高一升高二数学测试题
(新教材)高一升高二数学训练题五 (含解析)

【解答】解:根据题意,在三棱锥P﹣ABC中,PA,PB,PC两两垂直,
且满足:PA=3,PB=4,PC=5,
设三棱锥体的外接球半径为R,
故4R2=32+42+52,解得 .
在所有的过点E的截面里,当截面过球心O时,截面的圆的面积最大,
此时半径为R,
在所有过点E的截面里,当OE与截面垂直时,
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
(新教材)高一升高二数学训练题5
班级:姓名:
一、选择题:本题共12小题,每小题5分,共60分.
1. 化简后等于( )
A. B. C. D.
【答案】B
【解析】 ,故选:B.
【点睛】本题考查了向量的三角形法则,考查了推理能力与计算能力,属于基础题.
① ;② ;③ ;④ .其中满足上述条件的三角形有一解的是( )
A. ①B. ②C. ③D. ④
【答案】C.
【解析】对于①,由 ,得 ,
所以 ,所以三角形有两个解;
对于②,由 得, ,
所以 ,所以三角形有两个解;
对于③,由 结合正弦定理得, ,所以角 ,所以三角形只有一个解;
对于④,由于 ,可知 ,这样的三角形不存在,无解;
A. B. C. D.
【答案】B
【解析】由题得
即 ,解得 ,即 ,故选:B
【点睛】本题考查了向量的线性运算,一般主要考查平面向量的加法、减法法则、平行四边形法则和数乘向量,要根据已知条件灵活运算这些知识求解,属于基础题.
6.在 中,角A,B,C所对的边分别为a,b,c,若 ,则这个三角形的形状为( )
高一升高二数学练习题

高一升高二数学练习题【高一升高二数学练习题】本文为高一升高二学生提供了一些数学练习题,旨在帮助学生巩固基础知识,提升解题能力。
请同学们按照要求认真完成每道习题,并在规定时间内自行检查答案。
祝学习进步!一、选择题1. 若两点A(x₁, y₁)和B(x₂, y₂)满足|x₁ - x₂| = |y₁ - y₂|,则A、B两点的连线是:A. 水平线B. 垂直线C. 斜线D. 平面不存在2. 已知函数y = 2x² + 3x - 4,求该函数在x = 1处的导函数为:A. 2x² + 3xB. 4x + 3C. 4x + 3/2D. 2x³ + 3x² - 4x3. 设集合A = {x | x² - 4x + 4 ≥ 0},则A的解集为:A. {2}B. {2, 4}C. {x | 2 ≤ x ≤ 4}D. {x | x ≥ 2 or x ≤ 4}4. 已知集合A = {x | 2 < x < 7},集合B = {y | y > 4},则A和B的交集为:A. {x | 2 < x < 7 and y > 4}B. {x | 2 < x < 7 or y > 4}C. {x | x > 4}D. {x | x < 2 or x > 7}5. 已知函数y = f(x)的图像关于x轴对称,则f(x)为:A. 偶函数B. 奇函数C. 不是偶函数也不是奇函数D. 无法确定二、填空题1. 已知函数y = 3x² + 2ax + b,当x = 2时,y = 4,求a和b的值。
2. 试将集合A = {-3, -2, 1, 3}和集合B = {0, 1, 2, 3}的并集写出。
3. 求方程x² + 3x + 2 = 0的两个解。
4. 若曲线y = 2x² - kx + 1与x轴相切,求k的值。
高一升高二暑假数学练习题

高一升高二暑假数学练习题在高中数学学习中,暑假是一个非常重要的时间段。
对于即将进入高二的同学们来说,暑假期间的数学练习是巩固高一所学知识、为高二的学习打下坚实基础的关键。
下面将为大家提供一些适合高一升高二学生进行数学练习的题目,希望能对大家提供帮助。
一、函数与方程1. 解方程组:⎧ 2x + y = 5⎨⎩ x - y = 12. 已知函数 y = x^2 + 2x + 1,求函数图像与 x 轴的交点坐标。
3. 求函数 f(x) = x^3 - 3x^2的单调递增区间。
二、数列与数学归纳法1. 求等差数列 3, 6, 9, 12, ... 的第 10 项与前 n 项和公式。
2. 求等比数列 2, 4, 8, 16, ... 的第 8 项与前 n 项和公式。
三、三角函数1. 求证:sin(α + β) = sin α · cos β + cos α · sin β。
2. 已知直角三角形 ABC,其中∠C = 90°,AC = 5,BC = 12,求sin A 和 cos B 的值。
四、平面向量1. 已知向量 a = (1, 2) 和 b = (3, -1),求向量 a + b 和向量 a - b。
2. 证明向量a · b = |a| · |b| · cosθ 的性质。
五、概率与统计1. 甲、乙两人玩掷骰子游戏,甲掷两次,乙掷三次,求甲得到的点数之和大于乙的点数之和的概率。
2. 某班级考试数学成绩平均分为80分,标准差为10分,根据正态分布规律,计算在该班级中,成绩在70分以上的学生占总人数的百分比。
六、解析几何1. 已知平面上两点 A(1, 2) 和 B(4, 5),求向量 AB 和向量 BA 的模长。
2. 已知三角形 ABC,其中 A(1, 2), B(4, 5), C(7, 4),求三角形的面积。
七、数学推理1. 证明:若 a^2 + b^2 = 0,则 a = 0 且 b = 0。
高一升高二试卷(最基础)

B 高一升高二检测卷一、选择题1.+1与﹣1的等差中项是( ) A .1 B .﹣1 C . D .±12、若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ).A .3a +bB .3a -bC .-a +3bD .a +3b3A 4A 5 A.650 m A 7A D .常数列8A 9、A .-1二、填空题10、在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.11、已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=_______.12、已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于________.13、在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →=________.14、设{}n a 为等差数列,若34567450a a a a a ++++=,则28a a +=________. 。
三、解答题15、已知数列{a n }的前n 项和S n =2n 2-3n +1,求{a n }的通项公式.16.设两个非零向量a 与b 不共线,⑴若AB =a +b ,BC =2a +8b ,CD =3(a -b ) ,求证:A 、B 、D 三点共线; ⑵试确定实数k ,使k a +b 和a +k b 共线.17、在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.18、由下列数列{a n}递推公式求数列{a n}的通项公式:(1)a1=1,a n-a n-1=n (n≥2); (2)a1=1,a na n-1=n-1n(n≥2);(3)a1=1,a n=2a n-1+1 (n≥2).。
2019暑假高一升高二测试

2019暑假高一升高二测试高一测试数学试题姓名成绩一、选择题1.设集合,,,3,4,,,3,,,4,,则()4、函数的定义域是; x5、已知a,b满足:,,,则。
三、解答题1、已知向量a, b的夹角为60, 且求 ab; (2) 求A....2、把函数1x的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为() A3、设,ex,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数 4、若a,π3,,则()5、函数在一个周期内的图象如下,此函数的解析式为()(A)-3)(B)3)(C)(D)、设x,y满足约束条件则的最大值为(). 5 B. 3 C. 7 D. -87、在△ABC中,如果,那么cosC等于()A.223 B.-3 C.-13 D.-148、一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为() A、63 B、108 C、75 D、83 二、填空题1、函数的递减区间为22、在ABC中,=_____________; 3、不等式的解集是;2、已知函数y= 4cos2x+4sinxcosx-2,(x∈R)。
(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x值;(3)写出函数的单调增区间;(4)写出函数的对称轴。
3、在△ABC中,BC=a,AC=b,a,b是方程的两个根,求:(1)角C的度数; (2)AB的长度。
且。
4、设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-3n. (1)求出{an}的通项公式;(2)求数列{nan}的前n项和.5、已知等差数列的公差,它的前n项和为Sn,若,且a2,a7,a22成等比数列.(1)求数列的通项公式;(2)设数列的前项和为T,求证:.6n8答案:一、1、B 2、C 3、B 4二、1、、75°三、、A 5、B 6、(-2,-13) 4、C 7、D 8、A、且、 3 55、(1)解:因为数列是等差数列,d.……………………………………………………1分 2依题意,有即分 2解得,.……………………………………………………………………………………5分所以,所以数列的通项公式为().…………………………………………………6分(2)证明:由(1)可得.……………………………………………………………………7分.…………………………………………………8分11111所以分.………………………………………………………………………10分因为,所以.………………………………………………11分因为,所以数列是递增数列.………………………………12分所以. (13)分613所以. (14)分68所以。
(新教材)高一升高二数学训练题一 (含解析)

(新教材)高一升高二数学训练题1一、选择题:(本大题共12小题,每小题5分,共60分)1.已知平面向量与的夹角为30°,且=(1,),为单位向量,则|+|=()A.1B.C.D.2.已知复数z=a+bi(a,b∈R),若z(2+i)=5i,则在复平面内点P(a,b)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的母线长为()A.1B.C.2D.24.在△ABC中,若△ABC的面积S=(a2+b2﹣c2),则C=()A.B.C.D.5.如图,RtAO'A'B′是△OAB的斜二测直观图,其中O'B'⊥B'A',斜边O′A′=2,则△OAB的面积是()A.B.1C.D.26.若α、β、γ是空间中三个不同的平面,α∩β=l,α∩γ=m,γ∩β=n,则l∥m是n∥m的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若存在单位向量,满足|+k|=1,|+|=k,则k的值为()A.1B.﹣2或1C.0D.1或08.设复数z满足=i,则下列说法正确的是()A.z为纯虚数B.z的虚部为﹣C.=D.|z|=9.在正四棱柱(侧面为矩形,底面为正方形的棱柱)ABCD﹣A1B1C1D1中,E,F分别是AB1,BC1的中点,则以下结论中不成立的是()A.EF⊥BB1B.EF⊥BDC.EF与CD为异面直线D.EF与A1C1为异面直线10.在棱长为1的正方体ABCD﹣A1B1C1D1中,点E,F分别是棱C1D1,B1C1的中点,P是上底面A1B1C1D1内一点,若AP∥平面BDEF,则线段AP长度的取值范围是()A.[,]B.[,]C.[,]D.[,]11.某圆锥的侧面展开后,是一个圆心角为的扇形,则该圆锥的体积与它的外接球的体积之比为()A.B.C.D.12.已知△ABC的内角A,B,C的对边分别为a,b,c且,b+c=10,△ABC的面积为,则a=()A.B.5C.8D.二、填空题:(本大题共4小题,每小题5分,共20分)13.设O为△ABC内一点,且满足关系式,则S△BOC:S△AOB:S△COA=.14.计算:所得的结果为.15.已知一个圆锥的底面面积为3π,侧面展开图是半圆,则其外接球的表面积等于.16.已知正方体ABCD﹣A1B1C1D1的棱长为4,点E为BC中点,点F为A1B1中点,若平面α过点F且与平面AEC1平行,则平面α截正方体ABCD﹣A1B1C1D1所得的截面面积为.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题10分)已知向量.(1)求;(2)若,求实数m,n的值;(3)若,求实数k的值.18.(本小题12分)已知复数(i是虚数单位).(1)复数z是纯虚数,求实数m的值;(2)若z对应复平面上的点在第四象限,求m的取值范围.19.(本小题12分)如图,四棱锥P﹣ABCD中,平面P AD⊥平面ABCD,底面ABCD为梯形,AB∥CD,CD=2AB=2,AC交BD于点F,且△P AD与△ACD均为正三角形,G为△P AD的重心.(1)求证:GF∥平面P AB;(2)求三棱锥G﹣P AB的体积.20.(本小题12分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,满足=.(1)若cos A=,求cos B;(2)若b=5,且cos A=,求a.21.(本小题12分)已知在直角三角形ABC中,AC⊥BC,(如图所示)(Ⅰ)若以AC为轴,直角三角形ABC旋转一周,试说明所得几何体的结构特征并求所得几何体的表面积.(Ⅱ)一只蚂蚁在问题(Ⅰ)形成的几何体上从点B绕着几何体的侧面爬行一周回到点B,求蚂蚁爬行的最短距离.22.(本小题12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且2b cos A﹣2c+a=0.(1)求角B;(2)若,△ABC为锐角三角形,求△ABC的周长的范围.(新教材)高一升高二数学训练题1解析一、选择题:(本大题共12小题,每小题5分,共60分)1.已知平面向量与的夹角为30°,且=(1,),为单位向量,则|+|=()A.1B.C.D.【解答】解:由题意得||=2,||=1,=,所以||===.故选:B.【点评】本题主要考查了向量数量积的性质的应用,属于基础题.2.已知复数z=a+bi(a,b∈R),若z(2+i)=5i,则在复平面内点P(a,b)位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:若z(2+i)=5i,则z===1+2i,所以a=1,b=2,P(1,2),则P位于第一象限.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的母线长为()A.1B.C.2D.2【解答】解:设圆锥的底面半径为r,圆锥的母线长为l,由题意知πl=2πr,解得l=2r,又因为表面积为S=πr2+πr•2r=3πr2=3π,所以r2=1,解得r=1;所以圆锥的母线长为l=2r=2.故选:C.【点评】本题考查了圆锥的结构特征与表面积计算问题,是基础题.4.在△ABC中,若△ABC的面积S=(a2+b2﹣c2),则C=()A.B.C.D.【解答】解:△ABC的面积S=(a2+b2﹣c2)=,整理得,故tan C=1,由于0<C<π,故C=.故选:A.【点评】本题考查的知识要点:三角形的面积公式,余弦定理的应用,主要考查学生的运算能力和数学思维能力,属于基础题.5.如图,RtAO'A'B′是△OAB的斜二测直观图,其中O'B'⊥B'A',斜边O′A′=2,则△OAB的面积是()A.B.1C.D.2【解答】解:依题意知,∠A'O'B'=45°,所以三角形O'A'B'为等腰直角三角形,且O'A'=2,所以O'B'=A'B'=,所以Rt△O′A′B′的面积为S'=×O′B′×A′B′=1,又因为直观图的面积S'与原图的面积S的比值为=,所以原图形的面积为S==2.故选:D.【点评】本题考查了斜二测画法的直观图面积与原平面图形面积的关系应用问题,是基础题.6.若α、β、γ是空间中三个不同的平面,α∩β=l,α∩γ=m,γ∩β=n,则l∥m是n∥m的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:根据题意,如图,若l∥m,则m∥平面β,则有m∥n,则l∥m是n∥m的充分条件,反之:若n∥m,则m∥平面β,则有l∥m,则l∥m是n∥m的必要条件,故l∥m是n∥m的充要条件,故选:C.【点评】本题考查线面平行的判断以及性质的应用,涉及充分必要条件的判断,属于基础题.7.若存在单位向量,满足|+k|=1,|+|=k,则k的值为()A.1B.﹣2或1C.0D.1或0【解答】解:∵,是单位向量,∴=+2k••+k2=1+2k••+k2=1①,=+2•+b2=2+2•=k2②,①﹣②得:(k﹣1)•=1﹣k2,若k=1,等式显然成立,若k≠1,解得:•=﹣k﹣1,代入②得:2+2(﹣k﹣1)=k2,解得:k=0或﹣2(舍),综上:k=0或1,故选:D.【点评】本题考查了平面向量的运算,考查单位向量以及向量的模,是基础题.8.设复数z满足=i,则下列说法正确的是()A.z为纯虚数B.z的虚部为﹣C.=D.|z|=【解答】解:因为=i,则z+1=zi,即,则z的虚部为,,.故选:D.【点评】本题考查了复数的运算,主要考查了复数除法的运算法则,复数的定义,共轭复数的定义,复数模的求解,属于基础题.9.在正四棱柱(侧面为矩形,底面为正方形的棱柱)ABCD﹣A1B1C1D1中,E,F分别是AB1,BC1的中点,则以下结论中不成立的是()A.EF⊥BB1B.EF⊥BDC.EF与CD为异面直线D.EF与A1C1为异面直线【解答】解在正四棱柱(侧面为矩形,底面为正方形的棱柱)ABCD﹣A1B1C1D1中,E,F分别是AB1,BC1的中点,连接AC,B1C,则F是B1C的中点,∴EF是△ACB1的中位线,∴EF∥AC∥A1C1,故D错误;∵BB1⊥平面ABCD,AC⊂平面ABCD,∴BB1⊥AC,∴EF⊥BB1,故A正确;∵四边形ABCD是正方形,∴AC⊥BD,∵EF∥AC,∴EF⊥BD,故B正确;∵EF∥AC,EF⊄平面ABCD,AC⊂平面ABCD,∴EF∥平面ABCD,∵CD∩AC=C,∴EF与CD为异面直线,故C正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力等数学核心素养,是基础题.10.在棱长为1的正方体ABCD﹣A1B1C1D1中,点E,F分别是棱C1D1,B1C1的中点,P是上底面A1B1C1D1内一点,若AP∥平面BDEF,则线段AP长度的取值范围是()A.[,]B.[,]C.[,]D.[,]【解答】解:如下图所示:分别取棱A1B1、A1D1的中点M、N,连接MN,连接B1D1,∵M、N、E、F为所在棱的中点,∴MN∥B1D1,EF∥B1D1,∴MN∥EF,又MN⊄平面BDEF,EF⊂平面BDEF,∴MN∥平面BDEF;连接NF,由NF∥A1B1,NF=A1B1,A1B1∥AB,A1B1=AB,可得NF∥AB,NF=AB,则四边形ANFB为平行四边形,则AN∥FB,而AN⊄平面BDEF,FB⊂平面BDEF,则AN∥平面BDEF.又AN∩NM=N,∴平面AMN∥平面BDEF.又P是上底面A1B1C1D1内一点,且AP∥平面BDEF,∴P点在线段MN上.在Rt△AA1M中,AM=,同理,在Rt△AA1N中,求得AN=,则△AMN为等腰三角形.当P在MN的中点时,AP最小为,当P与M或N重合时,AP最大为.∴线段AP长度的取值范围是[,].故选:B.【点评】本题考查点、线、面间的距离问题,考查空间想象能力与运算求解能力,解决本题的关键是通过构造平行平面寻找P点位置,属中档题.11.某圆锥的侧面展开后,是一个圆心角为的扇形,则该圆锥的体积与它的外接球的体积之比为()A.B.C.D.【解答】解:设圆锥的母线长为l,则展开后扇形的弧长为,再设圆锥的底面半径为r,可得2,即l=3r,圆锥的高为h=,设圆锥外接球的半径为R,则(h﹣R)2+r2=R2,解得R=.圆锥的体积为,圆锥外接球的体积=,∴该圆锥的体积与它的外接球的体积之比为=.故选:C.【点评】本题考查圆锥的结构特征,考查圆锥及其外接球的体积,考查运算求解能力,是中档题.12.已知△ABC的内角A,B,C的对边分别为a,b,c且,b+c=10,△ABC的面积为,则a=()A.B.5C.8D.【解答】解:因为,由正弦定理可得sin A sin A sin B=sin B﹣sin B cos A,因为0<B<π,所以sin B≠0,所以sin2A=﹣cos A,可得1﹣cos2A=﹣cos A,即(2cos A﹣1)2=0,解得cos A=,所以sin A=,因为S△ABC=bc sin A=,所以bc=25,又b+c=10,所以a2=b2+c2﹣2bc cos A=(b+c)2﹣3bc=100﹣3×25=25,所以a=5.故选:B.【点评】本题主要考查正弦定理和余弦定理的应用,考查同角三角函数的基本关系,考查转化思想与运算求解能力,属于中档题.二、填空题:(本大题共4小题,每小题5分,共20分)13.设O为△ABC内一点,且满足关系式,则S△BOC:S△AOB:S△COA=3:2:1.【解答】解:由题可得+2+3=3(﹣)+2(﹣)+(﹣),则3++2=,即(+)+2(+)=,设M,N分别为AB、AC的中点,∵+=2,+=2则=﹣2,设S△ABC=S,∵MN为△ABC的中位线,∴S△BOC=S,∵M是AB的中点,∴S△CAM=S,又ON:OM=1:2,∴S△COA=S△CAM=S,∵N是AC的中点,∴S△ANB=S,又ON:OM=1:2,∴S△AOB=S△ANB=S,故S△BOC:S△AOB:S△COA=3:2:1.【点评】本题考查平面向量的综合运用,考查三角形面积比的求解,考查数形结合思想,属于中档题.14.计算:所得的结果为﹣i.【解答】解:因为,又,所以:=505×(﹣i﹣1+i+1)﹣i=﹣i.故答案为:﹣i.【点评】本题考查了复数的求和问题,主要考查了i的乘方运算,解题的关键是利用周期性进行分组求和,考查了逻辑推理能力与化简运算能力,属于基础题.15.已知一个圆锥的底面面积为3π,侧面展开图是半圆,则其外接球的表面积等于16π.【解答】解:设圆锥底面圆半径为r,圆锥的底面圆面积为3π,可得πr2=3π,所以r=,母线长为l,圆锥的外接球半径为R,∵侧面展开图是半圆,2π=×2lπ,∴l=2,∴圆锥的轴截面为等边三角形,∴球心为等边三角形的中心,∴R==2,∴外接球的表面积是4πR2=16π.故答案为:16π.【点评】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.16.已知正方体ABCD﹣A1B1C1D1的棱长为4,点E为BC中点,点F为A1B1中点,若平面α过点F且与平面AEC1平行,则平面α截正方体ABCD﹣A1B1C1D1所得的截面面积为.【解答】解:如图所示,取A1D1的中点G,则平面AEC1即为平面AEC1G,过点F作GC1的平行线与B1C1交于点M,则B1M=1,过点M作C1E的平行线与BB1交于点N,则B1N=2,平面α截正方体ABCD﹣A1B1C1D1所得的截面为△FMN,且,,在△FMN中,,所以,故△FMN的面积为.故答案为:.【点评】本题考查正方体几何性质的应用,主要考查了正方体中截面的理解,涉及了余弦定理以及同角三角函数关系的应用,属于中档题.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题10分)已知向量.(1)求;(2)若,求实数m,n的值;(3)若,求实数k的值.【解答】解:(1)∵向量.∴=6(1,1)+(﹣1,3)﹣2(5,﹣3)=(6,6)+(﹣1,3)﹣(10,﹣6)=(﹣5,15).(2)=(5n﹣m,3m﹣3n)又且,∴,解得.(3),,∵,∴3(1+3k)+5(1﹣k)=0,即8+4k=0,解得k=﹣2.【点评】本题考查平面向量的坐标运算法则、向量相等、向量平行的等基础知识,考查运算求解能力,是基础题.18.(本小题12分)已知复数(i是虚数单位).(1)复数z是纯虚数,求实数m的值;(2)若z对应复平面上的点在第四象限,求m的取值范围.【解答】解:(1)复数z是纯虚数,则且m2﹣2m﹣15≠0⇒m=3,(2)z对应复平面上的点在第四象限,则且m2﹣2m﹣15<0⇒3<m<5,所以m的取值范围为(3,5).【点评】本题主要考查了复数的定义及复数的几何意义,属于基础题.19.(本小题12分)如图,四棱锥P﹣ABCD中,平面P AD⊥平面ABCD,底面ABCD为梯形,AB∥CD,CD=2AB=2,AC交BD于点F,且△P AD与△ACD均为正三角形,G为△P AD的重心.(1)求证:GF∥平面P AB;(2)求三棱锥G﹣P AB的体积.【解答】(1)证明:因为△P AD与△ACD均为正三角形,连接DG并延长交P A于点E,连接BE,底面ABCD为梯形,AB∥CD,CD=2AB,所以△ABF∽△CDF,则,而G为△P AD的重心,所有,所以,则GF∥EB,而GF⊄平面P AB,EB⊂平面P AB,所以GF∥平面P AB;(2)解:因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,在△P AD中,连接PG并延长交AD于点M,PM⊥AD,所以PM⊥面ABCD,则V G﹣P AB=V P﹣ABM﹣V G﹣ABM,因为CD=,AB=,△ACD为正三角形,则AD=,所以PM=3,PG=2,GM=1,而∠DAC=∠ACD=60°=∠CAB,则∠EAB=120°,所以S△MAB=AM•AB•sin120°=,所以V G﹣P AB==.【点评】本题主要考查了线面平行的判定定理,以及几何体的体积的计算,同时考查了转化能力和运算求解的能力,属于中档题.20.(本小题12分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,满足=.(1)若cos A=,求cos B;(2)若b=5,且cos A=,求a.【解答】解:(1)因为==,所以,由正弦定理可得,可得sin B cos B=sin C cos C,可得sin2B=sin2C,因为B,C,可得B=C,或2B+2C=π,即B+C=,因为cos A=,所以A,则B=C,且B<,则cos(π﹣2B)=,则2cos2B﹣1=﹣,可得cos B=±,因为B为锐角,可得cos B=.(2)因为cos A=≠0,所以B=C,则b=c=5,所以由余弦定理可得a2=b2+c2﹣2bc cos A=50﹣50×=,可得a=.【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21.(本小题12分)已知在直角三角形ABC中,AC⊥BC,(如图所示)(Ⅰ)若以AC为轴,直角三角形ABC旋转一周,试说明所得几何体的结构特征并求所得几何体的表面积.(Ⅱ)一只蚂蚁在问题(Ⅰ)形成的几何体上从点B绕着几何体的侧面爬行一周回到点B,求蚂蚁爬行的最短距离.【解答】解:(Ⅰ)在直角三角形ABC中,由即,得,若以AC为轴旋转一周,形成的几何体为以BC=2为半径,高的圆锥,则,其表面积为.(Ⅱ)由问题(Ⅰ)的圆锥,要使蚂蚁爬行的最短距离,则沿点B的母线把圆锥侧面展开为平面图形(如右图)最短距离就是点B到点B1的距离,,在△ABB1中,由余弦定理得:.【点评】本题考查旋转体的简单性质,圆锥的表面积以及侧面展开图的应用,是基本知识的考查.22.(本小题12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且2b cos A﹣2c+a=0.(1)求角B;(2)若,△ABC为锐角三角形,求△ABC的周长的范围.【解答】解:(1)由正弦定理知,==,∵2b cos A﹣2c+a=0,∴,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin A=sin A cos B,∵sin A≠0,∴,即.(2)由正弦定理得,====2,∴a=2sin A,c=2sin C,∴a+c=2(sin A+sin C)=2[sin(﹣C)+sin C]=2(cos C+sin C+sin C)=2(sin C+cos C)=,∵△ABC为锐角三角形,,∴,解得,∴<C+<,∴sin(C+)∈(,1],∴a+c∈(3,2],故△ABC的周长a+b+c的范围为.【点评】本题考查解三角形与三角函数的综合,熟练掌握正弦定理、两角和差的正弦公式、辅助角公式,以及正弦函数的图象与性质等是解题的关键,考查逻辑推理能力和运算能力,属于中档题.。
(新教材)高一升高二数学训练题四 (含解析)

班级:姓名:
一、选择题:本题共12小题,每小题5分,共60分.
1.已知 是虚数单位,设复数 ,其中 ,则 的值为( )
A. B. C. D.
2.已知 , ,则 ( )
A. 2B. C. 4D.
3.在△ABC中,已知a=6,b=8,C=60°,则△ABC的面积为( )
A. 24B. 12 C. 6 D. 12
【答案】C
【解析】
.
设向量 与向量 的夹角为 则 .
又 ,所以 ,故选:C.
【点睛】本题考查了利用向量的数量积求向量的夹角、求向量的模,属于基础题.
10.已知 、 、 是三个非零向量,则下列结论不正确的有( )
A. 若 ,则 B. 若 , ,则
C 若 ,则 D. 若 ,则
【答案】C
【解析】对于A选项,设 与 的夹角为 ,则 ,则 , ,
20.在① ,② ,③ 这三个条件中任选一个,补充在下面问题中,若问题中的 存在,求出其面积;若不存在,说明理由.
问题:是否存在 ,它的内角 , , 所对的边分别为 , , ,且 , ,________?注:如果选择多个条件分别解答,按第一个解答计分.
21.如图,在 中, , , , 是 的中点,点 满足 , 与 交于点 .
11.设锐角 三内角 , , 所对边的边长分别为 , , ,且 , ,
则 取值范围为( )
A. B. C. D.
【答案】A
【解析】 且 为锐角三角形, , ,
又 , , ,
, ,
由正弦定理 得: ,
. 故选:
12.已知 中,角A,B,C的对边分别为a,b,c,AH为BC边上的高,以下结论不正确的是( )
高一升高二数学测试题

姓名: 学校: 年级: 上期末成绩:1.,a b >⋅若则下列不等式成立的是( )> 11.B a b< 22.C a b > .D a b > 22.220x x -+->⋅不等式的解集为( ){}|1x x =A.{}.|1B x x ≠ .C R .D ∅ 3.()cos 2sin 2f x x x =-⋅函数的最小值为( )2-A.B .1C - .0D4.3,2,(cos cos )ABC a b c a B b A ∆==-⋅中,则的值为( ).0A .1B .5C .13D{}3425.n a a a a 数列是等比数列,=12,=18,则等于( )..6A 3.2B .8C 16.3D 6.34500x y x y -+=+=⋅直线关于直线对称的直线方程为( )4350A x y -+=. .4350B x y --= .3450C x y +-= .3450D x y ++=4107.,6522,0.5,x y x y x y Z x y x y N +≤⎧⎪+≤=+⋅⎨⎪∈⎩已知满足约束条件则的最大值为( ) .4A .3B .2C .1D8.(34)80(4)70a x ay ax a y a +++=++-=直线与直线垂直,则的值为( )..2A - .0B .20C -或 .02D 或9.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且acosB 。
(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值.10 已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n .11 已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.12(1)截y 轴所得弦长为2;(2)被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l :x -2y =0的距离最小的圆的方程.1,A 2、D 3、B 4、C 5、C 6、A 7、B 8、C9(1)acosB ,由正弦定理可得sin sin cos B A A B =,即得tan B =,3B π∴=. (2)sinC=2sinA ,由正弦定理得2c a =,由余弦定理2222cos b a c ac B =+-,229422cos 3a a a a π=+-⋅,解得a =2c a ∴==.10 解 (Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812d d ++,解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n .(Ⅱ)由(Ⅰ)知2m a =2n ,由等比数列前n 项和公式得S m =2+22+23+…+2n =2(12)12n --=2n+1-2. 11解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++. 整理得 x 2+y 2-6x +1=0. ① 因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3. 代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3). 直线PN 的方程为y =x -1或y =-x +1. 12.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |.由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故 r 2=2b 2, 又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2, 于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一升高二数学测试题
姓名: 学校: 年级: 上期末成绩:
1.,a b >⋅若则下列不等式成立的是( )
> 11.B a b
< 22.C a b > .D a b > 22.220x x -+->⋅不等式的解集为( )
{}|1x x =A.
{}.|1B x x ≠ .C R .D ∅ 3.()cos 2sin 2f x x x =-⋅函数的最小值为( )
2-A.
B .1
C - .0D
4.3,2,(cos cos )ABC a b c a B b A ∆==-⋅中,则的值为( )
.0A .1B .5C .13D
{}3425.n a a a a 数列是等比数列,=12,=18,则等于( ).
.6A 3.2B .8C 16.3
D 6.34500x y x y -+=+=⋅直线关于直线对称的直线方程为( )
4350A x y -+=. .4350B x y --= .3450C x y +-= .3450D x y ++=
4107.,6522,0.5,x y x y x y Z x y x y N +≤⎧⎪+≤=+⋅⎨⎪∈⎩
已知满足约束条件则的最大值为( ) .4A .3B .2C .1D
8.(34)80(4)70a x ay ax a y a +++=++-=直线与直线垂直,则的值为( ).
.2A - .0B .20C -或 .02D 或
9.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且
acosB 。
(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值.
10 已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.
(Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n .
11 已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.
12(1)截y 轴所得弦长为2;(2)被x 轴分成两段圆弧,其弧长的比为3∶
1.在满足条件(1)、(2)的所有圆中,求圆心到直线l :x -2y =0的距离最小的圆的方程.
1,A 2、D 3、B 4、C 5、C 6、A 7、B 8、C
9(1)acosB ,由正弦定理可得sin sin cos B A A B =,即得tan B =,3B π∴=
. (2)sinC=2sinA ,由正弦定理得2c a =,由余弦定理2222cos b a c ac B =+-,
229422cos 3a a a a π
=+-⋅
,解得a =
2c a ∴==.
10 解 (Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得
121d +=1812d d ++,
解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n . (Ⅱ)由(Ⅰ)知2m a =2n ,由等比数列前n 项和公式得S m =2+22+23+…+2n =2(12)12n --=2n+1-2. 11解:设点P 的坐标为(x ,y ),由题设有
2|
|||=PN PM ,即2222)1(2)1(y x y x +-⋅=++. 整理得 x 2+y 2-6x +1=0. ① 因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±
33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+
3,x =2-3. 代入②式得点P 的坐标为(2+
3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3)
. 直线PN 的方程为y =x -1或y =-x +1. 12.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故 r 2=2b 2, 又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1 又点P (a ,b )到直线x -2y =0距离为d =
5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1
当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,
由此有⎩⎨⎧=-=1
222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2, 于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2
=2。