整数规划和多目标规划模型
分配问题知识点总结

分配问题知识点总结一、问题引入在日常生活和工作中,分配问题是一个十分常见的问题。
无论是在家庭中分配家务,还是在工作中分配资源和任务,都可能存在分配问题。
在数学中,分配问题也是一个常见的问题,它涉及到如何有效地分配资源或任务给一组个体或单位,以使得整体效益最大化或个体满意度最高。
分配问题常常涉及到资源有限、需求有限、利益最大化等方面的考虑。
二、基本概念1. 分配问题的定义分配问题是指将有限资源或任务分配给若干个个体或单位,使得各个个体或单位获得最大的效益或满意度的问题。
这类问题在生产、经济、管理等领域都有很大的应用。
2. 分配问题的基本性质分配问题通常涉及到资源有限、需求有限、效益最大化等方面的考虑。
基本性质包括资源限制、需求限制、效益目标和分配方式等。
在求解分配问题时,需要考虑到这些基本性质。
三、分配问题的分类根据不同的背景和目标,分配问题可以分为多种类型,主要包括以下几类:1. 资源分配问题资源分配问题主要涉及到如何将有限的资源分配给不同的个体或单位,以满足各方的需求或实现最大的效益。
典型的资源分配问题包括资金分配、人力分配、物资分配等。
2. 任务分配问题任务分配问题主要涉及到如何将一组任务分配给不同的个体或单位,以使得任务完成效率最高或效益最大。
典型的任务分配问题包括项目任务分配、工作任务分配等。
3. 效益最大化问题效益最大化问题主要涉及到如何通过正确的分配方式,使得整体效益最大化。
这类问题通常包括资源有限、需求量有限、成本最小化等因素的考虑。
4. 最优分配问题最优分配问题主要涉及到如何找到最优的分配方案,使得各方的需求得到最大满足。
这类问题通常是在资源分配、任务分配等方面展开讨论。
四、常见的分配问题模型在实际应用中,分配问题通常可以通过数学模型来描述和求解。
常见的分配问题模型包括以下几种:1. 线性规划模型线性规划模型是一种常用的数学模型,可以用来描述资源分配、任务分配、成本最小化等问题。
第5讲 整数规划、非线性规划、多目标规划1

第5讲整数规划、非线性规划、多目标规划一、整数规划1、概念数学规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
整数规划的分类:如不加特殊说明,一般指整数线性规划。
对于整数线性规划模型大致可分为两类:1)变量全限制为整数时,称纯(完全)整数规划。
2)变量部分限制为整数的,称混合整数规划。
2、整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
例1原线性规划为21min x x z +=s.t.⎩⎨⎧≥≥=+0,05422121x x x x 其最优实数解为:01=x ,452=x ,45min =z ③有可行解(当然就存在最优解),但最优值变差。
例2原线性规划为21min x x Z +=s.t.⎩⎨⎧≥≥=+0,06422121x x x x 其最优实数解为:01=x ,232=x ,23min =z 若限制整数得:11=x ,12=x ,2min =z 。
(ii )整数规划最优解不能按照实数最优解简单取整而获得。
3、0-1整数规划0−1型整数规划是整数规划中的特殊情形,它的变量j x 仅取值0或1。
这时j x 称为0−1变量,或称二进制变量。
j x 仅取值0或1这个条件可由下述约束条件:10≤≤j x ,且为整数所代替,是和一般整数规划的约束条件形式一致的。
在实际问题中,如果引入0−1变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。
引入10-变量的实际问题:(1)投资场所的选定——相互排斥的计划例3某公司拟在市东、西、南三区建立门市部。
拟议中有7个位置(点))7,,2,1( =i A i 可供选择。
规定在东区:由321,,A A A 三个点中至多选两个;在西区:由54,A A 两个点中至少选一个;在南区:由76,A A 两个点中至少选一个。
整数规划和多目标规划模型

1 整数规划的MATLAB 求解方法(一) 用MATLAB 求解一般混合整数规划问题由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。
现在有许多用户发布的工具箱可以解决该类问题。
这里我们给出开罗大学的Sherif 和Tawfik 在MATLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。
intprog 函数的调用格式如下:[x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∈=≥≤≤=≤=)取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ),,2,1(0..min在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ⨯1维矩阵,eq A 为n m ⨯2维矩阵。
在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。
其中c 为目标函数所对应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。
Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。
lb 和ub 为设计变量对应的上界和下界。
M 为具有整数约束条件限制的设计变量的序号,例如问题中设计变量为621,,,x x x ,要求32,x x 和6x 为整数,则M=[2;3;6];若要求全为整数,则M=1:6,或者M=[1;2;3;4;5;6]。
数学规划及其应用

目录
• 数学规划概述 • 线性规划 • 非线性规划 • 整数规划 • 多目标规划 • 动态规划
01
数学规划概述
定义与分类
定义
数学规划是运筹学的一个重要分 支,主要研究在一定约束条件下 ,如何优化一个或多个目标函数 。
分类
根据目标函数和约束条件的不同 ,数学规划可以分为线性规划、 非线性规划、整数规划、动态规 划等。
感谢您的观看
THANKS
逐步逼近原问题的最优解。
割平面法
02
通过添加割平面方程来限制决策变量的取值范围,逐步逼近最
优解。
爬山法
03
通过不断搜索邻近解,逐步寻找最优解,类似于爬山的过程。
整数规划的应用实例
生产计划优化
通过整数规划方法优化生产计划,提高生产效 率和降低成本。
物流配送优化
通过整数规划方法优化物流配送路线和车辆调 度,降低运输成本和提高配送效率。
迭代法求解
从初始状态开始,不断迭代更新状态和决策,直到达到最优解。
动态规划的应用实例
最短路径问题
在给定的图中寻找起点到终点的最短路径。
背包问题
给定一组物品,每种物品都有自己的重量和价值, 求在不超过总重量限制的情况下,使得总价值最大 。
排班问题
给定一组员工和任务,求在满足任务需求的 同时,使得员工的工作时间和休息时间最合 理。
数学规划的基本概念
01
02
03
目标函数
要最大或最小化的函数, 通常表示为决策变量的函 数。
约束条件
限制决策变量取值的条件, 通常表示为决策变量的等 式或不等式。
决策变量
在数学规划中需要选择的 变量,通常表示为x1, x2, ... , xn。
决策模型知识点总结

决策模型知识点总结一、决策模型的基本概念1.1 决策模型的定义决策模型是指对决策问题进行形式化描述和分析的数学模型或者计算机模型。
它是对决策问题中的决策者、决策的目标、决策的条件以及可能的决策方案进行系统化的表达、分析和比较的工具。
1.2 决策模型的分类根据不同的分类标准,决策模型可以分为多种类型,常见的分类包括:(1)决策环境的分类:确定性模型、随机模型和不确定性模型;(2)决策者的分类:单人决策模型和多人博弈模型;(3)决策问题的分类:多目标决策模型和单目标决策模型;(4)模型的形式和用途:数学模型、计算机模型、仿真模型等。
1.3 决策模型的特点决策模型具有形式简练、准确性高、计算精密、易于分析和优化等特点,可以帮助决策者做出准确、科学的决策,提高决策效率和决策质量。
二、决策模型的建立与求解2.1 决策模型的建立步骤(1)确定决策者、决策目标和影响决策的条件;(2)确定可能的决策方案;(3)建立决策模型,包括决策变量、决策目标函数、约束条件等;(4)确定求解方法,对决策模型进行求解。
2.2 决策模型的求解方法常见的决策模型求解方法包括:(1)数学规划方法,包括线性规划、整数规划、非线性规划等;(2)决策树方法,包括期望值决策树、价值决策树等;(3)决策支持系统方法,包括专家系统、模拟等。
2.3 决策模型的评价方法决策模型的评价方法包括:(1)灵敏度分析,分析模型中参数变动对决策结果的影响;(2)稳健性分析,评价模型对不确定因素的抗风险能力;(3)效果验证,通过实际运用来验证模型的效果。
三、常见的经典决策模型3.1 线性规划模型线性规划模型是研究一个包含若干线性约束条件下的线性目标函数最优值的数学方法。
线性规划模型适用范围广泛,常用于生产计划、资源配置等领域。
3.2 整数规划模型整数规划模型是在线性规划模型的基础上,限制决策变量为整数的规划模型。
整数规划模型适用于需求具有离散性的问题,如项目选址、设备分配等领域。
(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点整数规划IP (integer programming ):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。
例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。
松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。
若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。
一、整数线性规划数学模型的一般形式∑==nj jj x c Z 1min)max(或中部分或全部取整数n j nj i jij x x x mj ni x b xa ts ,...,,...2,1,...,2,10),(.211==≥=≥≤∑=整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pure integer linear programming ):指全部决策变量都必须取整数值的整数线性规划。
有时,也称为全整数规划.2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。
3、0—1型整数线性规划(zero —one integer liner programming ):指决策变量只能取值0或1的整数线性规划。
1 解整数规划问题0—1型整数规划0-1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的变量xi 称为0-1变量,或称为二进制变量.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z0—1型整数规划中0—1变量作为逻辑变量(logical variable ),常被用来表示系统是否处于某一特定状态,或者决策时是否取某个方案。
数学建模-数学规划模型

将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类
数学建模常用模型及代码

数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 整数规划的MATLAB 求解方法(一) 用MATLAB 求解一般混合整数规划问题由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。
现在有许多用户发布的工具箱可以解决该类问题。
这里我们给出开罗大学的Sherif 和Tawfik 在MATLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。
intprog 函数的调用格式如下:[x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∈=≥≤≤=≤=)取整数(M j x n i x ubx lb b x A b Ax t s xc f j i eqeq T ),,2,1(0..min Λ在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ⨯1维矩阵,eq A 为n m ⨯2维矩阵。
在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。
其中c 为目标函数所对应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。
Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。
lb 和ub 为设计变量对应的上界和下界。
M 为具有整数约束条件限制的设计变量的序号,例如问题中设计变量为621,,,x x x Λ,要求32,x x 和6x 为整数,则M=[2;3;6];若要求全为整数,则M=1:6,或者M=[1;2;3;4;5;6]。
TolXInteger 为判定整数的误差限,即若某数x 和最邻近整数相差小于该误差限,则认为x 即为该整数。
在该函数中,输出参数有x, fval 和exitflag 。
其中x 为整数规划问题的最优解向量,fval 为整数规划问题的目标函数在最优解向量x 处的函数值,exitflag 为函数计算终止时的状态指示变量。
例1 求解整数规划问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≥-+= 0,12 1124 124 ..max212212121,且取整数值x x x x x x x t s x x f算法:c=[-1;-1]; A=[-4 2;4 2;0 -2]; b=[-1;11;-1]; lb=[0;0]; M=[1;2]; %均要求为整数变量 Tol=1e-8;%判断是否整数的误差限[x,fval]=linprog(c,A,b,[],[],lb,[])%求解原问题松弛线性规划[x1,fval1]=intprog(c,A,b,[],[],lb,[],M,Tol) %求最优解整数解 结果:x =%松弛线性规划问题的最优解1.50002.5000 fval = -4.0000 x1 =%整数规划的最优解2 1 fval2 = -3.0000(二) 用MATLAB 求解0-1规划问题在MATLAB 优化工具箱中,提供了专门用于求解0-1规划问题的函数bintprog ,其算法基础即为分枝界定法,在MATLAB 中调用bintprog 函数求解0-1规划时,需要遵循MATLAB 中对0-1规划标准性的要求。
0-1规划问题的MATLAB 标准型⎪⎪⎩⎪⎪⎨⎧==≤=1,0..min x b x A bAx t s x c f eq eq T在上述模型中,目标函数f 需要极小化,以及需要满足的约束条件,不等式约束一定要化为形式为“≤”。
假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ⨯1维矩阵,eq A 为n m ⨯2维矩阵。
如果不满足标准型的要求,则需要对原问题进行转化,化为标准型之后才能使用相关函数,标准化的方法和线性规划中的类似。
0-1规划问题的MATLAB 求解函数MATLAB 优化工具箱中求解0-1规划问题的命令为bintprog bintprog 的调用格式x = bintprog(f) x = bintprog(f,A,b) x = bintprog(f,A,b,Aeq,beq) x = bintprog(f,A,b,Aeq,beq,x0) x = bintprog(f,A,b,Aeq,Beq,x0,options) [x,fval] = bintprog(...) [x,fval,exitflag] = bintprog(...) [x,fval,exitflag,output] = bintprog(...)命令详解1)x = bintprog(f)该函数调用格式求解如下形式的0-1规划问题⎩⎨⎧==1,0..min x t s xc f T2)x = bintprog(c,A,b)该函数调用格式求解如下形式的0-1规划问题⎪⎩⎪⎨⎧=≤=1,0..min x b Ax t s x c f T 3)x = bintprog (c,A,b,Aeq,beq)该函数调用格式求解如下形式的0-1规划问题:⎪⎪⎩⎪⎪⎨⎧==≤=1,0..min x b x A bAx t s x c f eq eq T4)x = bintprog (c,A,b,Aeq,beq,x0)该函数调用格式求解如下形式的0-1规划问题⎪⎪⎩⎪⎪⎨⎧==≤=1,0..min x b x A bAx t s x c f eq eq T在前一个调用格式的基础上同时设置求解算法的初始解为x0,如果初始解x0不在0-1规划问题的可行域中,算法将采用默认的初始解 5)x = bintprog (c,A,b,Aeq,beq,x0,options)用options 指定的优化参数进行最小化。
可以使用optimset 来设置这些参数上面的函数调用格式仅设置了最优解这一输出参数,如果需要更多的输出参数,则可以参照下面的调用格式:[x,fval] = bintprog(...)在优化计算结束之时返回整数规划问题在解x 处的目标函数值fval[x,fval,exitflag] = bintprog(...)在优化计算结束之时返回exitflag 值,描述函数计算的退出条件。
[x,fval,exitflag,output] = bintprog(...) 在优化计算结束之时返回结构变量output 例2:求解0-1规划问题()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧========∑∑∑∑==== 21;21 4,3,21 10 21 1 21 1 ..max1111,n ,,j ,n ,,i x ,n ,,j x ,n ,,i x t s x E f ij ni ij n j ij n i nj ijij ΛΛΛΛ),(或⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=23321622243113212329152226331220E 为了程序的可读性,我们用一维下标来表示设计变量,即用41~x x 表示1411~x x ,用85~x x 表示2421~x x ,用129~x x 表示3431~x x ,用1613~x x 表示4441~x x ,于是约束条件和目标函数分别为:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧===+++=+++=+++=+++=+++=+++=+++=+++)16,,2,1( 1,0111111111612841511731410621395116151413121110987654321Λi x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x i 1644622521414313212111x E x E x E x E x E x E x E f +++++++=Λ算法:c=[20;12;33;26;22;15;29;23;21;13;31;24;22;16;32;23]; Aeq=[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1; 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1;];beq=ones(1,8);[x,fval]=bintprog(c,[],[],Aeq,beq);B=reshape(x,4,4); %由于x是一列元素,为了使结果更加直观,故排成与效率矩阵E相对应的形式B'fval结果:Optimization terminated.ans =0 1 0 00 0 1 01 0 0 00 0 0 1fval =85整数规划的应用——组件配套问题某机械产品需要由三个工厂开工一起生产后组装完成。
每件机械需要4个组件1和3个组件2。
生产这两种组件需要消耗两种原材料A和B。
已知这两种原材料的供应量分别为400kg和600kg。
由于三个工厂的生产条件和拥有设备工艺条件不同,每个工厂生产组件的能力和原材料的消耗也不尽相同,且每个工厂开工一次都是配套生产一定数量的组件1和组件2,其具体的数据如表所示。
表11-2 各工厂生产能力和消耗原材料的数据表现在的最优化问题是,这三个工厂应当如何安排生产,才能使该产品的配套数达到最大?(Ⅰ)组件配套问题的建模设21x x 、和3x 是三个工厂分别开工的次数,将其作为该问题的设计变量。
由于每个工厂开工一次都是配套生产,故每次开工消耗的原材料一定,且生产的组件数也是一定的。
在这个假设的前提之下,我们可以得出该问题的目标函数和约束条件。
因为原材料的总量是有限的,根据工厂的开工次数,可得工厂1将消耗A 材料19x ,工厂2将消耗A 材料26x ,工厂3将消耗A 材料34x ,故有约束条件:400469321≤++x x x同理,对于材料B 的总量约束条件可以表达为:6009107321≤++x x x 然后再来分析三个工厂零件生产的情况,三个工厂生产的组件1的数量分别为2178x x 、和39x ,故组件1的总数为:3211978x x x Q ++= 同理,组件2的总数为:3212596x x x Q ++=下一步是分析目标函数,该问题要求的不是生产的各种组件总数最多,而是要求产品的配套数量最大,即能组成的机械数目最多。