牛顿迭代法的基本思想

合集下载

牛顿迭代法 光线追迹法-概述说明以及解释

牛顿迭代法 光线追迹法-概述说明以及解释

牛顿迭代法光线追迹法-概述说明以及解释1.引言1.1 概述牛顿迭代法和光线追迹法是两种常用的数值计算方法,在计算机图形学和其他领域中具有重要的应用。

牛顿迭代法是一种求解方程的方法,通过不断迭代逼近函数的根,从而得到方程的解。

光线追迹法则是模拟光线在物体表面的反射、折射和投射等行为,用于生成逼真的光线效果。

牛顿迭代法通过利用方程的切线逼近根的方法,具有快速收敛的特点,精确地寻找方程的解。

它在优化问题、非线性方程求解等领域有广泛的应用。

牛顿迭代法的基本原理是利用函数的切线与x轴的交点作为下一次迭代的起点,通过多次迭代逐步逼近方程的根。

光线追迹法则是基于光线的物理性质进行计算和模拟,用于生成逼真的光线效果。

它模拟了光线在物体表面的反射、折射和透射等行为,通过追踪光线的路径,计算光线与物体的交点和光线的颜色等信息,从而生成逼真的光线效果。

光线追迹法在计算机图形学、光学设计等领域得到广泛应用,可以用于生成真实感的渲染图像和模拟光学系统的行为。

牛顿迭代法和光线追迹法都是基于数学模型和物理规律的计算方法,在不同的应用领域具有重要的作用。

本文将介绍它们的原理、算法步骤和应用场景,并对它们进行对比分析和评价,探讨它们的优缺点和发展前景。

这将有助于我们更深入地理解这两种方法,并为相关领域的研究和应用提供参考。

文章结构部分的内容应该是对整篇文章的结构做出详细介绍。

可以描述每个部分的主题和内容,并概述它们在文章中的作用和相互关系。

例如,可以按照以下方式编写文章结构部分的内容:"1.2 文章结构本文将分为四个主要部分来介绍牛顿迭代法和光线追迹法的原理、算法步骤和应用场景,以及对两种方法的对比分析、优缺点和发展前景。

具体结构如下:2. 牛顿迭代法2.1 原理2.2 算法步骤2.3 应用场景3. 光线追迹法3.1 原理3.2 算法步骤3.3 应用场景4. 结论4.1 对比分析4.2 优缺点4.3 发展前景通过以上结构,本文将分别介绍牛顿迭代法和光线追迹法的原理、算法步骤和应用场景,以便读者更好地理解和应用这两种方法。

牛顿迭代法mathematica

牛顿迭代法mathematica

牛顿迭代法mathematica牛顿迭代法是一种用于求解方程近似解的方法,它是由英国科学家艾萨克·牛顿在17世纪发现并提出的。

这种方法通过不断迭代逼近的方式,逐渐逼近方程的根。

牛顿迭代法的基本思想是:从一个初始值开始,通过使用切线来逼近方程的根。

具体而言,假设我们要求解方程f(x) = 0,首先选择一个初始值x0,然后通过计算f(x0)的值得到曲线上的一点P(x0, f(x0))。

接下来,我们通过计算曲线在点P处的切线与x轴的交点Q,将Q作为新的近似解x1。

重复这个过程,不断迭代计算得到更加精确的近似解,直到满足精度要求为止。

牛顿迭代法的具体计算步骤如下:1. 选择一个初始值x0;2. 计算f(x0)的值,得到曲线上的一点P(x0, f(x0));3. 计算曲线在点P处的切线与x轴的交点Q,得到新的近似解x1;4. 重复步骤2和3,直到满足精度要求。

牛顿迭代法的收敛性与初始值的选择有关。

通常情况下,选择一个离方程根较近的初始值可以加快收敛速度。

然而,如果初始值选择不当,也可能导致迭代过程发散。

牛顿迭代法在实际应用中具有广泛的用途。

例如,在数值计算中,牛顿迭代法可以用于求解非线性方程、优化问题和插值问题。

在物理学和工程学中,牛顿迭代法可以用于求解微分方程的数值解、估计系统参数等。

牛顿迭代法的优点之一是它的收敛速度很快。

在某些情况下,它可以在很少的迭代次数内得到非常精确的解。

然而,牛顿迭代法也存在一些缺点。

首先,它对初始值的选择非常敏感,选择不当可能导致迭代过程发散。

其次,牛顿迭代法只能求解方程的根,而不能确定方程的其他性质。

使用Mathematica软件可以方便地实现牛顿迭代法。

Mathematica 提供了一系列函数和工具,可以帮助我们进行数值计算和函数绘制。

通过使用Mathematica,我们可以快速地编写并执行牛顿迭代法的代码,从而求解方程的近似解。

牛顿迭代法是一种用于求解方程近似解的方法。

非线性方程求根—牛顿迭代法(新)

非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。

设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。

(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。

解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。

牛顿迭代法求解方程组

牛顿迭代法求解方程组

牛顿迭代法求解方程组一、牛顿迭代法的基本原理牛顿迭代法是一种用于求解方程的迭代方法,其基本思想是通过不断逼近方程的根来求解方程。

具体而言,对于一个方程f(x) = 0,我们可以选择一个初始近似解x0,然后通过迭代的方式不断更新x 的值,直到满足一定的停止准则为止。

牛顿迭代法的更新公式如下:x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}其中,x_n表示第n次迭代得到的近似解,f(x_n)表示方程在x_n处的函数值,f'(x_n)表示方程在x_n处的导数值。

二、牛顿迭代法在求解方程组中的应用牛顿迭代法不仅可以用于求解单个方程,还可以推广到求解方程组的情况。

假设我们要求解一个由m个方程和n个未知数组成的方程组,即F(x) = 0其中,F(x) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn))为方程组的向量函数。

我们可以将该方程组转化为一个等价的非线性方程组:f(x) = 0其中,f(x) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn))。

牛顿迭代法在求解方程组时的更新公式如下:x_{n+1} = x_n - J^{-1}(x_n) f(x_n)其中,J(x_n)是方程组在x_n处的雅可比矩阵,其定义为:J(x_n) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_n) & \frac{\partial f_1}{\partial x_2}(x_n) & \cdots & \frac{\partial f_1}{\partial x_n}(x_n) \\ \frac{\partial f_2}{\partial x_1}(x_n) & \frac{\partial f_2}{\partial x_2}(x_n) & \cdots & \frac{\partial f_2}{\partial x_n}(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_n) & \frac{\partial f_m}{\partial x_2}(x_n) & \cdots & \frac{\partial f_m}{\partial x_n}(x_n) \end{pmatrix}三、牛顿迭代法的收敛性和收敛速度牛顿迭代法在求解方程组时具有较好的收敛性和收敛速度。

牛顿迭代法的收敛性和稳定性

牛顿迭代法的收敛性和稳定性

牛顿迭代法的收敛性和稳定性牛顿迭代法是一种高效的求解非线性方程组的方法。

它的基本思想是通过不断逼近目标函数的零点来求解方程,其中每次迭代通过求解目标函数的一阶导数和二阶导数来更新逼近值。

与其他求解非线性方程组的方法相比,牛顿迭代法具有更快的收敛速度和更高的精度。

然而,牛顿迭代法在实际应用中也存在一些问题,例如收敛性和稳定性。

本文将就牛顿迭代法的收敛性和稳定性进行探讨。

一、牛顿迭代法的收敛性牛顿迭代法的收敛性与初始迭代值的选择有关。

如果选择的初始迭代值与目标函数的零点较接近,则牛顿迭代法的收敛速度越快,精度越高。

反之,如果初始迭代值与目标函数的零点较远,则可能会导致收敛速度缓慢甚至无法收敛。

因此,通常使用牛顿迭代法进行求解时,需要通过试探法或其他方法寻找较接近目标函数零点的初始迭代值。

另外,牛顿迭代法的收敛性还与目标函数的性质有关。

具体来说,如果目标函数在初始迭代值处的二阶导数为正且在目标函数的零点处存在且连续,则牛顿迭代法一般会收敛到目标函数的零点。

而如果目标函数在某些点处的二阶导数为零或不存在,则可能会出现收敛速度缓慢或收敛不足的情况。

二、牛顿迭代法的稳定性牛顿迭代法的稳定性是指对于具有微小扰动的初始迭代值,迭代结果能否保持不变或只有微小的差异。

在实际应用中,由于存在数值误差或输入数据的不确定性,牛顿迭代法可能会受到微小扰动的影响而产生不稳定的结果。

因此,需要采取措施来提高牛顿迭代法的稳定性。

一种提高牛顿迭代法稳定性的方法是采用牛顿-拉夫逊迭代法。

牛顿-拉夫逊迭代法是在牛顿迭代法的基础上加入阻尼因子来实现的。

具体来说,牛顿-拉夫逊迭代法使用目标函数的一阶导数和二阶导数来更新逼近值,并在迭代过程中加入一个阻尼因子,使迭代结果在微小扰动下不会产生过大的变化。

此外,还可以采用增量式牛顿迭代法来提高牛顿迭代法的稳定性。

增量式牛顿迭代法是一种递推算法,它的基本思想是将目标函数的二阶导数逐步逼近到实际的值,并在每次迭代中只更新部分二阶导数,以减小更新过程中的数值误差。

高斯—牛顿迭代法

高斯—牛顿迭代法

高斯牛顿法高斯—牛顿迭代法的基本思想是使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳回归系数,最后使原模型的残差平方和达到最小。

高斯—牛顿法的一般步骤为:(1)初始值的选择。

其方法有三种,一是根据以往的经验选定初始值;二是用分段法求出初始值;三是对于可线性化的非线性回归模型,通过线性变换,然后施行最小平方法求出初始值。

(2)泰勒级数展开式。

设非线性回归模型为:i=1,2,…,n (3-68)其中r为待估回归系数,误差项~N(0, ),设:,为待估回归系数的初始值,将(3-68)式在g点附近作泰勒展开,并略去非线性回归模型的二阶及二阶以上的偏导数项,得(3-69)将(3-69)式代入(3-68)式,则移项:令:则:i=1,2,…,n用矩阵形式表示,上式则为:(3-70)其中:(3)估计修正因子。

用最小平方法对(3-70)式估计修正因子B,则:(3-71)设g为第一次迭代值,则:(4)精确度的检验。

设残差平方和为:,S为重复迭代次数,对于给定的允许误差率K,当时,则停止迭代;否则,对(3-71)式作下一次迭代。

(5)重复迭代。

重复(3-71)式,当重复迭代S次时,则有:修正因子:第(S+1)次迭代值:四、应用举例设12个同类企业的月产量与单位成本的资料如下表:表3-9 间接代换法计算表企业编号单位产品成本(元)月产量1 2 3 4 5 6 7 8 91011121601511141288591757666606160101620253136404551566065(注:资料来源《社会经济统计学原理教科书》第435页)试配合适当的回归模型分析月产量与单位产品成本之间的关系。

解:(1)回归模型与初始值的选择。

根据资料散点图的识别,本数据应配合指数模型:对指数模型两边取对数,化指数模型为线性回归模型,然后施行最小平方法求出初始值。

即:则上述指数模型变为:对分别求反对数,得,带入原模型,得回归模型:高斯—牛顿迭代法初始回归模型:残差平方和:(2)泰勒级数展开式。

最优化理论与方法——牛顿法

最优化理论与方法——牛顿法

牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。

结合着matlab 可以对其进行应用,求解方程。

牛顿迭代法(Newton Newton’’s s method method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。

牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。

牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。

收敛。

牛顿法的几何解释:牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。

如下图:轴的焦点的横坐标。

如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点轴的交点 的横坐标1k x +作为*x 的新的近似值。

鉴于这种几何背景,牛顿法亦称为切线法。

牛顿法亦称为切线法。

2 牛顿迭代公式:(1)最速下降法:x-d gk k×Gg sks×GGd 101x x x -(1)令k k G v I k G -=+,其中:,其中:0k v =,如果k G 正定;0,k v >否则。

否则。

(2)计算_k G 的Cholesky 分解,_T k k k k G L D L =。

(3)解_k k G d g =-得k d 。

(4)令1k k k x x d +=+牛顿法的优点是收敛快,缺点一是每步迭代要计算()()'k k f x f x 及,计算量较大且有时()'k fx 计算较困难,二是初始近似值0x 只在根*x附近才能保证收敛,如0x 给的不合适可能不收敛。

牛顿迭代法原理

牛顿迭代法原理

牛顿迭代法原理牛顿迭代法是一种用来求解方程近似解的方法,它是由伟大的数学家牛顿提出的。

牛顿迭代法的原理非常简单,但却非常有效,被广泛应用于科学计算、工程技术和金融领域。

本文将详细介绍牛顿迭代法的原理及其应用。

首先,我们来看一下牛顿迭代法的基本思想。

对于一个函数f(x),我们希望找到它的根,即找到使得f(x)=0的x值。

假设我们已经有一个近似解x0,我们希望通过一些计算,得到一个更接近真实根的近似解x1。

那么,牛顿迭代法的思想就是利用函数f(x)在点x0处的切线来逼近真实根的过程。

具体来说,我们可以通过切线与x轴的交点来得到新的近似解x1,然后以x1为起点,再次利用函数f(x)在x1处的切线来得到更接近真实根的近似解x2,如此循环下去,直到满足我们的精度要求为止。

接下来,我们来具体推导一下牛顿迭代法的数学原理。

假设我们要求解方程f(x)=0,我们已经有一个近似解x0,那么我们可以利用函数f(x)在点x0处的切线来得到新的近似解x1。

根据切线的定义,我们可以得到切线方程为:f'(x0)(x-x0) + f(x0) = 0。

其中f'(x0)表示函数f(x)在点x0处的导数。

由于我们希望找到使得f(x)=0的x 值,因此我们可以将上述方程改写为:x = x0 f(x0)/f'(x0)。

这就是牛顿迭代法的迭代公式。

通过不断地使用这个迭代公式,我们可以逐步逼近真实根,直到满足我们的精度要求为止。

牛顿迭代法的收敛性是其最重要的性质之一。

在一定的条件下,牛顿迭代法可以保证收敛到方程的根。

具体来说,如果我们选择一个足够接近真实根的初始值x0,并且函数f(x)在x0附近具有连续的一阶导数,那么牛顿迭代法就可以保证收敛到方程的根。

这使得牛顿迭代法成为了一种非常有效的求解方程近似解的方法。

除了求解方程的近似解外,牛顿迭代法还被广泛应用于优化问题和数值微分方程的求解中。

在优化问题中,我们可以利用牛顿迭代法来求解函数的极值点,从而得到最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
0.884675
满足了精度要求
0.78265
返回
1)当用 f(x)=
x x gx gx 0 f ( x )= mx x g x x x gx = x x mg x x x *gx
它对应的迭代方程为 x x 故其迭代函数为
f ( x) 显然是f(x)=0的同解方程, f ( x)
f ( x) ( x) x ( f ( x) 0) f ( x) 在 f(x)=0的根 的某个邻域 R( x ) 内, f ( x) 0
( x) f ( x) f ( x) L 1
m h 1 (1 O( h)) O( h) 0 ( h 0) h m 所以 ( x*) 0 由定理2知 至少是二阶收敛
上一页 下一页 返回
牛顿迭代法的优缺点
1、优点:牛顿迭代法具有平方收敛的速度,所以在迭代 过程中只要迭代几次就会得到很精确的解。这是牛顿迭代 法比简单迭代法优越的地方。 2、缺点:选定的初值要接近方程的解,否则有可能的不 到收敛的结果。再者,牛顿迭代法计算量比较大。因每次 迭代除计算函数值外还要计算微商值。

y f ( xk ) f ( x k ) 与X轴的交点的横坐标(如图)。也就 x xk
是点 ( x , f ( x )) 处 y f ( x) 的切线 k k k 1
轴相交得到的。继续取点 ( xk 1 , f ( xk 1 )) ,再做切线与x轴相
Newton迭代法又称切线法
* m
*
Newton 法求m重根时,不妨设
* m 1 * m
* m 1
x k 1
f x k x xk x* = f x k
*

mg x k x k x * g x k xk x mg x k x k x * gx k
列于下表
n
xn
1 2 3 4 1.411764706 1.369336471 1.368808189 1.368808108
从计算结果可以看出,牛顿法的收敛速度是很快的,进行了 四次迭代就得到了较满意的结果.
上一页 下一页 返回
例2 计算 0.78265 的近似值。 =10-6
解: 令x= 由牛顿迭代公式

1。
则终止迭代,
以 x1作为所求的根;否则转步四。此处 1 是允许误差,
上一页 下一页 返回

x1 x0 ,当.. x1 c时;。其中c是取绝对值或相对误差 x x 1 0 ,当 ... x c 时。 1 x 1
的控制常数,一般可取c=1。 步四、修改。如果迭代次数达到预定指定的次数N,或者 代替( x0 , f 0 , f 0)转 f1 0 则方法失败;否则以 ( x1 , f1 , f1) 步二继续迭代。
下一页
上一页
返回
y
上一页
下一页
返回
牛顿迭代法的步骤

步一、准备。选定初始近似值 x 0,计算 f 0 f ( x0 )
f 0 f ( x0 )
f0 步二、迭代。按公式 x1 x0 迭代一次,得到新的近 f 0
似值x1,计算 f1 f ( x1 ), f1 f ( x1 ) 步三、控制。如果x1满足
上一页 下一页 返回
判别Newton 法收敛的充分条件
设(x )在有根区间 (a,b)上存在二阶导数,且满足 (1)(a)(b)<0; (2)`(x)0,x(a,b); (3)``(x)不变号,x(a,b); (4)初值x0 (a,b);且使(x0)``(x0)>0。 则牛顿迭代序列{xi}收敛于 (x)=0 在 (a,b) 内唯一的根。
f ( x * h) x * h m x* ( x * h) ( x *) f ( x * h) h h
上一页 下一页 返回
m f ( x * h) 1 h f ( x * h )
m 1 h
Tailor展开
m 1 h
h m (m) f ( x *) hf ( x *) f ( x *) O( h m 1 ) m! h m 1 f ( x *) hf ( x *) f ( m ) ( x *) O( h m ) ( m 1)! m h f ( m ) ( x *) O( h m 1 ) m! h m 1 f ( m ) ( x *) O( h m ) ( m 1)!
*





lim
k
* x k 1 x * mg x x x g x k k k lim * =k xk x mg x k x k x * gx k m 1g x* m 1 0 = m mg x *

x0=0.88
2 0.780的正根
xk+1= xk-ƒ(xk)/ƒ'(xk)= xk/2+0.78265/2xk 迭代结果
k 0
xk 0.880000
xn 1 xn
1
0.884688
f ( xn ) / f ( x0 )
2
0.884675 =0.884675 上一页 下一页


此时,Newton 法具有线性敛速。
上一页
下一页
返回
2)修正Newton法求m重根迭代公式 f ( xk ) xk 1 xk m f ( xk ) 注:若 x* 是方程 f ( x) 0 的m重根,而 f ( m) ( x)在 x* 的 某一邻域内连续,则修正 Newton法是局部收敛的,并具 有至少二阶的收敛速度。 因为:考察函数 ( x ) x m f ( x ) f ( x ) 在x * 处的导数 用定义求导
上一页
下一页 返回
例题
例1:用牛顿法求下面方程的根f ( x) x 3 2 x 2 10 x 20 解 因 f ( x) 3x 2 4 x 10 ,所以迭代公式为
xn1 xn ( xn3 2 xn2 10 xn 20) /(3xn2 4 xn 10) 选取x0 1,计算结果
f ( x)
2
在 的邻域R 内,对任意初值 x 0 ,应用由公式(1)来解方程的方
法就称为牛顿迭代法。它是解代数方程和超越方程的有效方法之一.
上一页 下一页 返回
牛顿法的几何意义

由(1)式知 x
是说,新的近似值x k 1 是用代替曲线y=f(x)的切线与x 交,又可得xk 2 , 。由图可见,只要初值取的充分靠 近 ,这个序列就会很快收敛于 。
上一页 返回
相关文档
最新文档