y ax2 bx c
a(x2
b a
x
c a
)
∴开口方向:由a决定;
对称轴:x
b 2a
顶点坐
标
:(
b 2a
,4a
c 4a
b2
)
a
x2
b a
x
b 2a
2
b 2a
2
c a
a(x
b )2 2a
4ac4 a2
b2
a
(
x
b )2 2a
4
a
c 4
a
b2
总结:二次函数y=ax2+bx+c的性质
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减
抛物线y=a(x-h)2+k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
3.顶点坐标是 (h,k) 。
二次函数 y=2(x+3)2+5
我们知道,像y=a(x-h)2+k这样的函数,
容易确定相应抛物线的顶点为(h,k), 二次函 数 y 1 x2 6x 21也能化成这样的形式吗?
2
y 1 x2 6x 21 你知道是怎样配
2
方的吗?
配
(1)“提”:提出二次项系数;
方
( 2 )“配”:括号内配成完全平方
(3)“化”:化成顶点式。