热分析的基础知识,即热分析的特点、ANSYS热分析的主要类型及热载荷边界的定义

合集下载

热分析的基础知识,即热分析的特点、ANSYS热分析的主要类型及热载荷边界的定义

热分析的基础知识,即热分析的特点、ANSYS热分析的主要类型及热载荷边界的定义

热分析的基础知识,即热分析的特点、ANSYS热分析的主要类型及热载荷边界的定义l 热分析的基础知识,即热分析的特点、ANSYS热分析的主要类型及热载荷/边界的定义。

l 稳态传热的基础知识,热分析单元及稳态传热分析的主要步骤及每步分析中需要注意事项,实例讲解稳态热分析的过程。

l 瞬态传热的基础知识,稳态传热分析的主要步骤及每步分析中需要注意事项(特别是求解及求解选项设定),实例讲解瞬态传热分析的过程。

简单的相变问题的基础知识。

l 辐射传热的基础知识,辐射传热分析的主要步骤及每步中与传统热分析的差异。

l 耦合场的基础知识,常见的耦合场求解方法及其每种方法的优缺点,热应力分析的主要步骤及与通常非耦合场分析的差异。

学好、用好ANSYS 热分析功需要首先了解热分析的基础知识,然后通过加强专业学习的同时提高实际动手的能力,在实践中提高使用ANSYS 进行热分析的能力。

下面首先介绍热分析的基础知识。

6.1 热分析简介热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

6.1.1 ANSYS 热分析特点ANSYS 热分析有以下几个特点:y ANSYS 功能组件热分析能力在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED 五种产品中包含热分析功能,其中ANSYS/FLOTRAN 不含相变热分析。

y ANSYS 热分析原则ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

y ANSYS 热分析类型ANSYS 热分析包括热传导、热对流及热辐射三种热传递方式。

此外,还可以分析相变、有内热源、接触热阻等问题。

6.1.2 ANSYS 热分析的分类ANSYS 热分析分为两大类,即传统的热分析和热耦合分析。

热分析(ansys教程)

热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。

ANSYS热分析详解

ANSYS热分析详解

ANSYS热分析详解ANSYS是一种常用的工程仿真软件,具有强大的多物理场耦合分析能力,其中热分析是其中一个重要的应用领域。

在ANSYS中进行热分析可以帮助工程师更好地了解物体在温度变化条件下的行为,从而优化设计方案。

下面将详细介绍ANSYS热分析的原理与流程。

首先,在进行ANSYS热分析前,需要进行前期准备工作。

包括建立几何模型,定义边界条件和导入材料参数等。

在建立几何模型时,可以使用ANSYS提供的建模工具或者导入CAD文件。

然后,需要定义材料参数,如热导率、比热等。

最后,需要定义边界条件,包括外界温度、边界热流、边界散热系数等。

接下来,进行热传导分析。

热传导分析是热分析的基础,用于计算物体内部的温度分布。

在ANSYS中,可以选择稳态或者瞬态分析。

对于稳态分析,需要设置收敛准则,使计算结果达到稳定状态。

对于瞬态分析,需要设置时间步长和总的仿真时间。

在进行计算时,ANSYS会利用有限元法对物体的几何形状进行离散化处理,并通过求解热传导方程来计算温度分布。

在得到物体内部的温度分布后,可以进行热应力分析。

热应力分析是在热传导分析的基础上引入力学应力计算的过程。

在ANSYS中,可以通过多物理场耦合分析的功能来实现。

首先,需要定义材料的线性热膨胀系数和弹性模量等力学参数。

然后,可以选择求解热固结方程和弹性平衡方程,来计算物体在温度变化条件下的应力分布。

除了热应力分析,还可以进行热辐射分析。

热辐射分析是在热传导分析的基础上引入辐射传热计算的过程。

在ANSYS中,可以选择不同的辐射模型来计算物体在温度变化条件下的辐射传热。

常用的辐射模型包括黑体辐射模型和灰体辐射模型等。

通过热辐射分析可以得到物体的辐射换热通量和辐射热功率等重要参数。

最后,进行结果分析和后处理。

在ANSYS中,可以对热分析的结果进行可视化和数据分析。

可以绘制温度云图、热应力云图等,从而更好地理解物体在热变形条件下的行为。

此外,还可以导出计算结果,并进行后续的工程设计和优化。

ANSYS热分析简介1

ANSYS热分析简介1

ANSYS热分析简介1⽬录1. ANSYS热分析简介1. ANSYS热分析基于能量守恒原理的热平衡⽅程,⽤有限元的⽅法计算各节点的温度,并导出其他物理参数。

2. ANSYS热分析包括热传导、热对流和热辐射三种热传递⽅式,此外还可以分析相变、有内热源、接触热阻等问题。

3. ANSYS中耦合场的分析种类有热-结构耦合、热-流体耦合、热-电耦合、热-磁耦合、热-电-磁-结构耦合等。

4. 对于不同的零件,之间可以采⽤GLUE进⾏粘接,或者采⽤Overlap等⽅法,也可以建⽴接触。

1.1 传导传导:两个良好接触的物体之间的能量交换或⼀个物体内由于温度梯度引起的内部能量交换。

对流:在物体和周围介质之间发⽣的热交换。

由温差存在⽽引起的热量交换,可以分为⾃然对流和强对流。

对流⼀般作为⾯边界条件施加。

热对流⽤⽜顿冷却⽅程来描述。

辐射:⼀个物体或者多个物体之间通过电磁波进⾏能量交换。

热辐射指物体发射电磁能,并被其他物体吸收转变为热的热量交换过程。

物体温度越⾼,单位时间辐射的热量越多。

热传导和热对流都需要传热介质,⽽热辐射⽆需任何介质,且在真空中的效率最⾼。

可以看出辐射分析是⾼度⾮线性的。

1.2 热载荷分类(1)DOF约束:温度(2)集中载荷:热流(3)⾯载荷:热流,对流(4)体载荷:体积或者区域载荷。

1.2.1 载荷施加序号APDL含义备注1TUNIF施加均匀初始温度2IC施加⾮均匀的初始温度1.3 热分析分类1.3.1 稳态热分析如果热能的流动不随时间变化的话,热传递就成为是稳态的。

由于热能流动不随时间变化,系统的温度和热载荷也都不随时间变化。

稳态热平衡满⾜热⼒学第⼀定律。

通常在进⾏瞬态分析前,进⾏稳态分析⽤于确定初始温度分布。

对于稳态传热,⼀般只需要定义导热系数,他可以是恒定的,也可是是随温度变化的。

1.3.2 瞬态热分析瞬态热分析⽤于计算⼀个系统的随时间变化的温度场及其他热参数。

在⼯程上⼀般⽤瞬态热分析计算温度场,并将之作为热载荷进⾏应⼒分析。

ANSYS热分析详解

ANSYS热分析详解

ANSYS热分析详解ANSYS(工程仿真软件)是一种广泛应用于工程领域的有限元分析软件。

它不仅可以进行结构力学分析,还可以进行热分析。

热分析是通过数值模拟来研究物体在不同温度和热载荷条件下的热行为。

下面将详细介绍ANSYS热分析的一般步骤和常见应用。

热分析的步骤通常包括几个关键步骤:1.几何建模:通过ANSYS软件创建物体的三维几何模型。

可以使用软件内置的几何建模工具或从其他CAD软件导入几何模型。

2.材料定义:选择适当的材料,并在ANSYS中定义其热特性,如导热系数、比热容和线膨胀系数等。

3.网格划分:将几何模型分割成许多小单元,称为有限元。

每个有限元具有一组方程来描述其热行为。

网格划分的质量直接影响到最终结果的准确性,因此需要仔细选择合适的网格划分方法。

4.边界条件:指定物体的边界条件,如温度、热流、辐射、对流等。

这些边界条件会影响物体的热传导和热平衡。

5.求解:通过解决一组非线性偏微分方程来计算物体的温度分布。

ANSYS使用有限元方法来求解这些方程,并返回物体在不同点上的温度值。

6.后处理:对计算结果进行可视化和分析。

ANSYS可以绘制温度分布图、热通量图、温度梯度图等,以帮助用户更好地理解和分析物体的热行为。

1.电子器件散热分析:在电子设备中,散热问题常常是一个关键问题。

通过ANSYS热分析,可以评估电子器件所产生的热量,以及散热器的性能,从而确保设备的可靠性和性能。

2.汽车发动机冷却分析:汽车发动机的性能和寿命受限于冷却系统的效果。

ANSYS热分析可以帮助评估不同冷却系统的性能,并优化设计以提高发动机的效率和耐久性。

3.压力容器热应力分析:在高温和高压条件下,压力容器可能会发生热应力。

ANSYS热分析可以帮助评估容器的热应力,并指导合适的设计改进。

4.太阳能热系统分析:太阳能是一种可再生能源,可以通过太阳能热系统将太阳能转化为热能。

ANSYS热分析可以帮助评估太阳能热系统的性能,并优化设计以提高能量转化效率。

ANSYS的热分析指南

ANSYS的热分析指南

第一章 简 介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。

此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位项目 国际单位英制单位ANSYS 代号长度 m ft 时间 s s 质量 Kg lbm 温度 ℃ o F 力N lbf 能量(热量) J BTU 功率(热流率) W BTU/sec 热流密度 W/m 2 BTU/sec-ft 2 生热速率 W/m 3 BTU/sec-ft 3 导热系数 W/m-℃ BTU/sec-ft-o F KXX 对流系数 W/m 2-℃ BTU/sec-ft 2-o FHF 密度 Kg/m 3 lbm/ft 3 DENS 比热 J/Kg-℃ BTU/lbm-o F C 焓J/m 3BTU/ft 3ENTH二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:l对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=−式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;l 对于大多数工程传热问题:0==PE KE ∆∆; l 通常考虑没有做功:0=W , 则:U Q ∆=;l对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; l对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。

《热分析ansys教程》课件


汽车发动机热分析
总结词
汽车发动机热分析用于研究发动机工作过程中的热量传递和热应力分布,以提高发动机 效率和可靠性。
详细描述
发动机是汽车的核心部件,其工作过程中会产生大量的热量。通过热分析,工程师可以 了解发动机内部的温度分布和热应力状况,优化发动机设计,提高其燃油效率和耐久性

建筑物的温度分布分析
热分析的基本原理
热分析是研究温度场分布、变化 和传递规律的科学,其基本原理 包括能量守恒、热传导、对流和 辐射等。
热分析的应用领域
热分析广泛应用于能源、动力、 化工、机械、电子等众多领域, 涉及传热、燃烧、材料热物性、 电子器件散热等方面。
热分析的常用软件
ANSYS是国际上最流行的热分析 软件之一,具有强大的建模、网 格划分、加载、求解和后处理功 能,广泛应用于工程实际和科学 研究。
模拟系统在稳定状态下温度分布和热流密 度的计算方法
总结词
适用于研究系统在稳定状态下的热性能和 热量传递机制。
详细描述
稳态热分析用于计算系统在稳定状态下温 度分布和热流密度,不考虑时间因素,只 考虑热平衡状态。
详细描述
在稳态热分析中,系统的温度分布和热流 密度不随时间变化,因此可以忽略时间积 分效应,简化计算过程。
施加边界条件和载荷
根据实际情况,为模型的边界施加固 定温度、热流等边界条件,以及热载 荷。
求解和结果查看
选择求解器
根据模型的大小和复杂程度,选择合适的求解器进行求解。
结果后处理与查看
查看温度分布、热流分布等结果,并进行必要的后处理,如云图显示、数据导 出等。
03
热分析的常用方法
稳态热分析
总结词
COMSOL Multiphysics

(最新整理)ANSYS热分析详解

(完整)ANSYS热分析详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ANSYS热分析详解)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ANSYS热分析详解的全部内容。

第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式.此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 W/m 2—℃ 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:● 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W -- 作功;∆U ——系统内能;∆KE ——系统动能;∆PE —-系统势能;●对于大多数工程传热问题:0==PE KE ∆∆; ●通常考虑没有做功:0=W , 则:U Q ∆=; ● 对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dt dU q =,即流入或流出的热传递速率q 等于系统内能的变化。

ansys中的热分析

【转】热-结构耦合分析知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析,然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析.21.1 热-结构耦合分析简介热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法.21.1.1 热分析基本知识ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题.热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程.如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变化.瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率,热边界条件以及系统内能随时间都有明显变化.ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度,对流,辐射,绝热,生热.热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示.表21.1 热分析单元列表单元类型名称说明线性LINK32LINK33LINK34LINK31两维二节点热传导单元三维二节点热传导单元二节点热对流单元二节点热辐射单元二维实体PLANE55PLANE77PLANE35PLANE75PLANE78四节点四边形单元八节点四边形单元三节点三角形单元四节点轴对称单元八节点轴对称单元三维实体SOLID87SOLID70SOLID90六节点四面体单元八节点六面体单元二十节点六面体单元壳SHELL57 四节点四边形壳单元点MASS71 节点质量单元21.1.2 耦合分析在ANSYS中能够进行的热耦合分析有:热-结构耦合,热-流体耦合,热-电耦合,热-磁耦合,热-电-磁-结构耦合等,因为本书主要讲解结构实例分析,所以着重讲解热-结构耦合分析.在ANSYS中通常可以用两种方法来进行耦合分析,一种是顺序耦合方法,另一种是直接耦合方法.顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于某一物理分析.通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合.典型的例子就是热-应力顺利耦合分析,热分析中得到节点温度作为"体载荷"施加到随后的结构分析中去.直接耦合方法,只包含一个分析,它使用包含多场自由度的耦合单元.通过计算包含所需物理量的单元矩阵或载荷向量矩阵或载荷向量的方式进行耦合.典型的例子是使用了SOLID45,PLANE13或SOLID98单元的压电分析.进行顺序耦合场分析可以使用间接法和物理环境法.对于间接法,使用不同的数据库和结果文件,每个数据库包含合适的实体模型,单元,载荷等.可以把一个结果文件读入到另一个数据库中,但单元和节点数量编号在数据库和结果文件中必须是相同的.物理环境方法整个模型使用一个数据库.数据库中必须包含所有的物理分析所需的节点和单元.对于每个单元或实体模型图元,必须定义一套属性编号, 包括单元类型号,材料编号,实常数编号及单元坐标编号.所有这些编号在所有物理分析中是不变的.但在每个物理环境中,每个编号对应的实际的属性是不同的.对于本书要讲解的热-结构耦合分析,通常采用间接法顺序耦合分析,其数据流程如图21.1所示.图21.1 间接法顺序耦合分析数据流程图21.2 稳态热分析稳态传热用于分析稳定的热载荷对系统或部件的影响.通常在进行瞬态热分析以前,需要进行稳态热分析来确定初始温度分布.稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度,热梯度,热流率,热流密度等参数.ANSYS稳态热分析可分为三个步骤:前处理:建模求解:施加载荷计算后处理:查看结果21.2.1建模稳态热分析的模型和前面的结构分析模型建立过程基本相同.不同的就是需要在菜单过虑对话框中将分析类型指定为热分析,这样才能使菜单选项为热分析选项,单元类型也为热分析的单元类型,另外在材料定义时需要定义相应的热性能参数,下面为大概操作步骤.1.确定jobname,title,unit;2.进入PREP7前处理,定义单元类型,设定单元选项;3.定义单元实常数;4.定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;5.创建几何模型并划分网格,请参阅结构分析的建模步骤.21.2.2施加载荷计算热分析跟前面讲解的结构分析相比,区别在于指定的载荷为温度边条.通常可施加的温度载荷有恒定的温度,热流率,对流,热流密度和生热率五种.另外在分析选项中也包含非线性选项,结果输出选项等需要根据情况进行设置.1.定义分析类型(1) 如果进行新的热分析,则使用下面命令或菜单路径:COMMAND:ANTYPE, STATIC, NEWGUI: Main menu | Solution | -Analysis Type- | New Analysis | Steady-state (2) 如果继续上一次分析,比如增加边界条件等,则需要进行重启动功能: COMMAND: ANTYPE, STATIC, RESTGUI: Main menu | Solution | Analysis Type- | Restart2.施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) .(1) 恒定的温度: 通常作为自由度约束施加于温度已知的边界上.COMMAND: DGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Temperature(2)热流率: 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量.如果温度与热流率同时施加在一节点上,则ANSYS读取温度值进行计算.注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意.此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些.COMMAND: FGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Flow(3) 对流:对流边界条件作为面载施加于实体的外表面,计算与流体的热交换.它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流.COMMAND: SFGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Convection(4) 热流密度:热流密度也是一种面载荷.当通过单位面积的热流率已知或通过FLOTRAN CFD计算得到时,可以在模型相应的外表面施加热流密度.如果输入的值为正,代表热流流入单元.热流密度也仅适用于实体和壳单元.热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算. COMMAND: FGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Flux(5) 生热率:生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热.它的单位是单位体积的热流率.COMMAND: BFGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Generat3.确定载荷步选项对于一个热分析,可以确定普通选项,非线性选项以及输出控制.热分析的载荷不选项和结构静力分析中的载荷步相同,读者可以参阅本书结构静力分析部分的相关内容或基本分析过程中关于载荷步选项的内容.这里就不再详细讲解了.4.确定分析选项在这一步需要选择求解器,并确定绝对零度.在进行热辐射分析时,要将目前的温度值换算为绝对温度.如果使用的温度单位是摄氏度,此值应设定为273;如果使用的是华氏度,则为460.Command: TOFFSTGUI: Main Menu | Solution | Analysis Options5.求解在完成了相应的热分析选项设定之后,便可以对问题进行求解了.Command: SOLVEGUI: Main Menu | Solution | Current LS21.2.3后处理ANSYS将热分析的结果写入*.rth文件中,它包含如下数据信息:(1) 基本数据:节点温度(2) 导出数据:节点及单元的热流密度节点及单元的热梯度单元热流率节点的反作用热流率其它对于稳态热分析,可以使用POST1进行后处理.关于后处理的完整描述,可参阅本书第四章中关于利用通用后处理器进行结果观察分析的讲解.下面是几个关键操作的命令和菜单路径.1.进入POST1后,读入载荷步和子步:COMMAND: SETGUI: Main Menu | General Postproc | -Read Results-By Load Step2.在热分析中可以通过如下三种方式查看结果:彩色云图显示COMMAND: PLNSOL, PLESOL, PLETAB等GUI: Main Menu | General Postproc | Plot Results | Nodal Solu, Element Solu, Elem Table矢量图显示COMMAND: PLVECTGUI: Main Menu | General Postproc | Plot Results | Pre-defined or Userdefined列表显示COMMNAD: PRNSOL, PRESOL, PRRSOL等GUI: Main Menu | General Postproc | List Results | Nodal Solu, Element Solu, ReactionSolu21.3瞬态传热分析瞬态热分析用于计算一个系统随时间变化的温度场及其它热参数.在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析.瞬态热分析的基本步骤与稳态热分析类似.主要的区别是瞬态热分析中的载荷是随时间变化的.为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步.载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示.图21.2 瞬态热分析载荷-时间曲线对于每一个载荷步,必须定义载荷值荷对应的时间值,同时必须指定载荷步的施加方式为渐变或阶越.21.3.1建模一般瞬态热分析中,定义材料性能时要定义导热系数,密度及比热,其余建模过程与稳态热分析类似,这里就不再赘述.21.3.2加载求解和其它ANSYS中进行的分析一样,瞬态热分析进行加载求解时同样需要完成如下的工作.包括定义分析类型,定义初始条件,施加载荷,指定载荷步选项,指定结果输出选项以及最后进行求解.1. 定义分析类型指定分析类型为瞬态分析,通用可以进行新的分析或进行重启动分析.2.获得瞬态热分析的初始条件(1) 定义均匀温度场如果已知模型的起始温度是均匀的,可设定所有节点初始温度Command: TUNIFGUI: Main Menu | Solution | -Loads- | Settings | Uniform Temp如果不在对话框中输入数据,则默认为参考温度.参考温度的值默认为零,但可通过如下方法设定参考温度:Command: TREFGUI: Main Menu | Solution | -Loads- | Settings | Reference Temp注意:设定均匀的初始温度,与如下的设定节点的温度(自由度)其作用不同.Command: DGUI: Main Menu | Solution | -Loads- | Apply | -Thermal- | Temperature | On Nodes初始均匀温度仅对分析的第一个子步有效;而设定节点温度将保持贯穿整个瞬态分析过程,除非通过下列方法删除此约束:Command: DDELEGUI: Main Menu | Solution | -Loads- | Delete | -Thermal-Temperature | On Nodes (2) 设定非均匀的初始温度在瞬态热分析中,用下面的命令或菜单路径可以将节点温度设定为不同的值. Command: ICGUI: Main Menu | Solution | Loads | Apply | -Initial Condit'n | Define如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件.设定载荷(如已知的温度,热对流等)将时间积分设置为OFF:Command: TIMINT, OFFGUI: Main Menu | Preprocessor | Loads | -Load Step Opts-Time/Frequenc | Time Integration设定一个只有一个子步的,时间很小的载荷步(例如0.001):Command: TIMEGUI: Main Menu | Preprocessor | Loads | -Load Step Opts-Time/Frequenc | Time and Substps写入载荷步文件:Command: LSWRITEGUI: Main Menu | Preprocessor | Loads | Write LS File或先求解:Command: SOLVEGUI: Main Menu | Solution | Solve | Current LS注意:在第二载荷步中,要删去所有设定的温度,除非这些节点的温度在瞬态分析与稳态分析相同.3.设定载荷步选项进行瞬态热分析需要指定的载荷步选项和进行瞬态结构分析相同,主要有普通选项,非线性选项和输出控制选项.(1) 普通选项时间:本选项设定每一载荷步结束时的时间.Command: TIMEGUI: Main Menu | Solution | -Load Step Opts-Time/Frequenc | Time and Substps 每个载荷步的载荷子步数,或时间增量.对于非线性分析,每个载荷步需要多个载荷子步.时间步长的大小关系到计算的精度.步长越小,计算精度越高,同时计算的时间越长.根据线性传导热传递,可以按如下公式估计初始时间步长:ITS=δα24其中δ为沿热流方向热梯度最大处的单元的长度,α为导温系数,它等于导热系数除以密度与比热的乘积(αρ=kc).Command: NSUBST or DELTIMGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps 如果载荷值在这个载荷步是恒定的,需要设为阶越选项;如果载荷值随时间线性变化,则要设定为渐变选项.可以下面命令或菜单路径来实现.Command: KBCGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps (2) 非线性选项迭代次数:每个子步默认的次数为25,这对大多数非线性热分析已经足够.如果分析的问题不容易收敛,可以通过下面的命令来指定迭代次数.Command: NEQITGUI: Main Menu | Solution | -Load step opts | Nonlinear | Equilibrium Iter自动时间步长:本选项为ON时,在求解过程中将自动调整时间步长.Command: AUTOTSGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps 时间积分效果:如果将此选项设定为OFF,将进行稳态热分析.Command: TIM(1) INTGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time Integration GUI: Main Menu | Solution | -Load Step Opts- | Output Ctrls | DB/Results File4.在定义完所有求解分析选项后,进行结果求解.21.3.3 结果后处理对于瞬态热分析,ANSYS提供两种后处理方式.通用后处理器POST1,可以对整个模型在某一载荷步(时间点)的结果进行后处理;Command: POST1GUI: Main Menu | General Postproc.时间-历程后处理器POST26,可以对模型中特定点在所有载荷步(整个瞬态过程)的结果进行后处理.Command: POST26GUI: Main Menu | TimeHist Postproc1.用POST1进行后处理进入POST1后,可以读出某一时间点的结果.Command: SETGUI: Main Menu | General Postproc | Read Results | By Time/Freq如果设定的时间点不在任何一个子步的时间点上,ANSYS会进行线性插值.此外,还可以读出某一载荷步的结果.GUI: Main Menu | General Postproc | Read Results | By Load Step然后,就可以采用与稳态热分析类似的方法,对结果进行彩色云图显示,矢量图显示,打印列表等后处理.2,用POST26进行后处理首先,要定义变量.Command: NSOL or ESOL or RFORCEGUI: Main Menu | TimeHist Postproc | Define Variables然后,就可以绘制这些变量随时间变化的曲线.Command: PLVARGUI: Main Menu | TimeHist Postproc | Graph Variables或列表输出Command: PRVARGUI: Main Menu | TimeHist Postproc | List Variables21.4 热-结构耦合分析前面讲了热-结构耦合分析是一种间接法顺序耦合分析的典型例子.其主要分三步完成:1.进行热分析,求得结构的的温度场;2.将模型中的单元转变为对应的结构分析单元,并将第一步求得的热分析结构当作体载荷施加到节点上;3.定义其余结构分析需要的选项, 并进行结构分析.前面已经介绍了如何单独进行热分析和结构分析,下面介绍如何转换模型并将第一步求解的结果施加到节点上.1.完成必要的热分析,并进行相应的后处理,对结果进行查看分析.2.重新进入前处理器,并指定新的分析范畴为结构分析.选择菜单路径Main Menu | Preference ,在弹出的对话框中选择"Strutural"选项,使所有菜单变为结构分析的选项.3.进行单元转换.选择菜单路径Main Menu | Preprocessor | Element Type | Switch ElemType,将弹出Swithch Elem Type (转换单元类型)对话框,如图21.3所示.图21.3 转换单元类型对话框4.在对话框中的Change element type (改变单元类型)下拉框中选择"Thermal to Struc", 然后单击关闭对话框,ANSYS程序将会自动将模型中的热单元转换为对应的结构单元类型.5.定义材料的性能参数.跟通常的结构分析不同的是,除了定义进行结构静力分析需要的材料弹性模量,密度,或强化准则的定义之外.在热-结构耦合分析的第二个分析中,还需要定义材料的热膨胀系数,而且材料性能应该随温度变化的.6.将第一次分析得到的温度结果施加到结构分析模型上.选取菜单路径Main Menu | Solution | Define Loads | Apply | Structural | Temperature | From Therm Analy,将弹出ApplyTEMP from Themal Analysis (从已进行的热分析结果中施加温度载荷)对话框,如图21.4所示.单击对话框中的按钮,选择前面热分析的结果文件*.rth,作为结构分析的热载荷加到节点上.图21.4从已进行的热分析结果中施加温度载荷对话框7.定义其它结构分析的载荷步选项和求解分析选项,并进行结构分析求解.8.进行结果后处理,观察分析所求得的结果.盛年不重来,一日难再晨。

有限元方法与ANSYS应用第10讲-热分析


参数。
ANSYS热分析
热分析的类型: • 1.稳态热分析确定在稳态的条件下的 温度分布及其他热特性,稳态条件指热 量随时间的变化可以忽略。
• 2.瞬态热分析则计算在随时间变化的
条件下,温度的分布和热特性。
ANSYS热分析
热分析的类型--耦合场分析: • ANSYS中可与热分析进行耦合的方式 有热--结构、热--电磁等。耦合场分 析可以使用ANSYS中的矩阵耦合单元。
ANSYS热分析--基础知识:
传热学经典理论回顾 • 对于稳态传热:
• • 、
ANSYS利用模型几何差数、材料热
性能参数以及所施加的边界条件,生成


ANSYS热分析--基础知识:
传热学经典理论回顾 • 对于瞬态传热:
• 瞬态传热过程是指一个系统的加热或冷 却过程。在这个过程中系统的温度、热流率、 热边界条件以及系统内能随时间都有明显变 化。根据能量守恒原理,瞬态热平衡可以表 达为(以矩阵形式表示):
ANSYS热分析
热分析的基本过程—三步曲
2 施加载荷计算
ANSYS热分析
热分析的基本过程—三步曲
2 施加载荷计算
(3) 确定载荷步选项
ANSYS热分析
热分析的基本过程—三步曲
2 施加载荷计算
(3) 确定载荷步选项 (4) 确定分析选项(选择求解器)
(5) 求解
ANSYS热分析
热分析的基本过程—三步曲
ANSYS热分析
热分析的边界条件: • ANSYS热分析的边界条件或初始条件可 分为七种:温度,热流率、热流密度、 对流、辐射、绝热、生热。在ANSYS中
有相关的命令及其等效的菜单路径。
ANSYS热分析
三种主要热传递方式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l 热分析的基础知识,即热分析的特点、ANSYS热分析的主要类型及热载荷/边界的定
义。

l 稳态传热的基础知识,热分析单元及稳态传热分析的主要步骤及每步分析中需要注
意事项,实例讲解稳态热分析的过程。

l 瞬态传热的基础知识,稳态传热分析的主要步骤及每步分析中需要注意事项(特别
是求解及求解选项设定),实例讲解瞬态传热分析的过程。

简单的相变问题的基础知
识。

l 辐射传热的基础知识,辐射传热分析的主要步骤及每步中与传统热分析的差异。

l 耦合场的基础知识,常见的耦合场求解方法及其每种方法的优缺点,热应力分析的
主要步骤及与通常非耦合场分析的差异。

学好、用好ANSYS 热分析功需要首先了解热分析的基础知识,然后通过加强专业学习
的同时提高实际动手的能力,在实践中提高使用ANSYS 进行热分析的能力。

下面首先介绍
热分析的基础知识。

6.1 热分析简介
热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、
热梯度、热流密度(热通量)等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮
机、换热器、管路系统、电子元件等。

6.1.1 ANSYS 热分析特点
ANSYS 热分析有以下几个特点:
y ANSYS 功能组件热分析能力
在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、
ANSYS/FLOTRAN、
ANSYS/ED 五种产品中包含热分析功能,其中ANSYS/FLOTRAN 不含相变热分析。

y ANSYS 热分析原则
ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出
其它热物理参数。

y ANSYS 热分析类型
ANSYS 热分析包括热传导、热对流及热辐射三种热传递方式。

此外,还可以分析相
变、有内热源、接触热阻等问题。

6.1.2 ANSYS 热分析的分类
ANSYS 热分析分为两大类,即传统的热分析和热耦合分析。

383
第二章有限元分析基础
1.ANSYS热分析
依据温度场与时间的变化关系,ANSYS热分析可以分为以下两种:
1.稳态传热
稳态传热就是系统的温度场不随时间变化。

2.瞬态传热
瞬态传热,顾名思义就是系统的温度场随时间明显变化
2.热耦合分析
耦合分析,就是将热分析与其他类型的分析结合起来进行分析。

ANSYS可能进行的热耦
合分析包括以下几个方面:
y 热-结构耦合分析
y 热-流体耦合分析
y 热-电耦合分析
y 热-磁耦合分析
y 热-电-磁-结构耦合分析
6.1.3 热分析边界条件及初始条件
对于ANSYS 热分析而言,其提供的边界条件或者初始条件可以分为以下其中:温度、
热流率、热流密度、对流、辐射、绝热和生热。

6.1.4 ANSYS 热分析误差估计
对于任何分析都不可能决定精确,这要求在进行分析时进行误差评估,尽量减小误差。

ANSYS 热分析误差估计主要应用于以下几种情况:
y 只能评估网格密度因素引起的误差
y 只适合单温度自由度单元(SOLID 或者SHELL单元)
y 仅对线性、稳态热分析有效
y 通过自适应网格划分可以减少误差
y 热误差估计基于单元边界热流密度不连续
6.2 稳态传热分析
6.2.1 稳态传热简介
稳态传热用于分析稳定的热载荷对系统或部件的影响。

通常在进行瞬态传热分析以前,
进行稳态热分析用于确定初始温度分布。

稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度、热梯度、热流率、
热流密度等参数
384
第六章热分析385
6.2.2 热分析单元简介
热分析涉及到的单元有大约40 种,其中纯粹用于热分析的有14 种单元:
1.线性单元
LINK32 两维二节点热传导单元
LINK33 三维二节点热传导单元
LINK34 二节点热对流单元
LINK31 二节点热辐射单元
2.二维实体单元
PLANE55 四节点四边形单元
PLANE77 八节点四边形单元
PLANE35 三节点三角形单元
PLANE75 四节点轴对称单元
PLANE78 八节点轴对称单元
3.三维实体单元
SOLID87 六节点四面体单元
SOLID70 八节点六面体单元
SOLID90 二十节点六面体单元
4.壳单元
SHELL57 四节点
5.点单元
MASS71
有关各种单元的详细解释,请借助ANSYS Help。

6.2.3 稳态传热分析的主要步骤
和任何类型问题分析过程大致类似,ANSYS热分析可分为以下三个步骤,首先是建立有
限元模型,然后施加载荷并求解,最后是查看分析结果。

1.建立有限元模型
建模过程与一般类型问题分析过程大致一样:
1.分析前的准备工作
建模前的准备工作主要有:建立文件文件夹,选择文件名,添加标题并选择合理的单位。

热分析建议采用国际单位制。

2.进入前处理器
3.选择热分析单元类型,定义单元选项。

4.定义实常数
5.定义材料热性能参数
对于稳态传热分析只需要定义材料的导热系数。

材料的导热系数可以是恒定的,也可以
是随温度变化的。

相关文档
最新文档