系统动力学模型教(学)案

合集下载

系统动力学课件与案例分析可编辑全文

系统动力学课件与案例分析可编辑全文

能改善公司的成长,使得
以指数方式增长。
1企业成长与投资不足案例
❖ 系统边界的确定:划定系统边界应根据建模目的,把那些 与所研究的问题关系密切的重要变量划入系统边界内。在 此案例中,我们主要关注企业成长问题,研究影响企业营 业收入的因素。根据案例介绍因此我们将仅仅研究企业的 生产、市场、销售部门。不涉及其他部门,竞争对手等等。
(16)供应商生产率=DELAY3(供应商生产需求率,生产延迟) 单位:箱/周
2供应链中牛鞭效应
计算机仿真:
使用Vensim软件建立系统流图和填入方程式, 就可以对系统进行仿真。建立仿真模型可以与现 实对照,可以寻求削弱牛鞭效应的策略,可以预 测系统未来的行为趋势。
仿真结果
2供应链中牛鞭效应
2供应链中牛鞭效应
2供应链中牛鞭效应
问题识别:本案例主要研究供应链中牛鞭效应,各个供应链 节点库存积压,库存波动幅度比较大,不够稳定,导致供 应链的成本居高不下,失去了竞争优势。因此急需采取措 施来削弱牛鞭效应,从而能够降低整条供应链的成本,建 立稳定的竞争优势。因此本案例通过啤酒游戏来对供应链 进行仿真,从而为寻找较优的供应链结构来削弱牛鞭效应, 降低成本。
2供应链中牛鞭效应
2供应链中牛鞭效应
❖ 建立仿真方程式: (1)市场销售率=1000+IF THEN ELSE(TIME>4,RANDOM
NORMAL(-200,200,0,100,4),0) 单位:箱/周 (2)零售商销售预测=SMOOTH(市场销售率,移动平均时间)
单位:箱/周 (3)零售商期望库存=期望库存持续时间×零售商销售预测
1企业成长与投资不足案例
1企业成长与投资不足案例
❖ 3.那么从上图可以看出正反馈回路使得营业收入增长,但

系统动力学模型构建与Vensim软件应用教程

系统动力学模型构建与Vensim软件应用教程

系统动力学模型构建与Vensim 软件应用教程第一部分系统动力学与Vensim 软件一、系统动力学概述系统动力学(SystemDynamics)是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题交叉的综合性的新学科。

系统动力学认为,系统的行为模式与特性主要地取决于其内部的动态结构与反馈机制。

系统:相互作用诸单元的复合体,例如:社会、经济、生态系统。

反馈:系统内同一单元或同一子块其输出与输入间的关系。

对整个系统而言,"反馈"则指系统输出与来自外部环境的输入的关系。

反馈可以从单元或子块或系统的输出直接联至其相应的输入,也可以经由媒介其他单元、子块、甚至其他系统实现。

所谓反馈系统就是包含有反馈环节与其作用的系统。

它要受系统本身的历史行为的影响,把历史行为的后果回授给系统本身,以影响未来的行为。

例如:库存控制系统是一个反馈系统,如图:发货使库存量减少,当库存低于期望水平以下一定数值后,库存管理人员即按预定的方针向。

生产部门订货,货物经一定延迟到达,然后使库存量逐渐回升。

反映库存当前水平的信息经过订货与生产部门的传递最终又以来自生产部门的货物的形式返回库存。

正反馈的特点是,能产生自身运动的加强过程,在此过程中运动或动作所引起的后果将回授,使原来的趋势得到加强;负反馈的特点是,能自动寻求给定的目标,未达到(或者未趋近)目标时将不断作出响应;具有正反馈特性的回路称为正反馈回路,具有负反馈特点的回路则称为负反馈回路(或称寻的回路);分别以上述两种回路起主导作用的系统则称之为正反馈系统与负反馈系统(或称寻的系统)。

回路的概念最简单的表示方法是图形,系统动力学中常用三种图形表示法:系统结构框图(structurediagram)因果关系图(causalrelationshipdiagram)流图(stockandflowdiagram)系统动力学解决问题大体可分为五步:第一步要用系统动力学的理论、原理和方法对研究对象进行系统分析。

系统动力学第二版课程设计

系统动力学第二版课程设计

系统动力学第二版课程设计1. 简介系统动力学是一种用于研究复杂系统的工具和方法。

在这门课程中,我们将学习系统动力学的基本概念和应用,以及如何使用系统动力学建立和模拟系统。

本课程设计旨在让学生通过动手实践,掌握系统动力学的基本原理和应用方法。

2. 课程学习目标本课程旨在使学生:•了解系统动力学的基本概念和原理;•掌握系统动力学建模和模拟的基本方法;•能够独立完成简单系统的建模和模拟;•了解系统动力学在实际应用中的一些案例。

3. 课程安排本课程采用线上和线下相结合的模式,包括课堂教学和实践操作。

具体安排如下:3.1. 第一周:系统动力学介绍(线上)系统动力学的概念、历史和基本原理介绍。

3.2. 第二周:系统建模与数学表达(线上)系统建模的基本方法和数学表达方式。

3.3. 第三周:系统动力学框架(线上)系统动力学框架的介绍和使用。

3.4. 第四周:库存管理模型(线下)使用系统动力学建立和模拟库存管理模型的实践操作。

3.5. 第五周:人口增长模型(线下)使用系统动力学建立和模拟人口增长模型的实践操作。

3.6. 第六周:环境污染模型(线下)使用系统动力学建立和模拟环境污染模型的实践操作。

3.7. 第七周:系统动力学在实际应用中的案例(线上)介绍系统动力学在管理、环境、经济等领域的应用案例。

3.8. 第八周:课程总结(线上)总结本课程的内容和学习效果,回顾学生的学习体验。

4. 评估方式课程的成绩评定方式如下:•出勤情况(占总成绩10%)•课堂互动和参与程度(占总成绩20%)•系统动力学建模和模拟作业(占总成绩30%)•期末综合考试(占总成绩40%)5. 参考资料•Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill Education.•Forrester, J. W. (1968). Principles of Systems. Productivity Press.•Richardson, G. P. (1991). Feedback Thought in Social Science and Systems Theory. University of Pennsylvania Press.6. 结论本课程设计通过理论教学和实践操作相结合的方式,旨在让学生通过动手实践,掌握系统动力学的基本原理和应用方法,提高系统思考和问题解决的能力,为将来在管理、环境、经济等领域的应用打下良好基础。

系统动力学建模

系统动力学建模

方框图
• 系统框图是一种极其简单的系统描述方法 方框图中只有方框和带箭头的实线两种符 号方框表示系统的元素、子系统或功能块 方框中填上相应的名称、功能或说明带箭 头的实线表示各元素、各子块之间的相互 作用关系、因果关系或逻辑关系也可以表 示流量的运动方向流量写在实线旁
公司模型方框图
国民经济流转模型方框图
因果关系图法
• 在因果关系图中各变量彼此之间的因果关系是用 因果链来连接的因果链是一个带箭头的实线直线 或弧线箭头方向表示因果关系的作用方向箭头旁 标有+或-号分别表示两种极性的因果链
• a.正向因果链 A→+B:表示原因A 的变化增或减 引起结果B 在同一方向上发生变化增或减
• b.负向因果链A→-B:表示原因A 的变化增或减 引起结果B 在相反方向上发生变化减或增
微分方程表达
根据动态守恒原理状态变量的变化速率等 于其输入率与输出率之差即设状态变量的 输入率与输出率分别是IR 和OR有
差分方程表达
• 系统的状态变化遵循着过去决定现在过去 和现在决定将来的时间因果律
• 系统目前的状态是在其一时刻状态的基础 上加上一个从旧状态向新状态过渡的转化 值即设时间间隔为△t有
• 在系统动力学构模过程中是相当关键的一环需要 经过理论分析、逻辑判断、历史经验参考再结合 各种技术方法上的技巧综合求得
辅助变量、外生变量
• 辅助变量的流图符号是一个圆圈内部填辅助变量 的名字由于速率方程函数关系的确定是一个比较 困难的过程因此有必要引入辅助变量对速率方程 进行分解以使得构模的思路更加清晰辅助变量是 为了构模方便而人为引入的信息反馈变量它是状 态信息变量的函数
重要性
• 流图法的特点是将系统中各变量按其不同的特征以及在系 统中所起的不同作用划分成不同的种类并用物质流线和信 息流线按照其特有的作用方式将它们联结起来组成系统的 结构所以流图法比因果关系图法更加详细地反映出系统内 部的反馈作用机制使人们对系统的构成有一个更加直观、 更加透彻的理解

系统动力学模型

系统动力学模型

如:

表示。
系统动力学的建模步骤
例1:建立“一阶库存管理系统”的系统动力学模型,并分析系统 的
动态趋势。
例2,: 建立“二阶库存管理系统”的系统动力学模型,并分析系统 的
动态趋势。
思考题
• 物流系统的系统动力学模型构建
• 决策变量(又称流率)(r):
描述系统物质流动或信息流动积累效应变化快慢的变 量,其具有瞬时性的特征。
——反映单位时间内物质流动或信息流量的增加或 减少的量
——相对量、速度、微积分中的变化率等
决策变量符号表示:
注 意:
(3) 常数:描述系统中不随时间而变化的量,

表示。
如:
(4) 辅助变量:从信息源到决策变量之间,起到辅助表达信息反 馈决策作用的变量。
——流图能反映出物质ห้องสมุดไป่ตู้积累值和积累效应变化快慢的区别
2. 流图 :
流图确定反馈回路中变量状态发生变化的机制,明确表 示系统各元素间的数量关系,反映物质链与信息链的区 别,能够反映物质的积累值及积累效应变化快慢的区别。
(1). 物质链与信息链
物质链:系统中流动的实体,连接状态变量 是不使状态值变化的守恒流。
物质链符号表示:要素A→要素B
• 信息链:连接状态和变化率的信息通道,是与因果关系相连 的信息传输线路。
信息链符号表示:A O···→B
(2)状态变量与决策变量
• 状态变量(又称流位)(x):
描述系统物质流动或信息流动积累效应的变量,表 征系统的某种属性,有积累或积分过程的量
—— 绝对量、位移、微积分中的积分量等
1. 因果关系图: 2. 因果链:
3. 反馈回路:
综合“因果关系图”:

(完整版)系统动力学模型案例分析

(完整版)系统动力学模型案例分析

系统动力学模型介绍1.系统动力学的思想、方法系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。

系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。

而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。

所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。

系统动力学方法从构造系统最基本的微观结构入手构造系统模型。

其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。

模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。

因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。

2.建模原理与步骤(1)建模原理用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。

系统动力学认为系统具有整体性、相关性、等级性和相似性。

系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。

系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。

系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。

与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。

系统动力学建模与分析

系统动力学建模与分析

系统动力学建模与分析系统动力学(System Dynamics)是一种用于建模和分析系统行为的量化方法。

它可以帮助我们理解和预测各种复杂系统的动态性质,例如经济系统、生态系统和社会系统等。

本文将介绍系统动力学的基本原理和建模步骤,并探讨分析和应用系统动力学模型的重要性。

一、系统动力学基本原理系统动力学的基本原理是基于系统思维和动态模型的分析方法。

它将系统看作是由相互作用的组成部分组成的整体,这些部分之间存在着反馈环路和时滞效应。

系统动力学认为,一个系统的行为是由其内部结构和外界影响共同决定的,并且会随着时间的推移而发生变化。

二、系统动力学建模步骤1. 确定系统范围:首先需要明确要研究的系统范围,确定系统的边界和内外部要素。

2. 构建系统结构图:根据对系统的理解,用流程图或者思维导图等方法构建系统结构图,明确系统内各个要素之间的关系和相互作用。

3. 建立动态方程:根据系统结构图,建立系统的动态方程,描述系统内各要素的变化规律。

这一步需要考虑时滞效应和反馈环路等因素。

4. 设定模型参数:为了使模型能够与实际情况相符合,需要设定模型中的各种参数,如初始条件、阻尼系数和增长率等。

这些参数的设定需要基于对系统的实地观察和数据分析。

5. 模型验证与修正:建立模型后,需要进行模型验证和修正,与实际数据进行对比,判断模型的可靠性和准确性。

三、系统动力学分析方法系统动力学模型可以通过数值模拟和仿真进行分析。

常用的分析方法包括敏感性分析、参数优化和策略研究等。

通过这些分析方法,可以预测系统的行为和未来发展趋势,为决策提供参考依据。

1. 敏感性分析:通过对模型中的参数进行变化,观察系统行为的变化情况,从而了解系统最为敏感的因素。

2. 参数优化:通过调整模型中的各种参数,寻找系统达到最佳性能的参数组合。

3. 策略研究:通过对系统行为的仿真和模拟,评估各种决策对系统的影响,为制定合理的策略提供科学依据。

四、系统动力学模型的应用系统动力学模型已广泛应用于许多领域,如经济学、环境科学和管理学等。

系统动力学建模过程课件

系统动力学建模过程课件
建立数学方程
根据流图和参数确定,建立描述系统动态行为的数学方程。
模型测试与验证
要点一
模型测试
通过模拟实验对模型进行测试,检查模型是否符合实际情 况。
要点二
模型验证
对比模型的输出与实际数据,验证模型的准确性和可靠性 。
PART 04
系统动力学模型应用
REPORTING
政策模拟与预测
总结词
通过系统动力学模型,模拟不同政策情 景下系统的未来发展趋势,为政策制定 提供依据。
决策支持与分析
总结词
系统动力学模型能够为决策者提供全面的、动态的决策支持,帮助决策者更好地理解和 掌握系统的行为。
详细描述
系统动力学模型能够模拟不同决策方案下,系统的未来发展趋势和可能出现的风险和机 遇,为决策者提供全面的决策支持和分析,帮助决策者做出更加科学、合理的决策。
PART 05系统动力学Fra bibliotek模挑战与解 决方案
预防和解决冲突
系统动力学模型可以帮助 我们更好地理解系统内部 的冲突和问题,从而预防 和解决这些冲突。
系统动力学的历史与发展
01
起源
系统动力学起源于20世纪50年代,由美国麻省理工学院的Jay
Forrester教授创立。
02
发展历程
经过多年的发展,系统动力学已经广泛应用于各个领域,包括企业管理
、城市规划、生态保护等。
PART 06
系统动力学建模案例研究
REPORTING
案例一:城市交通系统建模
总结词
城市交通系统是一个复杂的动态系统,涉及到交通流 量、道路网络、交通工具等多个因素。
详细描述
城市交通系统建模需要考虑交通流量的大小、流向、道 路网络的结构和布局、交通工具的类型和数量等因素。 通过建立系统动力学模型,可以模拟城市交通系统的运 行情况,预测未来的交通需求和拥堵情况,为城市规划 和交通管理提供决策支持。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章系统动力学模型系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。

1 系统动力学概述2 系统动力学的基础知识3 系统动力学模型第1节系统动力学概述1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。

系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下:1 系统动力学模型的理论基础是系统动力学的理论和方法;2 系统动力学模型的研究对象是复杂反馈大系统;3 系统动力学模型的研究容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”;4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持;5 系统动力学模型的关键任务是建立系统动力学模型体系;6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表;系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。

地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。

1.2 发展概况系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。

目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。

福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。

在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下:1)人才培养自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。

请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。

2)编译编写专著组织专家编译了《工业动力学》,《城市动力学》等。

编写专著有:王其藩著《系统动力学》,《高级系统动力学》;胡玉奎著《系统动力学》,王洪斌著《系统动力学教程》,贾仁安著《系统动力学教程》等。

3)引进专业软件引进的软件有:MICRO-DYNAMO,DYNAMAP2,DYNAMO I∏∏,STELLA,⋅PD PLUS等,近几年又引进的最先进实用的VENSIM专业软件。

并自行研制了一些专用软件。

4)新设课程新开设了系统动力学专业课程。

在几十所大学的管理系或管理学院以及科研单位的研究生开设了系统动力学课程。

5)组织与学术会议于19 年成立了全国系统动力学委员会。

组建了一些专门研究和教学。

开展了许多专项研究工作。

建立了国家总体系统动力学模型,省和地区的发展战略研究系统动力学模型,省级能源,环境预测系统动力学模型及科技,工业,农业林业等行业发展战略研究系统动力学模型等。

1986年8月,在上海召开的“全国系统动力学学术研讨会“上,140多名代表提交了95篇有关系统动力学理论和应用研究方面的论文。

1987年6月,在上海召开的国际学术会议上我国代表交流了29篇论文,占会议论文数的45%。

1988年7月,美国圣迭戈召开了国际学术年会,我国有十名代表参加,交流论文十多篇。

1989年7月,在西德斯图加特召开的国际学术年会上,我国学者交流论文14篇,有4人参加会议。

目前,在我国系统动力学已经发展成熟,并正向深入和全面应用延伸,形成了一支强大的研究力量,发展趋势看好,有理由相信,系统动力学必将在我国社会,经济,科技,管理和生态等领域的研究中发挥更大作用。

第2节系统动力学的基础知识系统动力学模型建立的基本知识,基本原理主要有:因果关系图,模型流图及模型的组成等。

现分别介绍。

2.1 因果关系1 因果关系因果关系是指由原因产生某结果的相互关系。

从哲学角度讲,原因和结果是揭示客观事物的因果联系的重要哲学概念,它们是客观事物普遍联系和相互作用的表现形式之一。

原因是某种事物或现象,是造成某种结果的条件;结果是原因所造成的事物或现象,是在一定阶段上事物发展所达到的目标状态。

通常用箭头线来表示,它有正因果关系和负因果关系两种,如图9—1。

P169原因结果+ 就业机会E 迁入人口数I- 死亡率R 总人口数P 正因果关系:两个变量呈同方向变化趋势,如:E增加,I增加;E减少,I减少。

负因果关系:两个变量呈异方向变化趋势,如:R增加,P减少;R减少,P增加。

2)因果关系环图因果关系环图是指由两个或两个以上的因果关系连接而成的闭合回路图示。

它定性描述了系统中变量之间的因果关系。

它有正负因果关系环图两种,如图9—3,图9--4所示:P169正因果关系环图:它会引起系统部活动加强。

准则:若各因果关系均为正,则该环为正因果关系环;若各因果关系为负的个数是偶数时,则该环也为正因果关系环。

负因果关系环图:它会引起系统部活动减弱。

准则:若各因果关系均为负,则该环为负因果关系环;若因果关系为负的个数是奇数,则该环为负因果关系环。

再如:生态学人口增长因果关系环图,如图9—5,图9--6 所示:P1702.2 系统动力学模型流图系统动力学模型流图简称SD流图,是指由专用符号组成用以表示因果关系环中各个变量之间相互关系的图示。

它能表示出更多系统结构和系统行为的信息,是建立SD模型必不可少的环节,对建立SD 模型起着重要作用。

其专用符号主要有八个:1)水平变量水平变量符号是表示水平变量的积累状态的符号,它是SD模型中最主要的变量。

它由五部分组成,即:输入速率,输出速率,流线,变量名称及方程代码(L),如图所示。

2)速率变量速率变量符号是表示水平变量变化速率的变量。

它能控制水平变量的变化速度,是可控变量。

它由三部分组成,即:输入信息变量,变量名称及方程代码(R)。

如图所示。

3)辅助变量辅助变量符号是辅助水平变量等的变量。

如图所示。

4)外生变量外生变量符号如图所示。

5)表函数表函数符号如图所示。

6)常数常数符号如图所示。

7)流线流线符号又有物质流线,信息流线,资金流线,及订货流线四种:物质流线符号是表示系统中流动着的实体,如图所示。

信息流线符号是表示联接积累与流速的信息通道,如图所示。

资金流线符号是表示资金,存款及货币的流向,如图所示。

订货流线符号是表示订货量与需求量的流向,如图所示。

8)源与沟源符号与沟符号如图所示。

2.3 系统动力学模型系统动力学模型是由六种基本方程和专门的输出语句组成。

其六种方程的标志符号分别为:L:水平变量方程; R:速率变量方程;A :辅助变量方程; N :计算初始值方程;C :赋值予常数方程; T :赋值予表函数中Y坐标值。

L 方程是积累方程;R ,A 方程是代数运算方程;C ,T ,N 方程是提供参数值方程,并在同一次模拟中其值保持不变。

1)L 方程L 方程是计算水平变量积累值的方程,其一般表示形式为:L K J JKJK POP POP DT (BR DR )鬃鬃=+? 其中,L :水平变量方程代码,表示方程性质。

DT :时间间隔,即时间增量。

.J :表示前一刻。

.K :现在时刻。

.L :未来一时刻。

J POP ⋅:过去一时刻人口数。

K POP ⋅:现在时刻人口数。

L POP ⋅:未来一时刻人口数。

JK BR ⋅:过去至现在该段时刻的人口出生率。

JK DR ⋅:过去至现在该时刻段的人口死亡率。

积累是系统部流的堆积量,它等于过去一时刻的积累加上积累变动量,即变动增量。

积累变动量是时间间隔与输入流速和输出流速之差的乘积。

2)R 方程R 方程是计算单位时间流量的方程,即流速或速率。

其一般表示形式为:R J JK POP BRF BR ⋅⋅⨯= R J JK POP DRF DR ⋅⋅⨯=R K KL POP BRF BR ⋅⋅⨯= R K KL POP DRF DR ⋅⋅⨯=其中,JK BR ⋅:过去至现在时刻的出生率,单位(人/年);JK DR ⋅:过去至现在时刻的死亡率,单位(人/年);KL BR ⋅:现在至未来时刻的出生率;单位(人/年);KL DR ⋅:现在至未来时刻的死亡率,单位(人/年);BRF : 出生系数,单位(人/年.人);DRF : 死亡系数,单位(人/年.人);J POP ⋅:过去时刻人口总数;K POP ⋅:现在时刻人口总数。

3)A 方程A 方程是辅助变量方程,用于对辅助变量赋值,其一般表示形式为:A ),22(k K pop sum TPOP ⋅⋅=其中,K TPOP ⋅:表示现在人口总数。

),22(k pop SUM ⋅:求和函数,表示求算现在22个年龄组的总和。

4)N方程N方程是变量初始值方程,表示对变量赋初始值,起一般表示形式为:N )1AGEIPOPPOP)1((AGE其中,(AGEPOP:表示各年龄组人口初始值。

)1(AGEIPOP:是表函数,表示存储22个年龄组的初始值。

)15)T方程T方程是表函数方程,表示对相应的纵坐标Y赋值。

6)C方程C方程是常数方程,表示对常数变量赋值。

第3节系统动力学模型系统动力学模型应用分析的一般步骤为:1 明确问题明确的问题是:系统的围:空间围,如省区域;时间围,如1961年 --- 2050年;时间间隔,DT=1年,等等。

解决途径: 计算机仿真实验。

数据资料: 人口总数,出生率,死亡率,自然增长率等。

2 明确目标人口总数变化趋势;自然增长率控制目标;出生率控制目标;死亡率控制目标等。

3 绘制系统流图1)因果关系环图主要变量清单,即列出主要变量的清单,以利于因果关系环流图的绘制。

如:总人口数,出生率,死亡率,出生系数,死亡系数。

很容易绘制出下图:2)SD 模型流图在因果关系环图的基础上可得SD 模型流图如图 所示。

4 SD 模型的建立根据上述介绍知识和分析步骤,可得简单的省人口SD 模型如下: * POPULAYION SD MODEL OF ANHUIL )(K J K J J K DR BR DT POP POP ⋅⋅⋅⋅-*+=R K L K POP BRF BR ⋅⋅*=R )K L K POP DRF DR ⋅⋅*=N 60000000=POPC 005.0=BRFC 003.0=DRFSPEC DT=1/PRINT 1)POP ,2)BR ,3)DR ,PLOT POP ,BR ,DRPLOT POP说明:1)人口数分22个年龄组,即:1岁,2 — 4,5 — 9,10 — 14,。

相关文档
最新文档