2017北京·春季·会考·数学·试卷及答案

合集下载

2017北京春季会考试题

2017北京春季会考试题

.. 2017年北京市春季普通高中会考化学试题在下列各题的四个选项中,只有一个选项符合题意。

(每小题2分,共50分)1.“三七”是一种名贵中药,其有效成分中的人参皂苷Re(C48H82O18)具有改善记忆的作用。

人参皂苷Re属于A.单质B.氧化物C.无机物D.有机物2.下列各组元素中,属于同一主族的是A.N、P B.O、F C.H、Mg D.Na、Cl3.电解质是一类在水溶液里或熔融状态下能够导电的化合物。

下列物质属于电解质的是A.铜B.蔗糖C.硝酸钾D.稀硫酸4.下列物质属于高分子化合物的是A.苯B.甲烷C.乙醇D.聚乙烯5.下列关于NO2性质的描述不.正确..的是A.有毒B.无色气体C.易溶于水D.密度比空气的大6.下列同周期元素中,原子半径最大的是A.Al B.P C.S D.Cl7.当光束通过下列分散系时,能观察到丁达尔效应的是A.氯化钠溶液B.葡萄糖溶液C.氢氧化钠溶液D.氢氧化铁胶体8.合金在生产、生活及科研中具有广泛的应用。

下列不属于...合金的是A.流通硬币B.青花瓷瓶C.司母戊鼎D.飞机外壳(硬铝)9.下列物质中,含有共价键的是A.NaCl B.CO2C.MgCl2 D.Na2O10.催化还原CO2是解决温室效应及能源问题的重要手段之一。

在恒容密闭容器中,CO2和H2在催化剂作用下发生反应:CO2(g)+ 3H2(g) CH3OH(g)+ H2O(g)。

下列说法能充分说明该反应已经达到化学平衡状态的是A.CO2、H2、CH3OH、H2O的浓度相等B.CO2、H2、CH3OH、H2O的浓度均不再变化C.单位时间内消耗1mol CO2,同时生成1 mol CH3OH D.CO2、H2、CH3OH、H2O的分子数之比为1∶3∶1∶111.原电池原理的发现极大地推进了现代化的进程,改变了人们的生活方式。

关于下图所示原电池的说法不正确...的是A.该装置将化学能转化为电能B.电子由锌片经导线流向铜片C.铜片上发生的反应为Cu2++ 2e-CuD.该装置使氧化反应和还原反应分别在两个不同的区域进行Cs55137Cs55137..12.铯( )可用于医学、工业测量仪器以及水文学。

2017北京·夏季·会考·数学·试卷及答案

2017北京·夏季·会考·数学·试卷及答案

2017年北京市夏季普通高中会考数 学 试 卷第一部分 选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的. 1.已知集合{123}A =,,,{13}B =-,,那么集合AB 等于A .{3}B .{1123}-,,,C .{11}-,D .{13}x x -≤≤2.如果直线l 与直线320x y +-=平行,那么直线l 的斜率是A .3B .3-C .13D .13-3.不等式2230x x --<的解集为A .(13)-,B .(31)-,C .(1)(3)-∞-+∞,, D .(3)(1)-∞-+∞,,4.已知向量(12)=-,a ,(2)y =,b ,且⊥a b ,那么y 等于A .1-B .1C .4-D .45.已知tan =3α,那么tan (π+)α等于A .3-B .13-C .13D .36.某程序框图如图所示,如果输入x 的值是2,那么输出y 的值是A. 2B. 4C. 5D. 6开始是否输入输出7.要得到函数πsin()4y x =+的图象,只需将函数sin y x =的图象 A .向左平移π4个单位 B .向右平移π4个单位 C .向上平移π4个单位 D .向下平移π4个单位 8.给出下列四个函数: ○11y x =-; ○22y x =; ○3ln y x =; ○43y x =. 其中偶函数的序号是 A .○1B .○2C .○3D .○49.在△ABC 中,2a =,b =3c =,那么角B 等于A .π6B .π4C .π3D .5π1210.已知数列{}n a 的前n 项和2=1n S n -,那么3a 等于A .5B .6C .7D .811.已知正数a b ,满足10ab =,那么a b +的最小值等于A .2BC.D .2012.22log 8log 4-等于A .1B .2C .5D .613.某几何体的三视图如图所示,那么该几何体的体积是14.函数21 0()1 0x x f x x x⎧-⎪=⎨>⎪⎩,≤,,零点的个数为A .0B .1C .2D .315.22ππcos sin 1212-等于 A. B. CD16.不等式组 1 02 00x y x y x --⎧⎪+-⎨⎪⎩≤,≤,≥表示的平面区域的面积等于A .32B .2C .94D .5217.已知定义在R 上的函数()f x 是单调函数,其部分图象如图所示,那么不等式()3f x <的解集为A .(0)+∞,B .(0)-∞,C .(2)-+∞,D .(2)-∞-, 18.已知圆221x y 与圆222(3)(0)xy r r 相外切,那么r 等于A .1B .2C .3D .420.已知向量(02)=,a ,(10)=,b ,那么向量2-a b 与b 的夹角为A .135︒B .120︒C .60︒D .45︒21.某地区有网购行为的居民约10万人. 为了解他们网上购物消费金额占日常消费总额的比例情况,现从中随机抽取168人进行调查,其数据如右表所示. 由此估计,该地区网购消费金额占日常消费总额的比例在20%及以下的人数大约是 A .1.68万 B .3.21万 C .4.41万 D .5.59万19.在植树活动中,每名同学可从两种树苗中任选一种进行种植,那么甲乙两名同学选择同一种树苗的概率是 A .14B .13C .12D .3422.已知数列{}n a 满足1+n n a a n +=,那么其前4项的和4S 等于A .3B .4C .5D .623.如图,在长方体1111ABCD A B C D -中,E F G H ,,,分别是棱111111A B BB CC C D ,,,的中点,那么 A .1//BD GH B .//BD EFC .平面//EFGH 平面11A BCD D .平面//EFGH 平面ABCD24.如图,在△ABC 中,点D 在线段BC 上,2BD DC =. 如果AD x AB y AC =+,那么A .1233x y ==,B .2133x y ==,C .2133x y =-=,D .1233x y ==-,25.从2008年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色. 下图是2009年至2016年高铁运营总里程...数的折线图(图中的数据均是每年12月31日的统计结果).根据上述信息,下列结论中正确的是A .截止到2015年12月31日,高铁运营总里程数超过2万公里B .2011年与2012年新增..高铁运营里程数之和超过了0.5万公里C .从2010年至2016年,新增..高铁运营里程数最多的一年是2014年D .从2010年至2016年,新增..高铁运营里程数逐年递增第二部分 解答题(每小题5分,共25分)26.(本小题满分5分)已知函数()sin 2cos2f x x x =+.(Ⅰ)(0)f = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)求函数()f x 的最小正周期及单调递增区间.27.(本小题满分5分)如图,在三棱锥P ABC -中,PB PC =,AB AC =.D ,E 分别是BC ,PB 的 中点.(Ⅰ)求证://DE 平面PAC ; (Ⅱ)求证:平面ABC ⊥平面PAD .28.(本小题满分5分)已知数列{}n a 是公差为d 的等差数列,13a =,39a =. (Ⅰ)公差d = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)数列{}n b 满足2n n b a =(123n =,,,),求数列{}n b 的前n 项和n S .29.(本小题满分5分)已知⊙M :2240x x y -+=.(Ⅰ)⊙M 的半径r = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)设点(03)A ,,(25)B ,,试判断⊙M 上是否存在两点C ,D ,使得四边形ABCD 为平行四边形?若存在,求直线CD 的方程;若不存在,请说明理由.30.(本小题满分5分)科学研究表明:人类对声音有不同的感觉,这与声音的强度I (单位:瓦/平方米)有关. 在实际测量时,常用L (单位:分贝)来表示声音强弱的等级,它与声音的强度I 满足关系式:0lgIL a I =⋅(a 是常数),其中120110I -=⨯瓦/平方米. 如风吹落叶沙沙声的强度11110I -=⨯瓦/平方米,它的强弱等级10L =分贝. (Ⅰ)a = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)已知生活中几种声音的强度如下表:那么m = ;(将结果直接填写在答题卡...的相应位置上) (Ⅲ)为了不影响正常的休息和睡眠,声音的强弱等级一般不能超过50分贝,求此时声音强度I 的最大值.2017年北京市夏季普通高中会考数学试卷答案及评分参考[说明]1. 第一部分选择题,机读阅卷.2. 第二部分解答题. 为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可. 若考生的解法与本解答不同,正确者可参照评分标准给分. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.第一部分 选择题 (每小题3分,共75分)第二部分 解答题 (每小题5分,共25分)26.(本小题满分5分)已知函数()sin 2cos2f x x x =+.(Ⅰ)(0)f = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)求函数()f x 的最小正周期及单调递增区间.(Ⅰ)解:(0)=f 1. ……………………………………2分(Ⅱ)解:由题意得 π())4f x x =+.所以 T =π.因为 πππ2π22π242k x k -++≤≤,k ∈Z , 所以 3ππππ88k x k -+≤≤,k ∈Z .所以 ()f x 的单调递增区间是3ππ[ππ+]88k k -,,k ∈Z . …………5分 27.(本小题满分5分)如图,在三棱锥P ABC -中,PB PC =,AB AC =.D ,E 分别是BC ,PB 的中点.(Ⅰ)求证://DE 平面PAC ;(Ⅱ)求证:平面ABC ⊥平面PAD .(Ⅰ)证明:因为 D ,E 分别是BC ,PB 的中点,所以 //DE PC .因为 DE ⊄平面PAC ,PC ⊂平面PAC ,所以 //DE 平面PAC . ……………………………………2分(Ⅱ)证明:因为 PB PC =,AB AC =,D 是BC 的中点,所以 PD BC ⊥,AD BC ⊥. 因为 PDAD D =,所以 BC ⊥平面PAD . 因为 BC ⊂平面ABC ,所以 平面ABC ⊥平面PAD . ……………………………………5分28.(本小题满分5分)已知数列{}n a 是公差为d 的等差数列,13a =,39a =. (Ⅰ)公差d = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)数列{}n b 满足2n n b a =(123n =,,,),求数列{}n b 的前n 项和n S . (Ⅰ)解:公差d =3. ……………………………………2分 (Ⅱ)解:因为 等差数列{}n a 的公差3d =,13a =,所以 3n a n =.所以232n nn b a ==⋅.所以 数列{}n b 是首项为6,公比为2的等比数列.所以 6(12)62612n n n S -==⋅--. …………………………………… 5分 29.(本小题满分5分)已知⊙M :2240x x y -+=.(Ⅰ)⊙M 的半径r = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)设点(03)A ,,(25)B ,,试判断⊙M 上是否存在两点C ,D ,使得四边形ABCD 为平行四边形?若存在,求直线CD 的方程;若不存在,请说明理由. (Ⅰ)解:⊙M 的半径r =2. ……………………………………1分(Ⅱ)解:由2240x x y -+=得 22(2)4x y -+=.所以 ⊙M 的半径2r =,圆心(20)M ,.由点(03)A ,,(25)B ,可得 直线AB 的斜率为53120-=-,AB =如果存在点C ,D ,使得四边形ABCD 为平行四边形,那么AB CD ∥,AB CD =.设直线CD 的方程为y x b =+,则点M 到直线CD 的距离d =由()2222CD r d =+可得 2(2)422b +=+,解得 0b =,或4b =-.当0b =时,直线CD 的方程为0x y -=,此时(22)C ,,(00)D ,; 当4b =-时,直线CD 的方程为40x y --=,此时(40)C ,,(22)D -,. 所以 ⊙M 上存在两点C ,D ,使得四边形ABCD 为平行四边形. …5分30.(本小题满分5分)科学研究表明:人类对声音有不同的感觉,这与声音的强度I (单位:瓦/平方米)有关. 在实际测量时,常用L (单位:分贝)来表示声音强弱的等级,它与声音的强度I 满足关系式:0lgI L a I =⋅(a 是常数),其中120110I -=⨯瓦/平方米. 如风吹落叶沙沙声的强度11110I -=⨯瓦/平方米,它的强弱等级10L =分贝. (Ⅰ)a = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)已知生活中几种声音的强度如下表:那么m = ;(将结果直接填写在答题卡...的相应位置上) (Ⅲ)为了不影响正常的休息和睡眠,声音的强弱等级一般不能超过50分贝,求此时声音强度I 的最大值.(Ⅰ)解:a =10. ……………………………………1分 (Ⅱ)解:m =20. ……………………………………3分 (Ⅲ)解:由题意,得 50L ≤.所以 1210lg50110I-⨯⨯≤.解不等式,得 70I -≤1.答:此时声音强度I 的最大值为70-1瓦/平方米. …………………………5分。

北京市2017春季普通高中会考数学试卷习题.docx

北京市2017春季普通高中会考数学试卷习题.docx

北京市 2017 年春季普通高中会考数学试卷一、在每小题给出的四个备选答案中,只有一项是符合题目要求的.1.已知集合 A= ﹣1,1 ,B= 1,﹣ 1,3 ,那么 A ∩B=等于(){ } { }A .{ ﹣1B . { 1 C .﹣1,1 D . 1,﹣ 1 ,3}}}{}{2.已知向量,那么等于()A .B .C .D .3.已知向量,,且,那么 x 的值是()A .﹣ 3B .3C .D .4.某小学共有学生 2000 人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后 “快乐 30 分”活动,现采用分层抽样的方法从中抽取容量为 200 的样本进行调查,那么应抽取一年级学生的人数为()A .120B .40C . 30D .205.已知点 A ( 2, m ), B (3,3),直线 AB 的斜率为 1,那么 m 的值为()A .1B .2C . 3D .46.直线 x+2y ﹣4=0 与直线 2x ﹣y+2=0 的交点坐标是( )A .( 2, 0)B .( 2,1)C .( 0,2)D .( 1,2)7.已知向量 满足 ,,且 与 夹角为 30°,那么 等于( )A .1B .C . 3D .8.在△ ABC 中, a=2,c=1,∠ B=60°,那么 b 等于( )A .B .C . 1D .9.如果直线 l 1: 2x ﹣ y ﹣1=0 与直线 l 2: 2x (a 1) y 2=0 平行,那么 a 等于()+ + + A .﹣ 2 B .﹣ 1 C . 1 D .210.当 x ∈ 0,2π 时,函数 y=sinx 的图象与直线 的公共点的个数为()[ ] A .0 B .1 C . 2D .311.已知 f ( x ) =log 3x ,f (a )> f (2),那么 a 的取值范围是()A . { a a >2 }B . a 1< a <2 }C .D .| { |12.不等式组,表示的平面区域是()A.B.C.D.13.等于()A.B.C.D.14.给出下面四个命题:①三个不同的点确定一个平面;②一条直线和一个点确定一个平面;③空间两两相交的三条直线确定一个平面;④两条平行直线确定一个平面.其中正确的命题是()A.①B.②C.③D.④15.在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为()A.1B.C.D.16.如果 a+b=1,那么 ab 的最大值是()A.B.C.D.117.等于()A.B.C.D.18.已知函数.关于f(x)的性质,给出下面四个判断:①f(x)的定义域是 R;② f(x)的值域是 R;③ f(x)是减函数;其中正确的判断是( )A .①B .②C .③D .④.如果圆 C :( x ﹣ a ) 2+(y ﹣ 3) 2 的一条切线的方程为 ,那么 a 的值为()19 =5 y=2x A .4 或 1B .﹣ 1 或 4C .1 或﹣ 4D .﹣ 1 或﹣ 420.中国共产党第十八届中央委员会第五次全体会议认为, 到二○二○年全面建成小康社会, 是我们党确定的 “两个一百年 ”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二○二○年国内生产总值和城乡居民人均收入比二0 一 0 年翻一番,产业迈向中高端水平, 消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从二 0 一一年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了依据 “到二 0 二 0 年城乡居民人均收入比二 0 一 0 年翻一番 ”列出的关于 p 的四个关系式:①( 1+p%)× 10=2;②( 1+p%)10=2;③ lg (1+p%)=2;④ 1+10× p%=2.其中正确的是()A .①B .②C .③D .④21.甲乙两名篮球运动员在 4 场比赛中的得分情况如图所示. v 1,v 2 分别表示甲、乙二人的平均得分,s 1, s 2 分别表示甲、乙二人得分的方差,那么 v 1 和 v 2, s 1 和 s 2 的大小关系是()> v ,s >s .<v , s >s. > v ,s <s . <v , s <sA .v 1 2 1 2B v 1 212C v 1 2 1 2D v 1 212 22.已知直线 m ,n ,l ,平面 α, β.给出下面四个命题:( )①;② ;③;其中正确是()A.①B.②C.③D.④.如果关于x 的不等式x2<ax+b 的解集是 { x| 1<x<3} ,那么 b a等于()23A.﹣ 81B.81 C.﹣ 64D.6424.一个几何体的三视图如图所示,那么该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱25.“远望嵬嵬塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯?”源自明代数学家吴敬所著的《九章詳註比纇算法大全》,通过计算得到的答案是()A.2B.3C. 4D.5二、解答题(共 5 小题,满分 25 分)26.(5 分)如图,在三棱柱 ABC﹣ A1B1C1中,CC⊥底面 ABC,AC⊥CB,点 M 和 N 分别是 B和 BC 11C1的中点.(1)求证: MB∥平面 AC1 N;(2)求证: AC⊥MB.27.( 5 分)已知函数,其中ω>0,x∈ R.(1) f(0)=;.(分)已知数列n},.285{ a(1)判断数列 { a n } 是否为等差数列;(2)求数列 { a n} 的前 n 项和 S n.29.( 5 分)已知点 P(﹣ 2,2)在圆 O: x2+y2=r2(r>0)上,直线 l 与圆 O 交于 A,B 两点.(1) r=;( 2)如果△ PAB为等腰三角形,底边,求直线l的方程.30.(5 分)在数学课外活动中,小明同学进行了糖块溶于水的实验:将一块质量为7 克的糖块放入一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第 5 分钟末测得未溶解糖块的质量为 3.5 克.联想到教科书中研究“物体冷却”的问题,小明发现可以用指数型函数 S=ae﹣kt(a,k 是常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t 分钟末未溶解糖块的质量.(1) a=;(3)设这个实验中 t 分钟末已溶解的糖块的质量为 M ,请画出 M 随 t 变化的函数关系的草图,并简要描述实验中糖块的溶解过程.参考答案与试题解析一、在每小题给出的四个备选答案中,只有一项是符合题目要求的.1.已知集合 A={ ﹣1,1} ,B={ 1,﹣ 1,3} ,那么 A∩B=等于()A.{ ﹣1} B.{ 1} C.{ ﹣1,1}D.{ 1,﹣ 1,3}【考点】交集及其运算.【分析】根据交集的定义写出A∩B 即可.【解答】解:集合A={ ﹣ 1, 1} ,B={ 1,﹣ 1,3} ,那么 A∩B={ ﹣ 1, 1} .故选: C.【点评】本题考查了交集的定义与应用问题,是基础题目.2.已知向量,那么等于()A.B.C.D.【考点】向量的加法及其几何意义;向量的减法及其几何意义.【分析】利用向量运算法则求解.【解答】解:== .故选: C.【点评】本题考查向量的运算,是基础题,解题时要认真审题,注意向量运算法则的合理运用.3.已知向量,,且,那么x的值是()A.﹣ 3 B.3C.D.【考点】数量积判断两个平面向量的垂直关系.【分析】利用向量垂直的性质直接求解.【解答】解:∵向量,,且,∴=3﹣ x=0,解得x=3.故选:B..精品文档【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.4.某小学共有学生 2000 人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐 30 分”活动,现采用分层抽样的方法从中抽取容量为200 的样本进行调查,那么应抽取一年级学生的人数为()A.120 B.40 C. 30D.20【考点】分层抽样方法.【分析】根据分层抽样的定义即可得到结论.【解答】解:∵一年级学生400 人,∴抽取一个容量为200 的样本,用分层抽样法抽取的一年级学生人数为,解得 n=40,即一年级学生人数应为40 人,故选: B.【点评】本题主要考查分层抽样的应用,比较基础.5.已知点 A( 2, m), B(3,3),直线 AB的斜率为 1,那么 m 的值为()A.1B.2C. 3D.4【考点】直线的斜率.【分析】利用直线的斜率公式可得=1,解方程求得m 的值.【解答】解:由于A(2,m), B(3,3),直线 AB 的斜率为 1,∴=1,∴ m=2,故选: B.【点评】本题考查直线的斜率公式的应用,是一道基础题.6.直线 x+2y﹣4=0 与直线 2x﹣y+2=0 的交点坐标是()A.( 2, 0)B.( 2,1)C.( 0,2)D.( 1,2)【考点】两条直线的交点坐标.【分析】将二直线的方程联立解出即可.【解答】解:联立,解得 x=0,y=2,精品文档直∴线 x+2y﹣4=0 与直线 2x﹣ y+2=0 的交点坐标是( 0,2).故选: C.【点评】正确理解方程组的解与直线的交点的坐标之间的关系是解题的关键.7.已知向量满足,,且与夹角为30°,那么等于()A.1B.C. 3D.【考点】平面向量数量积的运算.【分析】利用已知条件,通过向量的数量积公式求解即可.【解答】解:向量满足,,且与夹角为30°,那么=| || | cos=2=3.故选: C.【点评】本题考查平面向量的数量积的应用,考查计算能力.8.在△ ABC中, a=2,c=1,∠ B=60°,那么 b 等于()A.B.C. 1D.【考点】余弦定理.【分析】由题意和余弦定理列出式子求出 b 的值.【解答】解:因为在△ ABC中, a=2,c=1,∠ B=60°,所以由余弦定理得, b2=a2+c2﹣2accosB=4+1﹣=3,解得 b=,故选 B.【点评】本题考查了余弦定理的简单应用,属于基础题.9.如果直线l1:2x﹣y﹣1=0与直线l2:2x+(a+1)y+2=0平行,那么a等于()A.﹣ 2 B.﹣ 1 C. 1D.2【考点】直线的一般式方程与直线的平行关系.【分析】直接由两直线平行的条件列式求解 a 的值.∴a+1=﹣ 1,解得 a=﹣2.故选: A.【点评】本题考查了直线的一般式方程与直线平行的关系,关键是熟记由直线的一般式方程得到直线平行的条件,是基础题.10.当 x∈ [ 0,2π] 时,函数 y=sinx的图象与直线的公共点的个数为()A.0B.1C. 2D.3【考点】根的存在性及根的个数判断.【分析】根据曲线与方程之间的关系,直接作图即可得到结论.【解答】解:由y=sinx 与 y=,如图:两条曲线的图象的交点个数为 2 个.方程有 2 个解.故选: C.【点评】本题主要考查函数交点个数的判断,利用函数和方程之间的关系,直接进行求解即可,比较基础.11.已知 f( x) =log3x,f(a)> f(2),那么 a 的取值范围是()A.{ a| a>2}B. { a| 1< a<2}C.D.【考点】对数函数的单调性与特殊点.【分析】由题意, f( x)=log3x,函数单调递增,即可得出结论.【解答】解:由题意,f(x)=log3x,函数单调递增,∵f(a)>f(2),∴a>2,故选 A.【点评】本题考查对数函数的单调性,考查学生的计算能力,比较基础.12.不等式组,表示的平面区域是()A.B.C.D.【考点】简单线性规划;二元一次不等式(组)与平面区域.【分析】利用直线确定边界,特殊点判断区域,求解即可.【解答】解:在判吗直角坐标系中,画出直线x=1,x+y﹣3=0, x﹣y﹣3=0,判断( 2,0)满足不等式组,所以不等式组不是的可行域为:故选: D.【点评】本题主要考查了二元一次不等式表示平面区域的确定,一般是找特殊点代入进行检验,属于基础试题.13.等于()A.B.C.D.【考点】二倍角的正弦.【分析】利用二倍角的正弦函数公式,特殊角的三角函数值即可计算得解.【解答】解:= sin == .故选: B.【点评】本题主要考查了二倍角的正弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.14.给出下面四个命题:①三个不同的点确定一个平面;②一条直线和一个点确定一个平面;③空间两两相交的三条直线确定一个平面;④两条平行直线确定一个平面.其中正确的命题是()A.①B.②C.③D.④【考点】命题的真假判断与应用.【分析】①,三个不共线的点确定一个平面,故错;②,一条直线和直线外一个点确定一个平面,故错;③,空间两两相交的三条直线,且不能交于同一点,确定一个平面,故错;④,两条平行直线确定一个平面,正确.【解答】解:对于①,三个不共线的点确定一个平面,故错;对于②,一条直线和直线外一个点确定一个平面,故错;对于③,空间两两相交的三条直线,且不能交于同一点,确定一个平面,故错;对于④,两条平行直线确定一个平面,正确.故选: D.【点评】本题考查了命题真假的判定,属于基础题.15.在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为()A.1B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n= =3,再求出甲同学被选中包含听基本事件个数m==2,由此能求出甲同学被选中的概率.【解答】解:在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,基本事件总数 n= =3,∴甲同学被选中的概率p= =.故选: D.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.16.如果 a+b=1,那么 ab 的最大值是()A.B.C.D.1【考点】基本不等式.【分析】由于求ab 的最大值,只考虑a,b>0 时即可.利用基本不等式的性质即可得出.【解答】解:由于求ab 的最大值,只考虑a,b>0 时即可.∵ a+b=1,∴,解得ab≤,当且仅当a=b=时取等号.那么 ab 的最大值是.故选: B.【点评】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.17.等于()A.B.C.D.【考点】运用诱导公式化简求值.【分析】直接利用诱导公式化简求值即可.【解答】解:由 cos=cos( 672π)=cos = .+故选: B.【点评】本题考查诱导公式的应用,考查计算能力,属于基础题.18.已知函数.关于f(x)的性质,给出下面四个判断:①f(x)的定义域是 R;② f(x)的值域是 R;③ f(x)是减函数;④ f(x)的图象是中心对称图形.其中正确的判断是()A.①B.②C.③D.④【考点】命题的真假判断与应用.【分析】函数 的图象可由函数 y=向右平移一个单位得到,类比 y= 的性质可判定.【解答】解:函数的图象可由函数 y= 向右平移一个单位得到,所以值域为y y ≠ 0 };单{ |调减区间为(﹣∞, 0),( 0, ∞);对称中心为( 1,0)+故④正确,故选: D .【点评】本题考查了函数的定义域、值域、对称性,属于基础题.19.如果圆 C :( x ﹣a ) 2+(y ﹣3)2 的一条切线的方程为 ,那么 a 的值为()=5 y=2x A .4 或 1 B .﹣ 1 或 4 C .1 或﹣ 4 D .﹣ 1 或﹣ 4 【考点】圆的切线方程.【分析】由题意,圆心到直线的距离 d== ,即可求出 a 的值.【解答】解:由题意,圆心到直线的距离d== ,∴ a=﹣1 或 4,故选 B .【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,属于中档题.20.中国共产党第十八届中央委员会第五次全体会议认为,到二○二○年全面建成小康社会, 是我们党确定的 “两个一百年 ”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二○二○年国内生产总值和城乡居民人均收入比二0 一 0 年翻一番,产业迈向中高端水平, 消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从二 0 一一年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了依据 “到二 0 二 0 年城乡居民人均收入比二 0 一 0 年翻一番 ”列出的关于 p 的四个关系式:①( 1+p%)× 10=2;②( 1+p%)10=2;③ lg (1+p%)=2;④ 1+10× p%=2.其中正确的是()A .①B .②C .③D .④【考点】命题的真假判断与应用.【分析】设从二 0 一一年起,城乡居民人均收入每一年比上一年都增长p%.则由到二 0 二 0 年城乡居民人均收入比二0 一 0 年翻一番,可得:( 1 p%)10【解答】解:设从二0 一一年起,城乡居民人均收入每一年比上一年都增长p%.则由到二 0 二 0 年城乡居民人均收入比二0 一 0 年翻一番,可得:(1+p%)10=2;正确的关系式为②;故选: B【点评】本题以命题的真假判断与应用为载体,考查了函数模型的选择与应用,难度基础21.甲乙两名篮球运动员在 4 场比赛中的得分情况如图所示.v1,v2分别表示甲、乙二人的平均得分, s1,s2分别表示甲、乙二人得分的方差,那么v1和 v2,s1和 s2的大小关系是()A.v1> v2,s1>s2B.v1<v2, s1>s2C.v1> v2,s1<s2D.v1<v2, s1<s2【考点】茎叶图.【分析】由茎叶图先求出平均数,再计算方差.【解答】解:由茎叶图性质得:V1==14,V2==13,S1= [ ( 9﹣ 14)2+( 13﹣14)2 +( 14﹣14)2+(20﹣ 14)2] =,S2=[ ( 8﹣ 13)2+(9﹣ 13)2( 13﹣13)2( 22﹣13)2]=.++∴V1>V2, S1<S2.故选: C.【点评】本题考查两组数据的平均数和方差的大小的比较,是基础题,解题时要认真审题,注意茎叶图的性质的合理运用.22.已知直线 m,n,l,平面α,β.给出下面四个命题:()①;②;③;④.其中正确是()A.①B.②C.③D.④【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】在①中, m∥β或 m? β;在②中, m 与 n 相交、平行或异面;在③中,由线面平行的判定定理知 n∥β;在④中, n∥α或 n? α.【解答】解:由直线 m,n,l,平面α,β,知:在①中,m∥β或 m? β,故①错误;在②中,m 与 n 相交、平行或异面,故②错误;在③中,,由线面平行的判定定理知n∥β,故③正确;在④中,n∥α或 n α,故④错误.?故选: C.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用..如果关于x 的不等式x2<ax+b 的解集是 { x| 1<x<3} ,那么 b a等于()23A.﹣ 81B.81 C.﹣ 64D.64【考点】一元二次不等式的解法.【分析】根据一元二次不等式的解集,利用根与系数的关系求出a、b 的值,再计算 b a的值.【解答】解:不等式x2<ax+b 可化为x2﹣ ax﹣b<0,其解集是 { x| 1<x<3} ,那么,由根与系数的关系得,解得 a=4, b=﹣3;所以 b a=(﹣ 3)4=81.故选: B.精品文档24.一个几何体的三视图如图所示,那么该几何体是()A .三棱锥B .四棱锥C .三棱柱D .四棱柱【考点】简单空间图形的三视图.【分析】由三视图可得,直观图为正方体中的一个正四面体,即可得出结论.【解答】解:由三视图可得,直观图为正方体中,面上对角线构成的一个正四面体,故选 A .【点评】本题考查三视图与直观图的转化,考查数形结合的数学思想,比较基础.25.“远望嵬嵬塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯? ”源自明代数学家吴敬所著的《九章詳註比纇算法大全》,通过计算得到的答案是()A .2B .3C . 4 【考点】等比数列的前【分析】设尖头 a 盏灯,根据题意由上往下数第 n 层有 2n ﹣ 1a 盏灯,由此利用等比数列性质能求出结果.【解答】解:由题意设尖头 a 盏灯,根据题意由上往下数第 n 层有 2n ﹣ 1a 盏灯,所以一共有( 1+2+4+8+16+32+64)a=381 盏灯,解得 a=3.故选: B .【点评】本题考查等比数列在生产生活中的实际运用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.二、解答题(共 5 小题,满分 25 分)26.如图,在三棱柱 ABC ﹣ A 1B 1C 1 中,CC 1⊥底面 ABC ,AC ⊥CB ,点 M 和 N 分别是 B 1C 1 和 BC 的中点.D .5 n 项和.精品文档(1)求证: MB∥平面 AC1 N;(2)求证: AC⊥MB.【考点】直线与平面垂直的性质;直线与平面平行的判定.【分析】( 1)证明 MC1NB 为平行四边形,所以C1N∥MB,即可证明 MB∥平面 AC1N;( 2)证明 AC⊥平面 BCCB ,即可证明 AC⊥ MB.1 1【解答】证明:( 1)证明:在三棱柱ABC﹣A1B1C1中,因为点 M ,N 分别是 B1C1,BC的中点,所以 C1M∥BN,C1M=BN.所以 MC1NB 为平行四边形.所以 C1N∥ MB.因为 C1N? 平面 AC1N, NB?平面 AC1 N,所以 MB∥平面 AC1N;( 2)因为 CC1⊥底面 ABC,所以 AC⊥CC.1因为 AC⊥BC, BC∩ CC=C,1所以 AC⊥平面 BCC1B1.因为 MB? 平面 BCCB ,1 1所以 AC⊥MB.【点评】本题考查线面平行的判定,考查线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.27.已知函数,其中ω>0,x∈ R.( 1) f(0)=;( 2)如果函数 f (x)的最小正周期为π,当时,求f(x)的最大值.【考点】三角函数的最值;三角函数的周期性及其求法.精品文档( 2)求出函数的解析式,再利用三角函数的性求 f (x)的最大.【解答】解:( 1).⋯(2分)故答案:.( 2)因 f(x)的最小正周期π,ω>0,所以.解得ω=2.所以.因,所以.可得.所以当, f (x)的最大是1.⋯(5 分)【点】本考特殊角三角函数,考三角函数的象与性,考学生分析解决的能力,属于中档.28.已知数列 { a n} ,.(1)判断数列 { a n } 是否等差数列;(2)求数列 { a n} 的前 n 和S n.【考点】数列的求和.【分析】( 1)利用等差数列的定,反例判断即可.(2)通数列的数分求解数列的和即可.【解答】解:( 1) a2a1=1, a8a7=7 8= 1,数列不是等差数列.⋯(1 分)( 2)解:①当 n≤7 ,=.②当 n>7 ,==.⋯(5分)【点】本考数列求和,等差数列的判断,考算能力.29.已知点 P( 2, 2)在 O: x2+y2=r2(r>0)上,直 l 与 O 交于 A,B 两点.( 1) r= 2;( 2)如果△ PAB等腰三角形,底,求直l的方程.【考点】直与的位置关系.【分析】( 1)利用点 P( 2,2)在 O: x2+y2=r2(r>0)上,即可求出r;【解答】解:( 1)∵点 P( 2, 2)在 O:x2+y2=r2(r>0)上,(2)因△ PAB等腰三角形,且点 P 在 O 上,所以PO⊥AB.因 PO 的斜率,所以可直 l 的方程 y=x+m.由得 2x2+2mx+m28=0.△ =4m28×( m28)=64 4m2>0,解得 4<m< 4.A,B 的坐分( x1, y1),( x2,y2),可得.所以.解得 m=±2.所以直 l 的方程 x y+2=0, x y 2=0.⋯(5 分)【点】本考的方程,考直与的位置关系,考学生分析解决的能力,属于中档.30.在数学外活中,小明同学行了糖溶于水的:将一量7克的糖放入一定量的水中,量不同刻未溶解糖的量,得到若干数据,其中在第5分末得未溶解糖的量3.5 克.想到教科中研究“物体冷却”的,小明可以用指数型函数 S=ae﹣kt(a,k 是常数)来描述以上糖的溶解程,其中S(位:克)代表t 分末未溶解糖的量.(1) a= 7 ;(2)求 k 的;(3)个中 t 分末已溶解的糖的量 M ,画出 M 随 t 化的函数关系的草,并要描述中糖的溶解程.【考点】函数模型的与用.【分析】( 1)由意, t=0,S=a=7;( 2)因 5 分末得未溶解糖的量 3.5 克,可求 k 的;(3)根据函数解析式可得函数的象,即可得出.【解答】解:( 1)由意, t=0,S=a=7.⋯( 7 分)( 2)因 5 分末得未溶解糖的量 3.5 克,所以 3.5=7e﹣5k.解得.⋯(2 分)( 3) M 随 t 化的函数关系的草如所示.溶解程,随着的增加,逐溶解.⋯(5 分)故答案: 7.【点】本考利用数学知解决,考指数型函数,属于中档.。

北京市春季普通高中毕业会考数学试卷Word版含答案

北京市春季普通高中毕业会考数学试卷Word版含答案

2016年北京市春季普通高中会考数 学 试 卷第一部分 选择题 (每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的. 1.函数3sin 2y x =+的最小正周期是A .1B .2C .πD .2π 2.已知集合{1,2}A =,{1,,3}B m =,如果AB A =,那么实数m 等于A .1-B .0C .2D .4 3.如果向量(1,2)a =,(4,3)b =,那么等于2a b -A .(9,8)B .(7,4)--C .(7,4)D .(9,8)-- 4.在同一直角坐标系xOy 中,函数cos y x =与cos y x =-的图象之间的关系是 A .关于轴x 对称 B .关于y 轴对称 C .关于直线y x =对称2 D .关于直线y x =-对称5.执行如图所示的程序框图.当输入2-时,输出的y 值为 A .2- B .0 C .2 D .2±6.已知直线l 经过点(2,1)P ,且与直线220x y -+=平行,那么直线l的方程是 A .230x y --= B .240x y +-=C .240x y --=D .240x y --=7.某市共有初中学生270000人,其中初一年级,初二年级,初三年级学生人数分别为99000,90000,81000,为了解该市学生参加“开放性科学实验活动”的意向,现采用分层抽样的方法从中抽取一个容量为3000的样本,那么应该抽取初三年级的人数为 A .800 B .900 C .1000 D .1100 8.在ABC ∆中,60C ∠=︒,AC =2,BC =3,那么AB 等于A B C D .9.口袋中装有大小和材质都相同的6个小球,其中有3个红球,2个黄球和1个白球,从中随机模出1个小球,那么摸到红球或白球的概率是 A .16 B .13 C .12 D .2310.如果正方形ABCD 的边长为1,那么AC AB ⋅等于A .1BCD .211.2015年9月3日,纪念中国人民抗日战争暨世界反法西斯战争胜利70周年大会在北京天安门广场隆重举行,大会中的阅兵活动向全世界展示了我军威武文明之师的良好形象,展示了科技强军的伟大成就以及维护世界和平的坚定决心,在阅兵活动的训练工作中,不仅使用了北斗导航、电子沙盘、仿真系统、激光测距机、迈速表和高清摄像头等新技术装备,还通过管理中心对每天产生的大数据进行存储、分析、有效保证了阅兵活动的顺利进行,假如训练过程过程中第一天产生的数据量为a ,其后每天产生的数据量都是前一天的q (1)q >倍,那么训练n 天产生的总数据量为A .1n aq- B .naq C .1(1)1n a q q --- D .(1)1n a q q--12.已知1cos 2α=,那么cos(2)α-等于A .2-B .12- C .12 D .2 13.在函数①1y x -=;②2xy =;③2log y x =;④tan y x =中,图象经过点(1,1)的函数的序号是A .①B .②C .③D .④ 14.44log 2log 8-等于A .2-B .1-C .1D .215.某几何体的三视图如图所示,其中俯视图是正方形,那么该几何体的表面积是A .32B .24C .4+D .16.如果0a b >>,且1a b +=,那么在不等式①1a b <;②11b a <;③111b a ab+<; ④ 14ab <中,一定成立的不等式的序号是 A .① B .② C .③ D .④ 17.在正方体1111ABCD A B C D -中,E ,F ,G 分别是11A B ,11B C ,1BB 的中点,给出下列四个推断:①FG //平面11AA D D ; ②EF //平面11BC D ; ③FG //平面11BC D ; ④平面EFG //平面11BC D其中推断正确的序号是A .①③B .①④C .②③D .②④ 18.已知圆1O 的方程为224x y +=,圆2O 的方程为22()1x a y -+=,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是A .{1,1}-B .{3,3}-C .{1,1,3,3}--D .{5,5,3,3}-- 19.在直角坐标系xOy 中,已知点(4,2)A 和(0,)B b 满足||||BO BA =,那么b 的值为A .3B .4C .5D .620.已知函数()xf x a =,其中0a >,且1a ≠,如果以11(,())P x f x ,22(,())Q x f x 为端点的线段的中点在y 轴上,那么12()()f x f x ⋅等于A .1B .aC .2D .2a 21.已知点(0,1)A ,动点(,)P x y 的坐标满足||y x ≤,那么||PA 的最小值是A .12B C D .122.已知函数2()1xf x x =+,关于()f x 的性质,有以下四个推断: ①()f x 的定义域是(,)-∞+∞; ②()f x 的值域是11[,]22-;③()f x 是奇函数; ④()f x 是区间(0,2)上的增函数. 其中推断正确的个数是A .1B .2C .3D .423.为应对我国人口老龄化问题,某研究院设计了延迟退休方案,第一步:2017年女干部和女工人退休年龄统一规定为55岁;第二步:从2018年开始,女性退休年龄每3年延迟1岁,至2045年时,退休年龄统一规定为65岁,小明的母亲是出生于1964年的女干部,据此方案,她退休的年份是A .2019B .2020C .2021D .2022 24.已知函数()sin cos f x a x b x =+,其中a R ∈,b R ∈,如果对任意x R ∈,都有()2f x ≠,那么在不等式①44a b -<+<;②44a b -<-<;③222a b +<;④224a b +<中,一定成立的不等式的序号是A .①B .②C .③D .④ 25.我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入33⨯的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是 A .9 B .8 C .6 D .4第二部分 解答题 (每小题5分,共25分)26.(本小题满分5分)已知(,)2πθπ∈,且3sin 5θ=. (Ⅰ)tan θ= ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)求cos()3πθ+的值.27.(本小题满分5分)如图,在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,90ABC ∠=︒,AB =2,11BC BB ==,D 是棱11A B 上一点.(Ⅰ)证明:BC AD ⊥;(Ⅱ)求三棱锥B ACD -的体积. 28.(本小题满分5分)已知直线:1l x y +=与y 轴交于点P ,圆O 的方程为222x y r +=(0r >). (Ⅰ)如果直线l 与圆O 相切,那么r = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)如果直线l 与圆O 交于A ,B 两点,且||1||2PA PB =,求r 的值. 29.(本小题满分5分)数列{}n a 满足121nn n a a a +=+,1n =,2,3,⋅⋅⋅,{}n a 的前n 项和记为n S . (Ⅰ)当12a =时,2a = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)数列{}n a 是否可能....为等比数列?证明你的推断; (Ⅲ)如果10a ≠,证明:1111n n n a a S a a ++-=30.(本小题满分5分)已知函数2()21f x ax bx a =+-+,其中a R ∈,b R ∈.(Ⅰ)当1a b ==时,()f x 的零点为 ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)当43b =时,如果存在0x R ∈,使得0()0f x <,试求a 的取值范围;(Ⅲ)如果对于任意[1,1]x ∈-,都有()0f x ≥成立,试求a b +的最大值.2016年北京市春季普通高中会考数学试卷答案及评分参考[说明]1.第一部分选择题,机读阅卷.2.第二部分解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解答不同,正确者可参照评分标准给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第一部分 选择题 (每小题3分,共75分)第二部分 解答题 (每题5分,共25分)26.(Ⅰ)3tan 4θ=-…………2分(Ⅱ)4cos()310πθ++=- …………5分27.(Ⅰ)略 …………3分(Ⅱ)13B ACD V -= …………5分28.(Ⅰ)2r =…………1分(Ⅱ)r …………5分29.(Ⅰ)225a =…………1分(Ⅱ)数列{}n a 不可能为等比数列 …………3分 (Ⅲ)略 …………5分 30.(Ⅰ)()f x 的零点为0,12-…………1分 (Ⅱ)a 的取值范围是12(,)(,)33-∞+∞ …………3分(Ⅲ)a b +的最大值是2 …………5分。

2017年北京市普通高中春季会考数学试题 及答案

2017年北京市普通高中春季会考数学试题 及答案

北京市春季普通高中会考数学试卷第一部分 选择题(每小题3分,共60分)一、在每个小题给出的四个备选答案中,只有一个是符合题目要求的.1.已知集合{}{}5,3,1,8,6,5,3==B A ,那么A B 等于( ) A. {}8,6,5,3,1 B. {}8,6 C. {}5,3 D. {}8,6,12. 平面向量a ,b 满足b=2a 如果a )1,1(=,那么b 等于( ) A. )2,2(- B. )2,2(-- C. )2,2(- D. )2,2(3. 已知函数)1lg()(-=x x f ,那么)(x f 的定义域是( )A RB {}1 x xC {}1≠x x D{}0≠xx4.一个几何体的三视图如图所示,该集合体的体左视图俯视图积是( )A. 30B. 40C. 50D. 60 5.如果0 a ,那么21++a a 的最小值为( )A. 2B. 3 D. 46.已知过两点),4(),1,1(a B A -的直线斜率为1,那么a 的值是( ) A. 6- B. 4- C. 4 D. 67.65tan π等于( )A .1-;B .33-; C .22; D .1.8. 已知定义在R 上的函数)(x f 的图像是一条连续不断地曲线,且有部分对应值如表所示,那么函数)(x f 一定存在零点的区间是( )A. )1,(-∞B. )2,1(C. )3,2(D. ),3(+∞9.函数xy 1=,2x y =,xy 3=,x y 2log =中,在区间),0(+∞上单调递减的是( ) Axy 1=B 2x y =C xy 3= D x y 2log =10.已知直线02=--y x 与直线0=+y mx 垂直,那么m 的值是( )A. 2-B. 1-C. 1D. 211. 在同一坐标系中,函数xy 3=的图与xy )31(=的图象( ) A .关于x 轴对称; B .关于y 轴对称; C .关于原点x y =对称; D .关于直线x y =对称.12. 在等比数列{}n a 中,8,141==a a ,那么{}n a 的前5项和是( )A .31-B .15C .31D .6313.已知实数y x ,满足条件⎪⎩⎪⎨⎧≤≥++≤--00202y y x y x ,那么目标函数y x z 2+=的最小值是( )A. 6-B. 4-C. 2-D. 414. 某程序框图如图所示,执行该程序后输出的S 的值是( )A.32 B.43 C. 54D. 6515. 函数=y 2)cos (sin x x +的最小正周期是:( )A.2π;16. 已知那么)(x fA. )4,4(-B. ]6,6[-C. ]6,4()4,4( -D. ]6,4()4,6[ --17.边长为2的正三角形的顶点和各边的中点共6个点,从中任选两点,所选出的两点之间距离大于1的概率是( )A. 13B. 12C. 52D.5318. 设a ,b 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:① 如果//,//a b αα,那么//a b ; ②如果a ∥β ,a ⊂α,b ⊂β ,那么//a b ;③如果 βα⊥ , a ⊂α, 那么 β⊥a ; ④如果β⊥a ,//a b , b ⊂α, 那么βα⊥其中正确命题的序号是( )A. ①B. ②C. ③D. ④19. 在ABC ∆中,如果4,3,5===BC AC AB ,那么角∙等于:( )A.9; B.12; C.15; D.20. 20. 已知函数1)(-=ax x f 与x a x g )1()(-=的图像没有交点,那么实数的取值范围是( )A. ]0,(-∞B. )21,0(C. )1,21[ D. ),1[+∞13579110元第二部分 非选择题(共40分)二、填空题(共4个小题,每小题3分,共12分) 21.计算=+4log 9221 .22.一家电讯公司在某大学对学生每月的手机话费进行抽样调查,随机抽取了100名学生,将他们的手机话费情况进行统计分析,绘制成频率分布直方图(如图所示)。

2017北京卷数学试卷(理)及答案

2017北京卷数学试卷(理)及答案

1.若集合A ={x |–2x1},B={x |x–1或x3},则A B =(A ){x |–2x –1} (B ){x |–2x 3} (C ){x |–1x 1} (D ){x |1x 3}2.若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是 (A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 3.执行如图所示的程序框图,输出的s 值为(A )2 (B )32 (C )53 (D )854.若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )95.已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数6.设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 7.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)2(B)3(C)2(D)2 8.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)(A)1033(B)1053(C)1073(D)10939.若双曲线221yxm-=3m=_________.10.若等差数列{}na和等比数列{}nb满足a1=b1=–1,a4=b4=8,则22ab=_______.11.在极坐标系中,点A在圆22cos4sin40ρρθρθ--+=上,点P的坐标为(1,0),则|AP|的最小值为___________.12.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若1sin3α=,cos()αβ-=___________.13.能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为______________________________.14.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q1为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________.②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.15.在△ABC 中,A ∠ =60°,c =37a .(Ⅰ)求sin C 的值;(Ⅱ)若a =7,求△ABC 的面积.16.如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD =6,AB=4. (I )求证:M 为PB 的中点; (II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.17.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示为服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率; (Ⅱ)从图中A ,B ,C ,D 四人中随机学科网.选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(Ⅲ)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)18.已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.19.已知函数f (x )=e xcosx −x.(Ⅰ)求曲线y= f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,]上的最大值和最小值.20.设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,sx x x ⋅⋅⋅这s 个数中最大的数. (Ⅰ)若n a n=,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列;(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc Mn >;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.参考答案1.A【解析】试题分析:{}21 A B x x=-<<-I,故选A.2.B【解析】试题分析:()()()()111z i a i a a i=-+=++-,因为对应的点在第二象限,所以1010aa+<⎧⎨->⎩,解得:1a<-,故选B.3.C【解析】试题分析:0k=时,03<成立,第一次进入循环111,21k s+===,13<成立,第二次进入循环,2132,22k s+===,23<成立,第三次进入循环31523,332k s+===,33<否,输出53s=,故选C.4.D【解析】试题分析:如图,画出可行域,2z x y=+表示斜率为12-的一组平行线,当过点()3,3C时,目标函数取得最大值max3239z=+⨯=,故选D.5.A【解析】试题分析:()()113333x xxxf x f x--⎛⎫⎛⎫-=-=-=-⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.6.A【解析】试题分析:若0λ∃<,使m nλ=r r,即两向量反向,夹角是0180,那么0cos1800m n m n m n⋅==-<r r r r r rT,若0m n⋅<r r,那么两向量的夹角为(0090,180⎤⎦,并不一定反向,即不一定存在负数λ,使得λ=m n,所以是充分不必要条件,故选A. 7.B【解析】试题分析:几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l++=故选B.8.D【解析】试题分析:设36180310MxN==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x==-=⨯-=,所以93.2810x=,即MN最接近9310,故选D.9.2【解析】试题分析:221,a b m==,所以13c ma+==,解得2m=.10.1【解析】试题分析:设等差数列的公差和等比数列的公比为d 和q ,3138d q -+=-= ,求得2,3q d =-= ,那么221312a b -+==11.1【解析】2222:2440(1)(2)1C x y x y x y +--+=⇒-+-=e,所以min ||||211AP AC r =-=-=12.79-【解析】因为α与β关于y 轴对称,所以2k αβππ+=+ ,那么sin sin βα=,cos cos βα=-cos()cos cos sin sin αβαβαβ∴-=+=2227cos sin 2sin 19ααα-+=-=-13.-1,-2,-3(答案不唯一) 【解析】123,1(2)3->->--+-=- 14.1Q ;2.p【解析】作图可得11A B 中点纵坐标比2233,A B A B 中点纵坐标大,所以第一位选1Q分别作123,,B B B 关于原点的对称点123,,B B B ''',比较直线112233,,A B A B A B ''' 斜率,可得22A B '最大,所以选2.p 15.(Ⅰ)sin C (Ⅱ)△ABC的面积S =.【解析】解:(Ⅰ)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ===. (Ⅱ)因为7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232bb =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC 的面积113sin 836322S bc A ==⨯⨯⨯=.16.(I )详见解析(II )二面角B PD A --为锐角的大小为3π.; (III )直线MC 与平面BDP 所成角的正弦值为269.【解析】解:(I )设,AC BD 交点为E ,连接ME .因为PD ∥平面MAC ,平面MAC I 平面PBD ME =,所以PD ME ∥. 因为ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(II )取AD 的中点O ,连接OP ,OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图建立空间直角坐标系O xyz -,则2)P ,(2,0,0)D ,(2,4,0)B -,(4,4,0)BD =-u u u r ,(2,0,2)PD =u u u r.设平面BDP 的法向量为(,,)x y z =n ,则00BD PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n ,即440220x y x z -=⎧⎪⎨=⎪⎩. 令1x =,则1y =,2z =于是2)=n .平面PAD 的法向量为(0,1,0)=p ,所以1cos ,||||2⋅==<>n p n p n p .由题知二面角B PD A --为锐角,所以它的大小为3π.(III )由题意知2(1,M -,(2,4,0)D ,2(3,2,MC =u u u u r . 设直线MC 与平面BDP 所成角为α,则||26sin |cos ,|9||||MC MC MC α⋅===u u u u r u u u u r u u u u r <>n n n .所以直线MC 与平面BDP 所成角的正弦值为69. 17. (I )0.3(II )详见解析(III )在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差. 【解析】解:(Ⅰ)由图知,在服药的50名患者中,指标y 的值小于60的有15人, 所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为150.350=. (Ⅱ)由图知,A,B,C,D 四人中,指标x 的值大于1.7的有2人:A 和C. 所以ξ的所有可能取值为0,1,2.21122222222444C C C C 121(0),(1),(2)C 6C 3C 6P P P ξξξ=========.所以ξ的分布列为ξ 0 1 2P16 23 16故ξ的期望121()0121636E ξ=⨯+⨯+⨯=. (Ⅲ)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差. 18.(Ⅰ)抛物线C 的焦点坐标为(14,0),准线方程为14x =-. (Ⅱ)详见解析【解析】解:(Ⅰ)由抛物线C :22y px =过点P (1,1),得12p =. 所以抛物线C 的方程为2y x =. 抛物线C 的焦点坐标为(14,0),准线方程为14x =-. (Ⅱ)由题意,设直线l 的方程为12y kx =+(0k ≠),l 与抛物线C 的交点为11(,)M x y ,22(,)N x y .由212y kx y x ⎧=+⎪⎨⎪=⎩,得224(44)10k x k x +-+=. 则1221k x x k -+=,12214x x k=. 因为点P 的坐标为(1,1),所以直线OP 的方程为y x =,点A 的坐标为11(,)x y . 直线ON 的方程为22y y x x =,点B 的坐标为2112(,)y yx x . 因为21122112112222y y y y y y x x y x x x +-+-= 122112211()()222kx x kx x x x x +++-=122121(22)()2k x x x x x -++= 22211(22)42k k k k x --⨯+=0=,所以211122y y y x x +=. 故A 为线段BM 的中点. 19.(Ⅰ)切线方程为1y =(Ⅱ)()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【解析】解:(Ⅰ)因为()e cos xf x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减. 所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减. 因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 20.(Ⅰ)10,c =21c =-32c =-,证明见解析;(Ⅱ)详见解析【解析】(Ⅰ)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-,3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-.当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n=---=-=-L . 所以对任意1,1n n c n ≥=-,于是11n n c c +-=-, 所以{}n c 是等差数列.(Ⅱ)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++L 是等差数列.②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+-- 此时,123,,,,,n c c c c L L 是等差数列.③当10d <时, 当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n -+---==-+-++ 111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-, 故当n m ≥时,n c M n >.。

2017年北京市初中毕业生学业考试数学试题(附答案解析)

2017年北京市初中毕业生学业考试数学试题(附答案解析)

2017年北京市初中毕业生学业考试数学试题一、选择题(本题共30分,每小题3分)1.(3分)如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度2.(3分)若代数式有意义,则实数x的取值范围是()A.x=0 B.x=4 C.x≠0 D.x≠43.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>05.(3分)下列图形中,是轴对称图形但不是..中心对称图形的是()A.B.C.D.6.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.187.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.38.(3分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理...的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.(3分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.②C.①②D.①③二、填空题(本题共18分,每题3分)11.(3分)写出一个比3大且比4小的无理数:.12.(3分)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.13.(3分)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN =1,则S四边形ABNM= .14.(3分)如图,AB为⊙O的直径,C、D为⊙O上的点,=.若∠CAB=40°,则∠CAD= .15.(3分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.16.(3分)如图是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:4cos30°+(1﹣)0﹣+|﹣2|.18.(5分)解不等式组:.19.(5分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.20.(5分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD =S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+ ).易知,S△ADC =S△ABC,= ,= .可得S矩形NFGD =S矩形EBMF.21.(5分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k的取值范围.22.(5分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.23.(5分)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.24.(5分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.25.(5分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x40≤x≤50≤x≤60≤x≤70≤x≤80≤x≤90≤x人数部门4959697989≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为.(至少从两个不同的角度说明推断的合理性)26.(5分)如图,P是所对弦AB上一动点,过点P作PM⊥AB交于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm0 2.0 2.3 2.10.90(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为cm.27.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.28.(7分)在等腰直角△ABC中,∠A CB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.29.(8分)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.参考答案一、选择题(本题共30分,每小题3分)1.(3分)(2017•北京)如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度分析&根据点到直线的距离是垂线段的长度,可得答案.解答&解:由题意,得点P到直线l的距离是线段PB的长度,故选:B.点评&本题考查了点到直线的距离,利用点到直线的距离是解题关键.2.(3分)(2017•北京)若代数式有意义,则实数x的取值范围是()A.x=0 B.x=4 C.x≠0 D.x≠4分析&根据分式有意义的条件即可求出x的范围;解答&解:由代数式有意义可知:x﹣4≠0,∴x≠4,故选(D)点评&本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.3.(3分)(2017•北京)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥 C.四棱柱D.圆柱分析&侧面为三个长方形,底边为三角形,故原几何体为三棱柱.解答&解:观察图形可知,这个几何体是三棱柱.故选:A.点评&本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.4.(3分)(2017•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0分析&根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.解答&解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.点评&本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.5.(3分)(2017•北京)下列图形中,是轴对称图形但不是..中心对称图形的是()A.B. C.D.分析&根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解答&解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选A.点评&本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•北京)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18分析&根据多边形的内角和,可得答案.解答&解:设多边形为n边形,由题意,得(n﹣2)•180°=150n,解得n=12,故选:B.点评&本题考查了多边形的内角与外角,利用内角和公式是解题关键.7.(3分)(2017•北京)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.3分析&根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.解答&解:(a﹣)•===a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,故选C.点评&本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.8.(3分)(2017•北京)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理...的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多分析&利用折线统计图结合相应数据,分别分析得出符合题意的答案.解答&解:A、由折线统计图可得:与2015年相比,2016年我国与东欧地区的贸易额有所增长,正确,不合题意;B、由折线统计图可得:2011﹣2014年,我国与东南亚地区的贸易额2014年后有所下降,故逐年增长错误,故此选项错误,符合题意;C、2011﹣2016年,我国与东南亚地区的贸易额的平均值为:(3632.5+4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358,故超过4200亿美元,正确,不合题意,D、∵4554.4÷1368.2≈3.33,∴2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多,点评&此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.9.(3分)(2017•北京)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次分析&通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,根据行程问题的数量关系可以求出甲、乙的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.解答&解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B 错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.点评&本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.(3分)(2017•北京)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.②C.①② D.①③分析&根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.解答&解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的可能性是:308÷500=0.616,但“钉尖向上”的概率不一定是0.616,故①错误,随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,故选B.点评&本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.二、填空题(本题共18分,每题3分)11.(3分)(2017•北京)写出一个比3大且比4小的无理数:π.分析&根据无理数的定义即可.解答&解:写出一个比3大且比4小的无理数:π,故答案为:π.点评&此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.12.(3分)(2017•北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.分析&根据题意可得等量关系:①4个篮球的花费+5个足球的花费=435元,②篮球的单价﹣足球的单价=3元,根据等量关系列出方程组即可.解答&解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:.点评&此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.13.(3分)(2017•北京)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S 四边形ABNM= 3 .分析&证明MN是△ABC的中位线,得出MN∥AB,且MN=AB,证出△CMN∽△CAB,根据面积比等于相似比平方求出△CMN与△CAB的面积比,继而可得出△CMN的面积与四边形ABNM的面积比.最后求出结论.解答&解:∵M,N分别是边AC,BC的中点,∴MN是△ABC的中位线,∴MN∥AB,且MN=AB,∴△CMN∽△CAB,∴=()2=,∴=,∴S四边形ABNM=3S△CMN=3×1=3.故答案为:3.点评&本题考查了相似三角形的判定与性质、三角形中位线定理;熟练掌握三角形中位线定理,证明三角形相似是解决问题的关键.14.(3分)(2017•北京)如图,AB为⊙O的直径,C、D为⊙O上的点,=.若∠CAB=40°,则∠CAD= 25°.分析&先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.解答&解:如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵=,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案为:25°.点评&本题考查的是圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解本题的关键是作出辅助线.15.(3分)(2017•北京)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB .分析&根据旋转的性质,平移的性质即可得到由△OCD得到△AOB的过程.解答&解:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB(答案不唯一).故答案为:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.点评&考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.16.(3分)(2017•北京)如图是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线;90°的圆周角所对的弦是直径;圆的定义..分析&由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.解答&解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.点评&本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.(5分)(2017•北京)计算:4cos30°+(1﹣)0﹣+|﹣2|.分析&首先利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.解答&解:原式=4×+1﹣2+2=2﹣2+3=3.点评&此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)(2017•北京)解不等式组:.分析&利用不等式的性质,先求出两个不等式的解集,再求其公共解.解答&解:,由①式得x<3;由②式得x<2,所以不等式组的解为x<2.点评&此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(5分)(2017•北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.分析&根据等腰三角形的性质得到∠ABC=C=72°,根据角平分线的定义得到∠ABD=∠DBC=36°,∠BDC=72°,根据等腰三角形的判定即可得到结论.解答&证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC=36°,∠BDC=72°,∴∠A=∠ABD,∠BDC=∠C,∴AD=BD=BC.点评&本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.20.(5分)(2017•北京)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(S△AEF+ S△FCM).易知,S△ADC=S△ABC,S△ANF= S△AEF,S△FGC= S△FMC.可得S矩形NFGD=S矩形EBMF.分析&根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.解答&证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣( S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分别为 S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.点评&本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.21.(5分)(2017•北京)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k的取值范围.分析&(1)根据方程的系数结合根的判别式,可得△=(k﹣1)2≥0,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x1=2、x2=k+1,根据方程有一根小于1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.解答&(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.点评&本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于1,找出关于k的一元一次不等式.22.(5分)(2017•北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.分析&(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)在Rt△ACD中只要证明∠ADC=60°,AD=2即可解决问题;解答&(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)解:连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=1,∵AD=2BC=2,∴sin∠ADB=,∴∠ADB=30°,∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=2,∴CD=1,AC=.点评&本题考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.23.(5分)(2017•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.分析&(1)将A点代入y=x﹣2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.解答&解:(1)将A(3,m)代入y=x﹣2,∴m=3﹣2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,(2)①当n=1时,P(1,1),令y=1,代入y=x﹣2,x﹣2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x﹣2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点评&本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.24.(5分)(2017•北京)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.分析&(1)欲证明DB=DE,只要证明∠DEB=∠DBE;(2)作DF⊥AB于F,连接OE.只要证明∠AOE=∠DEF,可得sin∠DEF=sin∠AOE==,由此求出AE即可解决问题.解答&(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB于F,连接OE.∵DB=DE,AE=EB=6,∴EF=BE=3,OE⊥AB,在Rt△EDF中,DE=BD=5,EF=3,∴DF==4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE==,∵AE=6,∴AO=.∴⊙O的半径为.点评&本题考查切线的性质、勾股定理、垂径定理、锐角三角函数、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.25.(5分)(2017•北京)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:。

2017年-2019年普通高等学校招生全国统一考试数学试题理(北京卷,参考解析)

2017年-2019年普通高等学校招生全国统一考试数学试题理(北京卷,参考解析)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。

穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。

食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。

如果可能的话,每天吃一两个水果,补充维生素。

另外,进考场前一定要少喝水!住:考前休息很重要。

好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。

考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。

用:出门考试之前,一定要检查文具包。

看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。

行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。

绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合A ={x |–2x1},B={x |x–1或x3},则AB =(A ){x |–2x –1} (B ){x |–2x 3} (C ){x |–1x1} (D ){x |1x3}【答案】A【解析】{}21A Bx x =-<<-I ,故选A.(2)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【解析】()()()()111z i a i a a i =-+=++-,因为对应的点在第二象限,所以1010a a +<⎧⎨->⎩ ,解得:1a <-,故选B.(3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53(D )85【答案】C【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C.(4)若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.(5)已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.(6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】A【解析】若0λ∃<,使m n λ=r r,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<r r r rr r,反过来,若0m n ⋅<r r,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A.(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )2 【答案】B【解析】几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=选B.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市2017年春季普通高中会考数学试卷(分析版)一、在每小题给出的四个备选答案中,只有一项是符合题目要求的.1.已知集合A={﹣1,1},B={1,﹣1,3},那么A∩B=等于()A.{﹣1}B.{1}C.{﹣1,1}D.{1,﹣1,3}2.已知向量,那么等于()A. B.C.D.3.已知向量,,且,那么x的值是()A.﹣3 B.3 C.D.4.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为()A.120 B.40 C.30 D.205.已知点A(2,m),B(3,3),直线AB的斜率为1,那么m的值为()A.1 B.2 C.3 D.46.直线x+2y﹣4=0和直线2x﹣y+2=0的交点坐标是()A.(2,0)B.(2,1)C.(0,2)D.(1,2)7.已知向量满足,,且和夹角为30°,那么等于()A.1 B.C.3 D.8.在△ABC中,a=2,c=1,∠B=60°,那么b等于()A.B.C.1 D.9.如果直线l1:2x﹣y﹣1=0和直线l2:2x+(a+1)y+2=0平行,那么a等于()A.﹣2 B.﹣1 C.1 D.210.当x∈[0,2π]时,函数y=sinx的图象和直线的公共点的个数为()A.0 B.1 C.2 D.311.已知f(x)=log3x,f(a)>f(2),那么a的取值范围是()A.{a|a>2}B.{a|1<a<2}C.D.12.不等式组,表示的平面区域是()A.B.C.D.13.等于()A.B.C.D.14.给出下面四个命题:①三个不同的点确定一个平面;②一条直线和一个点确定一个平面;③空间两两相交的三条直线确定一个平面;④两条平行直线确定一个平面.其中正确的命题是()A.①B.②C.③D.④15.在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为()A.1 B.C.D.16.如果a+b=1,那么ab的最大值是()A.B.C.D.117.等于()A.B.C.D.18.已知函数.关于f(x)的性质,给出下面四个判断:①f(x)的定义域是R;②f(x)的值域是R;③f(x)是减函数;④f(x)的图象是中心对称图形.其中正确的判断是()A.①B.②C.③D.④19.如果圆C:(x﹣a)2+(y﹣3)2=5的一条切线的方程为y=2x,那么a的值为()A.4或1 B.﹣1或4 C.1或﹣4 D.﹣1或﹣420.中国共产党第十八届中央委员会第五次全体会议认为,到二○二○年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二○二○年国内生产总值和城乡居民人均收入比二0一0年翻一番,产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从二0一一年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了依据“到二0二0年城乡居民人均收入比二0一0年翻一番”列出的关于p的四个关系式:①(1+p%)×10=2;②(1+p%)10=2;③lg(1+p%)=2;④1+10×p%=2.其中正确的是()A.①B.②C.③D.④21.甲乙两名篮球运动员在4场比赛中的得分情况如图所示.v1,v2分别表示甲、乙二人的平均得分,s1,s2分别表示甲、乙二人得分的方差,那么v1和v2,s1和s2的大小关系是()A.v1>v2,s1>s2B.v1<v2,s1>s2C.v1>v2,s1<s2D.v1<v2,s1<s2 22.已知直线m,n,l,平面α,β.给出下面四个命题:()①;②;③;④.其中正确是()A.①B.②C.③D.④23.如果关于x的不等式x2<ax+b的解集是{x|1<x<3},那么b a等于()A.﹣81 B.81 C.﹣64 D.6424.一个几何体的三视图如图所示,那么该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱25.“远望嵬嵬塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯?”源自明代数学家吴敬所著的《九章詳註比纇算法大全》,通过计算得到的答案是()A.2 B.3 C.4 D.5二、解答题(共5小题,满分25分)26.(5分)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.27.(5分)已知函数,其中ω>0,x∈R.(1)f(0)=;(2)如果函数f(x)的最小正周期为π,当时,求f(x)的最大值.28.(5分)已知数列{a n},.(1)判断数列{a n}是否为等差数列;(2)求数列{a n}的前n项和S n.29.(5分)已知点P(﹣2,2)在圆O:x2+y2=r2(r>0)上,直线l和圆O交于A,B两点.(1)r=;(2)如果△PAB为等腰三角形,底边,求直线l的方程.30.(5分)在数学课外活动中,小明同学进行了糖块溶于水的实验:将一块质量为7克的糖块放入一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得未溶解糖块的质量为3.5克.联想到教科书中研究“物体冷却”的问题,小明发现可以用指数型函数S=ae﹣kt(a,k是常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t分钟末未溶解糖块的质量.(1)a=;(2)求k的值;(3)设这个实验中t分钟末已溶解的糖块的质量为M,请画出M随t变化的函数关系的草图,并简要描述实验中糖块的溶解过程.2017年北京市春季普通高中会考数学试卷参考答案和试题分析一、在每小题给出的四个备选答案中,只有一项是符合题目要求的.1.已知集合A={﹣1,1},B={1,﹣1,3},那么A∩B=等于()A.{﹣1}B.{1}C.{﹣1,1}D.{1,﹣1,3}【考点】交集及其运算.【分析】根据交集的定义写出A∩B即可.【解答】解:集合A={﹣1,1},B={1,﹣1,3},那么A∩B={﹣1,1}.故选:C.【点评】本题考查了交集的定义和使用问题,是基础题目.2.已知向量,那么等于()A. B.C.D.【考点】向量的加法及其几何意义;向量的减法及其几何意义.【分析】利用向量运算法则求解.【解答】解:==.故选:C.【点评】本题考查向量的运算,是基础题,解题时要认真审题,注意向量运算法则的合理运用.3.已知向量,,且,那么x的值是()A.﹣3 B.3 C.D.【考点】数量积判断两个平面向量的垂直关系.【分析】利用向量垂直的性质直接求解.【解答】解:∵向量,,且,∴=3﹣x=0,解得x=3.故选:B.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.4.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为()A.120 B.40 C.30 D.20【考点】分层抽样方法.【分析】根据分层抽样的定义即可得到结论.【解答】解:∵一年级学生400人,∴抽取一个容量为200的样本,用分层抽样法抽取的一年级学生人数为,解得n=40,即一年级学生人数应为40人,故选:B.【点评】本题主要考查分层抽样的使用,比较基础.5.已知点A(2,m),B(3,3),直线AB的斜率为1,那么m的值为()A.1 B.2 C.3 D.4【考点】直线的斜率.【分析】利用直线的斜率公式可得=1,解方程求得m 的值.【解答】解:由于A(2,m),B(3,3),直线AB的斜率为1,∴=1,∴m=2,故选:B.【点评】本题考查直线的斜率公式的使用,是一道基础题.6.直线x+2y﹣4=0和直线2x﹣y+2=0的交点坐标是()A.(2,0)B.(2,1)C.(0,2)D.(1,2)【考点】两条直线的交点坐标.【分析】将二直线的方程联立解出即可.【解答】解:联立,解得x=0,y=2,直∴线x+2y﹣4=0和直线2x﹣y+2=0的交点坐标是(0,2).故选:C.【点评】正确理解方程组的解和直线的交点的坐标之间的关系是解题的关键.7.已知向量满足,,且和夹角为30°,那么等于()A.1 B.C.3 D.【考点】平面向量数量积的运算.【分析】利用已知条件,通过向量的数量积公式求解即可.【解答】解:向量满足,,且和夹角为30°,那么=||||cos=2=3.故选:C.【点评】本题考查平面向量的数量积的使用,考查计算能力.8.在△ABC中,a=2,c=1,∠B=60°,那么b等于()A.B.C.1 D.【考点】余弦定理.【分析】由题意和余弦定理列出式子求出b的值.【解答】解:因为在△ABC中,a=2,c=1,∠B=60°,所以由余弦定理得,b2=a2+c2﹣2accosB=4+1﹣=3,解得b=,故选B.【点评】本题考查了余弦定理的简单使用,属于基础题.9.如果直线l1:2x﹣y﹣1=0和直线l2:2x+(a+1)y+2=0平行,那么a等于()A.﹣2 B.﹣1 C.1 D.2【考点】直线的一般式方程和直线的平行关系.【分析】直接由两直线平行的条件列式求解a的值.【解答】解:∵直线l1:2x﹣y﹣1=0和直线l2:2x+(a+1)y+2=0平行,∴a+1=﹣1,解得a=﹣2.故选:A.【点评】本题考查了直线的一般式方程和直线平行的关系,关键是熟记由直线的一般式方程得到直线平行的条件,是基础题.10.当x∈[0,2π]时,函数y=sinx的图象和直线的公共点的个数为()A.0 B.1 C.2 D.3【考点】根的存在性及根的个数判断.【分析】根据曲线和方程之间的关系,直接作图即可得到结论.【解答】解:由y=sinx和y=,如图:两条曲线的图象的交点个数为2个.方程有2个解.故选:C.【点评】本题主要考查函数交点个数的判断,利用函数和方程之间的关系,直接进行求解即可,比较基础.11.已知f(x)=log3x,f(a)>f(2),那么a的取值范围是()A.{a|a>2}B.{a|1<a<2}C.D.【考点】对数函数的单调性和特殊点.【分析】由题意,f(x)=log3x,函数单调递增,即可得出结论.【解答】解:由题意,f(x)=log3x,函数单调递增,∵f(a)>f(2),∴a>2,故选A.【点评】本题考查对数函数的单调性,考查学生的计算能力,比较基础.12.不等式组,表示的平面区域是()A.B.C.D.【考点】简单线性规划;二元一次不等式(组)和平面区域.【分析】利用直线确定边界,特殊点判断区域,求解即可.【解答】解:在判吗直角坐标系中,画出直线x=1,x+y﹣3=0,x﹣y﹣3=0,判断(2,0)满足不等式组,所以不等式组不是的可行域为:故选:D.【点评】本题主要考查了二元一次不等式表示平面区域的确定,一般是找特殊点代入进行检验,属于基础试题.13.等于()A.B.C.D.【考点】二倍角的正弦.【分析】利用二倍角的正弦函数公式,特殊角的三角函数值即可计算得解.【解答】解:=sin==.故选:B.【点评】本题主要考查了二倍角的正弦函数公式,特殊角的三角函数值在三角函数化简求值中的使用,考查了转化思想,属于基础题.14.给出下面四个命题:①三个不同的点确定一个平面;②一条直线和一个点确定一个平面;③空间两两相交的三条直线确定一个平面;④两条平行直线确定一个平面.其中正确的命题是()A.①B.②C.③D.④【考点】命题的真假判断和使用.【分析】①,三个不共线的点确定一个平面,故错;②,一条直线和直线外一个点确定一个平面,故错;③,空间两两相交的三条直线,且不能交于同一点,确定一个平面,故错;④,两条平行直线确定一个平面,正确.【解答】解:对于①,三个不共线的点确定一个平面,故错;对于②,一条直线和直线外一个点确定一个平面,故错;对于③,空间两两相交的三条直线,且不能交于同一点,确定一个平面,故错;对于④,两条平行直线确定一个平面,正确.故选:D.【点评】本题考查了命题真假的判定,属于基础题.15.在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为()A.1 B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n==3,再求出甲同学被选中包含听基本事件个数m==2,由此能求出甲同学被选中的概率.【解答】解:在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,基本事件总数n==3,甲同学被选中包含听基本事件个数m==2,∴甲同学被选中的概率p==.故选:D.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.16.如果a+b=1,那么ab的最大值是()A.B.C.D.1【考点】基本不等式.【分析】由于求ab的最大值,只考虑a,b>0时即可.利用基本不等式的性质即可得出.【解答】解:由于求ab的最大值,只考虑a,b>0时即可.∵a+b=1,∴,解得ab≤,当且仅当a=b=时取等号.那么ab的最大值是.故选:B.【点评】本题考查了不等式的基本性质,考查了推理能力和计算能力,属于基础题.17.等于()A.B.C.D.【考点】运用诱导公式化简求值.【分析】直接利用诱导公式化简求值即可.【解答】解:由cos=cos(672π+)=cos=.故选:B.【点评】本题考查诱导公式的使用,考查计算能力,属于基础题.18.已知函数.关于f(x)的性质,给出下面四个判断:①f(x)的定义域是R;②f(x)的值域是R;③f(x)是减函数;④f(x)的图象是中心对称图形.其中正确的判断是()A.①B.②C.③D.④【考点】命题的真假判断和使用.【分析】函数的图象可由函数y=向右平移一个单位得到,类比y=的性质可判定.【解答】解:函数的图象可由函数y=向右平移一个单位得到,所以值域为{y|y≠0};单调减区间为(﹣∞,0),(0,+∞);对称中心为(1,0)故④正确,故选:D.【点评】本题考查了函数的定义域、值域、对称性,属于基础题.19.如果圆C:(x﹣a)2+(y﹣3)2=5的一条切线的方程为y=2x,那么a的值为()A.4或1 B.﹣1或4 C.1或﹣4 D.﹣1或﹣4【考点】圆的切线方程.【分析】由题意,圆心到直线的距离d==,即可求出a的值.【解答】解:由题意,圆心到直线的距离d==,∴a=﹣1或4,故选B.【点评】本题考查直线和圆的位置关系,考查点到直线的距离公式,属于中档题.20.中国共产党第十八届中央委员会第五次全体会议认为,到二○二○年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二○二○年国内生产总值和城乡居民人均收入比二0一0年翻一番,产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从二0一一年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了依据“到二0二0年城乡居民人均收入比二0一0年翻一番”列出的关于p的四个关系式:①(1+p%)×10=2;②(1+p%)10=2;③lg(1+p%)=2;④1+10×p%=2.其中正确的是()A.①B.②C.③D.④【考点】命题的真假判断和使用.【分析】设从二0一一年起,城乡居民人均收入每一年比上一年都增长p%.则由到二0二0年城乡居民人均收入比二0一0年翻一番,可得:(1+p%)10=2;进而得到答案.【解答】解:设从二0一一年起,城乡居民人均收入每一年比上一年都增长p%.则由到二0二0年城乡居民人均收入比二0一0年翻一番,可得:(1+p%)10=2;正确的关系式为②;故选:B【点评】本题以命题的真假判断和使用为载体,考查了函数模型的选择和使用,难度基础21.甲乙两名篮球运动员在4场比赛中的得分情况如图所示.v1,v2分别表示甲、乙二人的平均得分,s1,s2分别表示甲、乙二人得分的方差,那么v1和v2,s1和s2的大小关系是()A.v1>v2,s1>s2B.v1<v2,s1>s2C.v1>v2,s1<s2D.v1<v2,s1<s2【考点】茎叶图.【分析】由茎叶图先求出平均数,再计算方差.【解答】解:由茎叶图性质得:V1==14,V2==13,S1= [(9﹣14)2+(13﹣14)2+(14﹣14)2+(20﹣14)2]=,S2= [(8﹣13)2+(9﹣13)2+(13﹣13)2+(22﹣13)2]=.∴V1>V2,S1<S2.故选:C.【点评】本题考查两组数据的平均数和方差的大小的比较,是基础题,解题时要认真审题,注意茎叶图的性质的合理运用.22.已知直线m,n,l,平面α,β.给出下面四个命题:()①;②;③;④.其中正确是()A.①B.②C.③D.④【考点】空间中直线和平面之间的位置关系;空间中直线和直线之间的位置关系;平面和平面之间的位置关系.【分析】在①中,m∥β或m⊂β;在②中,m和n相交、平行或异面;在③中,由线面平行的判定定理知n∥β;在④中,n∥α或n⊂α.【解答】解:由直线m,n,l,平面α,β,知:在①中,m∥β或m⊂β,故①错误;在②中,m和n相交、平行或异面,故②错误;在③中,,由线面平行的判定定理知n∥β,故③正确;在④中,n∥α或n⊂α,故④错误.故选:C.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.23.如果关于x的不等式x2<ax+b的解集是{x|1<x<3},那么b a等于()A.﹣81 B.81 C.﹣64 D.64【考点】一元二次不等式的解法.【分析】根据一元二次不等式的解集,利用根和系数的关系求出a、b的值,再计算b a的值.【解答】解:不等式x2<ax+b可化为x2﹣ax﹣b<0,其解集是{x|1<x<3},那么,由根和系数的关系得,解得a=4,b=﹣3;所以b a=(﹣3)4=81.故选:B.【点评】本题考查了一元二次不等式的解集以及指数的计算问题,是基础题目.24.一个几何体的三视图如图所示,那么该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱【考点】简单空间图形的三视图.【分析】由三视图可得,直观图为正方体中的一个正四面体,即可得出结论.【解答】解:由三视图可得,直观图为正方体中,面上对角线构成的一个正四面体,故选A.【点评】本题考查三视图和直观图的转化,考查数形结合的数学思想,比较基础.25.“远望嵬嵬塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯?”源自明代数学家吴敬所著的《九章詳註比纇算法大全》,通过计算得到的答案是()A.2 B.3 C.4 D.5【考点】等比数列的前n项和.【分析】设尖头a盏灯,根据题意由上往下数第n层有2n﹣1a盏灯,由此利用等比数列性质能求出结果.【解答】解:由题意设尖头a盏灯,根据题意由上往下数第n层有2n﹣1a盏灯,所以一共有(1+2+4+8+16+32+64)a=381盏灯,解得a=3.故选:B.【点评】本题考查等比数列在生产生活中的实际运用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.二、解答题(共5小题,满分25分)26.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.【考点】直线和平面垂直的性质;直线和平面平行的判定.【分析】(1)证明MC1NB为平行四边形,所以C1N∥MB,即可证明MB∥平面AC1N;(2)证明AC⊥平面BCC1B1,即可证明AC⊥MB.【解答】证明:(1)证明:在三棱柱ABC﹣A1B1C1中,因为点M,N分别是B1C1,BC的中点,所以C1M∥BN,C1M=BN.所以MC1NB为平行四边形.所以C1N∥MB.因为C1N⊂平面AC1N,NB⊄平面AC1N,所以MB∥平面AC1N;(2)因为CC1⊥底面ABC,所以AC⊥CC1.因为AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1.因为MB⊂平面BCC1B1,所以AC⊥MB.【点评】本题考查线面平行的判定,考查线面垂直的判定和性质,考查学生分析解决问题的能力,属于中档题.27.已知函数,其中ω>0,x∈R.(1)f(0)=;(2)如果函数f(x)的最小正周期为π,当时,求f(x)的最大值.【考点】三角函数的最值;三角函数的周期性及其求法.【分析】(1)直接计算可得结论;(2)求出函数的分析式,再利用三角函数的性质求f(x)的最大值.【解答】解:(1).…(2分)故答案为:.(2)因为f(x)的最小正周期为π,ω>0,所以.解得ω=2.所以.因为,所以.可得.所以当时,f(x)的最大值是1.…(5分)【点评】本题考查特殊角三角函数值,考查三角函数的图象和性质,考查学生分析解决问题的能力,属于中档题.28.已知数列{a n},.(1)判断数列{a n}是否为等差数列;(2)求数列{a n}的前n项和S n.【考点】数列的求和.【分析】(1)利用等差数列的定义,反例判断即可.(2)通过数列的项数分别求解数列的和即可.【解答】解:(1)a2﹣a1=1,a8﹣a7=7﹣8=﹣1,数列不是等差数列.…(1分)(2)解:①当n≤7时,=.②当n>7时,==.…(5分)【点评】本题考查数列求和,等差数列的判断,考查计算能力.29.已知点P(﹣2,2)在圆O:x2+y2=r2(r>0)上,直线l和圆O交于A,B 两点.(1)r=2;(2)如果△PAB为等腰三角形,底边,求直线l的方程.【考点】直线和圆的位置关系.【分析】(1)利用点P(﹣2,2)在圆O:x2+y2=r2(r>0)上,即可求出r;(2)利用弦长公式,即可求直线l的方程.【解答】解:(1)∵点P(﹣2,2)在圆O:x2+y2=r2(r>0)上,∴r=2.…(1分)(2)因为△PAB为等腰三角形,且点P在圆O上,所以PO⊥AB.因为PO的斜率,所以可设直线l的方程为y=x+m.由得2x2+2mx+m2﹣8=0.△=4m2﹣8×(m2﹣8)=64﹣4m2>0,解得﹣4<m<4.设A,B的坐标分别为(x1,y1),(x2,y2),可得.所以.解得m=±2.所以直线l的方程为x﹣y+2=0,x﹣y﹣2=0.…(5分)【点评】本题考查圆的方程,考查直线和圆的位置关系,考查学生分析解决问题的能力,属于中档题.30.在数学课外活动中,小明同学进行了糖块溶于水的实验:将一块质量为7克的糖块放入一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得未溶解糖块的质量为3.5克.联想到教科书中研究“物体冷却”的问题,小明发现可以用指数型函数S=ae﹣kt(a,k是常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t分钟末未溶解糖块的质量.(1)a=7;(2)求k的值;(3)设这个实验中t分钟末已溶解的糖块的质量为M,请画出M随t变化的函数关系的草图,并简要描述实验中糖块的溶解过程.【考点】函数模型的选择和使用.【分析】(1)由题意,t=0,S=a=7;(2)因为5分钟末测得未溶解糖块的质量为3.5克,可求k的值;(3)根据函数分析式可得函数的图象,即可得出结论.【解答】解:(1)由题意,t=0,S=a=7.…(7分)(2)因为5分钟末测得未溶解糖块的质量为3.5克,所以3.5=7e﹣5k.解得.…(2分)(3)M随t变化的函数关系的草图如图所示.溶解过程,随着时间的增加,逐渐溶解.…(5分)故答案为:7.【点评】本题考查利用数学知识解决实际问题,考查指数型函数,属于中档题.。

相关文档
最新文档