八年级数学上册第11章

合集下载

人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》

人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》
如果6厘米长的边为腰,设底边长为x 厘米,则2×6 + x = 20,解得x = 8.
由以上讨论可知,其他两边的长分别为7 厘米,7 厘米或6 厘米,8 厘米.
课堂小结
边、顶点、内角
A
概念
(直角、 锐角、钝
c
b

按角分 角)三角

分类 形B
a
C
形 按边分
性质
三角形两边的和大于第三边. 三角形两边的差小于第三边.
等腰三角形的周长为20厘米. (1)若已知腰长是底长的2倍,求各边的长; (2)若已知一边长为6厘米,求其他两边的长.
解:(1)设底边长为x厘米,则腰长为2x 厘米. x + 2x + 2x = 20, 解得 x = 4.
所以三边长分别为4cm,8cm,8cm.
(2)如果6 厘米长的边为底边,设腰长为x 厘米,则6 + 2x = 20,解得x = 7;
所以,三角形的特征有: (1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.
探究新知
①边:组成三角形的每条线段叫做三角形的边.
②顶点:每两条线段的交点叫做三角形的顶点.
③内角:相邻两边组成的角.
顶点A

边c
边b
顶点B
角 边a
角 顶点C
探究新知
三角形的表示: 三角形用符号“△”表示.
记作“△ ABC”读作“三角形ABC”.
课堂检测
基础巩固题
1. 如图,图中直角三角形共有( C )
A.1个 B.2个
C.3个
D.4个
2. 下列各组数中,能作为一个三角形三边边长的是
( C)
A.1,1,2
B.1,2,4

人教版八年级上册数学第11章《三角形》(全)共9课时

人教版八年级上册数学第11章《三角形》(全)共9课时

C
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
△ABC 记法:三角形ABC用符号表示________.
பைடு நூலகம்
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表
c, a , b 示为________.
3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1:判断下列长度的三条线段能否拼成三角形?为什么? (1)3cm、8cm、4cm; (2)5cm、6cm、11cm; (3)5cm、6cm、10cm.
3.如图,在△ACE中,∠CEA的对边是 AC A

B
C
D
E
F
19cm 4.已知等腰三角形的两边长分别为8cm,3cm,则这个三角形的周长为 __________.
解:(1)不能,因为3cm+4cm<8cm; (2)不能,因为5cm+6cm=11cm;
(3)能,因为5cm+6cm>10cm.
归纳
判断三条线段是否可以组成三角形,只需说明两条较短线段之和大于第
三条线段即可.
针对训练 一根木棒长为7,另一根木棒长为2,那么用长度为4的木棒能和它们拼成三角形吗? 长度为11的木棒呢?若不能拼成,则第三条边应在什么范围呢?
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD. (2)以AB为边的三角形有哪些? △ABC、△ABE.

新人教版八年级上册数学第十一章知识点

新人教版八年级上册数学第十一章知识点

第十一章 三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4。

中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5。

角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8。

多边形的内角:多边形相邻两边组成的角叫做它的内角.9。

多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10。

多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11。

正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12。

平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.知识点1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么这两个图形关于这条直线对称45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48 定理四边形的内角和等于360049 定理四边形的外角和等于360050 多边形内角和定理n边形的内角和等于(n—2)*180051 推论任意多边的外角和等于360052 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 平行四边形性质定理3 平行四边形的对角线互相平分55平行四边形判定定理1 两组对角分别相等的四边形是平行四边形56 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形57 平行四边形判定定理3 对角线互相平分的四边形是平行四边形58 平行四边形判定定理4 一组对边平行且相等的四边形是平行四边形59 矩形性质定理1 矩形的四个角都是直角。

人教版八年级数学上册第11章.docx

人教版八年级数学上册第11章.docx

人教版八年级数学上册第11 章§11. 2三角形全等的条件§11. 2.1三角形全等的条件(一)§11. 2.1三角形全等的条件(二)§11. 2.3三角形全等的条件(三)§11. 2.3三角形全等的条件---直角三角形全等的判定(四)§11. 3角的平分线的性质(一)§11. 3.2角的平分线的性质(二)§ 11.1全等三角形教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程Ⅰ.提出问题,创设情境1、问题:你能发现这两个三角形有什么美妙的关系吗?A A1B C B1C1这两个三角形是完全重合的.2.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.3.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.形状与大小都完全相同的两个图形就是全等形.要是把两个图形放在一起,能够完全重合, ?就可以说明这两个图形的形状、大小相同.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求.Ⅱ.导入新课利用投影片演示将△ ABC沿直线 BC平移得△ DEF;将△ ABC沿 BC翻折 180°得到△ DBC;将△ABC 旋转 180°得△ AED.AA DBD E CAB C E F D B C甲乙丙议一议:各图中的两个三角形全等吗?不难得出:△ABC≌△ DEF,△ ABC≌△ DBC,△ ABC≌△ AED.(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,?但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.[ 例 1] 如图,△ OCA≌△ OBD,C 和 B,A 和 D 是对应顶点, ?说出这两个三角形中相等的边和角.C BOA D问题:△ OCA≌△ OBD,说明这两个三角形可以重合, ?思考通过怎样变换可以使两三角形重合?将△ OCA翻折可以使△ OCA与△ OBD重合.因为 C和 B、A 和 D是对应顶点,?所以 C 和 B 重合, A 和 D重合.∠C=∠B;∠ A=∠ D;∠ AOC=∠DOB.AC=DB;OA=OD;OC=OB.总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[ 例 2] 如图,已知△ ABE≌△ ACD,∠ADE=∠AED,∠B=∠C,?指出其他的对应边和对应角.AB D E C分析:对应边和对应角只能从两个三角形中找,所以需将△ ABE和△ ACD从复杂的图形中分离出来.根据位置元素来找:有相等元素,它们就是对应元素, ?然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.解:对应角为∠ BAE和∠ CAD.对应边为 AB与 AC、AE与 AD、BE与 CD.[ 例 3] 已知如图△ ABC≌△ ADE,试找出对应边、对应角.(由学生讨论完成)ACEOB D借鉴例 2 的方法,可以发现∠ A=∠A,?在两个三角形中∠ A 的对边分别是 BC和DE,所以 BC和 DE是一组对应边.而 AB与 AE显然不重合,所以 AB?与 AD是一组对应边,剩下的 AC与 AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠ B 与∠ D 是对应角,∠ ACB与∠ AED是对应角.所以说对应边为AB与AD、AC与 AE、BC与 DE.对应角为∠ A 与∠ A、∠ B 与∠ D、∠ ACB与∠ AED.做法二:沿 A 与 BC、DE交点 O的连线将△ ABC?翻折 180°后,它正好和△ ADE 重合.这时就可找到对应边为: AB与 AD、 AC与 AE、 BC与 DE.对应角为∠ A 与∠A、∠ B 与∠ D、∠ ACB与∠ AED.Ⅲ.课堂练习课本 P90 练习 1.课本 P90 习题 14. 1 复习巩固1.Ⅳ.课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质, ?并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理4 / 281.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.Ⅴ.作业课本 P90习题 14.1、复习巩固 2、综合运用 3.课后作业 : <<三级训练>>板书设计§11.1 全等三角形一、概念二、全等三角形的性质三、性质应用例1:(运动角度看问题)例2:(根据位置来推理)例3:(根据位置和运动角度两种办法来推理)四、小结:找对应元素的方法运动法:翻折、旋转、平移.位置法:对应角→对应边,对应边→对应角.§11.2 三角形全等的条件§11.2.1 三角形全等的条件(一)教学目标1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、 ?归纳获得数学结论的过程.教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学过程Ⅰ.创设情境,引入新课出示投影片,回忆前面研究过的全等三角形.已知△ ABC≌△ A′B′C′,找出其中相等的边与角.A A'B C B'C'图中相等的边是: AB=A′ B、 BC=B′ C′、 AC=A′C.相等的角是:∠ A=∠ A′、∠ B=∠B′、∠ C=∠C′.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.Ⅱ.导入新课出示投影片1.只给一个条件(一组对应边相等或一组对应角相等), ?画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为 3cm.②三角形两内角分别为30°和 50°.③三角形两条边分别为4cm、 6cm.学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.①3030303cm3cm3cm3050②3050③4cm4cm6cm6cm可以发现按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1.作图方法:先画一线段 AB,使得 AB=6cm,再分别以 A、B 为圆心, 8cm、10cm为半径画弧, ?两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为 AB=6cm,AC=8cm, BC=10cm.2 .以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.?这说明这些三角形都是全等的.3 .特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、 AC=A′C′、 BC=B′C′.将△ A′B′C′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.[ 例] 如图,△ ABC是一个钢架, AB=AC, AD是连结点 A 与 BC中点 D 的支架.求证:△ ABD≌△ ACD.AB D C[ 师生共析 ] 要证△ ABD≌△ ACD,可以看这两个三角形的三条边是否对应相等.证明:因为 D 是 BC的中点所以 BD=DC在△ ABD和△ ACD中AB ACBD CDAD AD (公共边)所以△ ABD≌△ ACD( SSS).生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的, ?而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性. ?例如屋顶的人字梁、大桥钢架、索道支架等.Ⅲ.随堂练习如图,已知 AC=FE、BC=DE,点 A、D、B、F 在一条直线上, AD=FB.要用“边边边”证明△ ABC≌△ FDE,除了已知中的 AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?A CDBE F2.课本 P94 练习.Ⅳ.课时小结本节课我们探索得到了三角形全等的条件, ?发现了证明三角形全等的一个规律 SSS.并利用它可以证明简单的三角形全等问题.Ⅴ.作业1 .习题 14.2 复习巩固 1、 2.习题14.2综合运用9.课后作业:《课堂感悟与探究》Ⅵ.活动与探索如图,一个六边形钢架ABCDEF由 6 条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?A BF CE D本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用.结果:(1)可从这六个顶点中的任意一个作对角线,?把这个六边形划分成四个三角形.如图( 1)为其中的一种.( 2)也可以把这个六边形划分成四个三角形.如图( 2).(2)(1)板书设计§11.2.1 三角形全等的条件(一)一、三角形全等的条件三边对应相等的两三角形全等( SSS)二、例三、课堂练习四、小结§11.2.1 三角形全等的条件(二)教学目标1.三角形全等的“边角边”的条件.2 .经历探索三角形全等条件的过程,体会利用操作、?归纳获得数学结论的过程.3.掌握三角形全等的“ SAS”条件,了解三角形的稳定性.4.能运用“ SAS”证明简单的三角形全等问题.教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学过程一、创设情境,复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:△ ABD ≌△ ACE ,AB 与AC 是对应边;图(2)中:△ ABC ≌△ AED ,AD 与 AC是对应边.4.三角形全等的判定Ⅰ的内容是什么?二、导入新课1.三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图 2,AC 、BD相交于 O,AO、BO 、CO、 DO的长度如图所标,△ ABO 和△ CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO =CO,∠AOB =∠ COD,BO=DO.如果把△ OAB绕着 O点顺时针方向旋转,因为 OA =OC,所以可以使 OA 与OC 重合;又因为∠ AOB =∠ COD, OB=OD ,所以点 B与点 D重合.这样△ ABO 与△ CDO就完全重合.(此外,还可以图 1(1)中的△ ACE 绕着点 A 逆时针方向旋转∠ CAB 的度数,也将与△ ABD 重合.图 1( 2)中的△ ABC 绕着点 A 旋转,使 AB 与 AE重合,再把△ ADE沿着 AE(AB) 翻折 180°.两个三角形也可重合 )由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠ DAE =45°,②在 AD 、 AE 上分别取B、C,使 AB =3.1cm,AC= 2.8cm.③连结 BC,得△ ABC .④按上述画法再画一个△A 'B'C'.(2)把△ A 'B'C'剪下来放到△ ABC 上,观察△ A 'B'C'与△ ABC 是否能够完全重合?3.边角边公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边” 或“ SAS”)三、例题与练习1.填空:(1)如图 3,已知 AD ∥ BC,AD = CB,要用边角边公理证明△ABC ≌△ CDA ,需要三个条件,这三个条件中,已具有两个条件,一是AD = CB(已知 ),二是___________;还需要一个条件 _____________(这个条件可以证得吗? ).(2)如图 4,已知 AB =AC ,AD =AE,∠ 1=∠ 2,要用边角边公理证明△ABD ≌ ACE,需要满足的三个条件中,已具有两个条件:_________________________这(个条件可以证得吗? ).2、例 1已知:AD ∥BC,AD = CB(图3).求证:△ ADC ≌△ CBA .问题:如果把图 3中的△ ADC 沿着 CA 方向平移到△ ADF的位置 (如图 5),那么要证明△ ADF ≌ △CEB,除了 AD ∥ BC、AD =CB的条件外,还需要一个什么条件 (AF= CE或AE = CF)?怎样证明呢?例2 已知: AB = AC、 AD =AE、∠ 1=∠ 2(图4).求证:△ ABD ≌△ ACE .四、小结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等 ),并要善于运用学过的定义、公理、定理.五、作业:1.已知:如图, AB =AC ,F、E分别是 AB 、AC 的中点.求证:△ ABE ≌△ACF.2.已知:点 A、 F、 E、C在同一条直线上,AF =CE,BE∥ DF, BE=DF.求证:△ ABE≌△ CDF.课后作业:<<课堂感悟与探究>>§ 11.2.3三角形全等的条件(三)教学目标1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角” “角角边”条件.4.能运用全等三角形的条件,解决简单的推理证明问题.教学重点已知两角一边的三角形全等探究.教学难点灵活运用三角形全等条件证明.教学过程Ⅰ.提出问题,创设情境1.复习:( 1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;② SSS;③ SAS.2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课问题 1:三角形中已知两角一边有几种可能?1.两角和它们的夹边.2.两角和其中一角的对边.问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ ASA”).问题 3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△ A′B′C′,使∠ A=∠A′、∠ B=∠B′、 AB=A′B′呢?①先用量角器量出∠ A 与∠ B 的度数,再用直尺量出AB的边长.②画线段 A′B′,使 A′B′=AB.③分别以 A′、 B′为顶点, A′B′为一边作∠ DA′B′、∠ EB′A,使∠ D′AB=∠ CAB,∠ EB′A′ =∠ CBA.④射线 A′D 与 B′ E 交于一点,记为 C′即可得到△ A′B′C′.将△ A′ B′ C′与△ ABC重叠,发现两三角形全等.EDC C'A B A'B'两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ ASA”).思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?探究问题 4:如图,在△ ABC和△ DEF中,∠ A=∠D,∠ B=∠E,BC=EF,△ ABC与△ DEF全等吗?能利用角边角条件证明你的结论吗?A DB C EF证明:∵∠ A+∠B+∠ C=∠D+∠E+∠ F=180°∠A=∠D,∠ B=∠E∴∠ A+∠B=∠D+∠ E∴∠ C=∠F在△ ABC和△ DEF中B EBC EFC F∴△ ABC≌△ DEF( ASA).两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“ AAS”).[ 例] 如下图, D在 AB上, E 在 AC上, AB=AC,∠ B=∠C.求证: AD=AE.[ 分析 ]AD 和 AE分别在△ ADC和△ AEB中,所以要证AD=AE,只需证明△ ADC ≌△ AEB即可.证明:在△ ADC和△ AEB中A AAC ABC B所以△ ADC≌△ AEB(ASA)所以 AD=AE.Ⅲ.随堂练习(一)课本 P99 练习 1、2.(二)补充练习图中的两个三角形全等吗?请说明理由.DDA 4550CE45502929B AC B(1)(2)答案:图( 1)中由“ ASA”可证得△ ACD≌△ ACB.图( 2)由“AAS”可证得△ACE≌△ BDC.Ⅳ.课时小结至此,我们有五种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边边边( SSS)边角边( SAS)角边角(ASA)角角边(AAS)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.Ⅴ.作业1.课本习题 14.2─5、6、14 题.课后作业:<<课堂感悟与探究>>板书设计11. 2. 3 三角形全等的条件(三)两角及其夹边一、两角一边两角和其中一角的对边二、三角形全等的条件1 .两角及其夹边对应相等的两三角形全等(ASA)2.两角和其中一角的对边对应相等的两三角形全等(AAS)§11.2.3 三角形全等的条件 ---直角三角形全等的判定(四)教学目标1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。

最新人教版初中八年级上册数学第十一章三角形知识归纳

最新人教版初中八年级上册数学第十一章三角形知识归纳

第十一章三角形
11.1 与三角形有关的线段【高、中线(重心)、角平分线】
两边之差<第三边<两边之和。

按边分类、三角形的稳定性。

11.2 与三角形有关的角
三角形内角和定理:三角形三个内角的和等于180º。

直角三角形的两个锐角互余。

有两个角互余的三角形是直角三角形。

推论:三角形的外角等于与它不相邻的两个内角的和。

备注:推论和定理一样,可以作为进一步推理的依据。

11.3 多边形及其内角和
多边形:在平面内,由一些线段首尾顺次相接组成的封闭式图形。

对角线:连接多边形不相邻的两个顶点的线段。

正多边形:各个角都相等,各条边都相等的多边形。

n边形内角和等于(n-2)×180º。

多边形的外角和等于360º。

作者留言:
非常感谢!您浏览到此文档。

为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。

初中数学人教八年级上册第十一章三角形三角形与面积PPT

初中数学人教八年级上册第十一章三角形三角形与面积PPT
练习:
小试牛刀
(同底等高的两个三角形面积相等)
探究: 小组活动
问题:园艺工人要将一 块三角形花坛分成三个 面积相等的小三角形, 分别种植三种不同的花 卉,应该如何分配该花 坛?
深入探究
在上述划分方法中有一个 图形不同于其它图形,单独 来研究一下。
A
G
B
C
A
F
E
G
B
D
C
分析:如果我们作三边上的中线, 能否将三角形的面积三等分呢
10/3S△EBC ,求 S△EFG
同学们,下节课再见!
小结:
(1)三角形的中线将三角形面积等分;
(2)三角形的重心与顶点的连线将三角形面积三等分; (3)三角形的重心将中线分为 2:1 的两部分。
(4) 三角形的三条中线将三角形分成的六个三角形面积相等
A
F
E
G
B
D
C
练习:
已知:S△ABC=12,AF、CD、 BE 分别是△ABC 的中 线,则 S△OBD = +S△OEC
D
G
SC
DG CGDC
D
A
F
E
Gቤተ መጻሕፍቲ ባይዱ
B
D
C
猜想:三角形的重心将中线
分即即即即又又又又 GGSSGGGGGGSGSS:SS:::为DDDDDDDDDDGGGGGGGGGGAASAADDS是SSDDSDDDDDD是是是是两GCCGCCGCCCCGCCCCCCCCG12:G12GGG1122G:12:B条:BGBBBBBBGABB1122G=BGA1122G=AA11112222==A1122D=GGSGGSSDGDG线SDGGGCSSSSGSSSSSSSSCCCAC中CAAG中CAAAAGG中中ACACACA段中CAG2CGGGGGCBGGGGGGGGB2GC22CCCCB2:CCCCBBBBCBBBC1B:::的:C1CC11边C1边边边边长的的的的的中度中中中线中有线线线线什么关系

人教版八年级上册数学第十一章三角形全章课件


B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c

2023八年级数学上册第十一章三角形11


C.4 cm,4 cm,8 cm
D.4 cm,5 cm,9 cm
答案
6.A 列表分析如下:
知识点3 三角形的三边关系
7. [2021宜宾中考]若长度分别是a,3,5的三条线段能组成一个三角形,则a的值可以是
(
A.1
)
B.2
C.4
D.8
答案
7.C 由三角形的三边关系,得5-3<a<5+3,即2<a<8,结合选项,知a的值可以是4.
三角形不可能都是锐角三角形.
2. [2022哈尔滨期中]已知三角形的三边长分别为a,b,c,化简|a-b+c|-|a-b-c|的结果为
(
)
A.2a-2b B.2a-2c
C.a-2b
D.0
答案
2.A ∵三角形的三边长分别是a,b,c,∴a-b+c>0,a-b-c<0,∴|a-b+c|-|a-b-c|=a-b+c+a-bc=2a-2b.
此时2x+2-(2x-6)>2x-6-16,
解得x<15,∴11<x<15.
∵x为整数,∴x=12或13或14,
经检验,当x=12或13或14时,都可以构成三角形.
综上所述,x的整数值为10或12或13或14.
能构成三角形,则a的取值范围为
.
答案
4.-3<a<-2 ∵3,1-a,1-2a在数轴上从左到右依次排列,∴3<1-a<1-2a,∴a<-2.∵以这三个
数为边长能构成三角形,
∴3+(1-a)>1-2a,∴a>-3.综上,a的取值范围为-3<a<-2.

最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件

2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
11.1 与三角形有关的线段
即三角形两边的和大于第三边. B
C
由不等式②③移项可得 BC >AB -AC, BC >AC -AB.由此你能得出什么结论?
A
三角形两边的差小于第三边.
B
C
问题:下列长度的三条线段能否组成三角形?为 什么?(1)3,4,5;(2)5,6,11;(3)5,6,10. 解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
解:①如果 4 cm 长的边为底边,设腰长为 x cm,则
4 + 2x = 18. 解得 x = 7. ②如果 4 cm 长的边为腰,设底边长为 x cm,则
4×2 + x = 18. 解得 x = 10.
因为4 + 4<10,不符合三角形两边的和大于第 三边,所以不能围成腰长为 4 的等腰三角形.
基础巩固
随堂演练
1.下列说法:①等边三角形是等腰三角形;②
三角形按边分类可分为等腰三角形、等边三角形、
不等边三角形;③三角形的两边之差大于第三边;
④三角形按角分类应分为锐角三角形、直角三角
形、钝角三角形. 其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
2.已知三角形的一边长为 5 cm,另一 边长为 3 cm .则第三边的长 x 的取值范围是 __2_c_m__<__x_<__8_c_m___.
拓展延伸 3.等腰三角形的周长为 20 厘米. (1)若已知腰长是底长的 2 倍,求各边的长; (2)若已知一边长为 6 厘米,求其他两边的长.

八年级数学上册知识梳理(11—12章)

).(, ,, SAS DEF ABC DEF ABC ∆≅∆∴⎪⎩⎪⎨⎧===∆∆ 中,与).(, , ,ASA DEF ABC DEF ABC ∆≅∆∴⎪⎩⎪⎨⎧===∆∆ 中,与 AC BFED图2八年级数学上册知识梳理第十一章 全等三角形11.1 全等三角形1.能够 的两个图形叫做全等形。

两个图形是否全等只与这两个图形的形状和大小有关,与图形所在位置无关。

2.能够 的两个三角形叫做全等三角形。

两个全等三角形中互相重合的顶点叫做对应 ,重合的角叫做对应 ,重合的边叫做对应 。

3.全等三角形的表示:全等用符号 表示,读作 。

4.全等三角形的性质有:(1)全等三角形的 相等;(2)全等三角形的 相等。

5.一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小 ,平移、翻折、旋转前后的两个图形 。

11.2 三角形全等的判定 三角形全等的识别方法 1.如图1,用文字表述“SSS ”: 。

2.如图1,用文字表述“SAS ”: 。

3.如图1,).(, , , SSS DEF ABC DEF ABC ∆≅∆∴⎪⎩⎪⎨⎧===∆∆ 中,与 A F E D C B 图1).(, , ,AAS DEF ABC DEF ABC ∆≅∆∴⎪⎩⎪⎨⎧===∆∆ 中,与用文字表述“ASA ”: 。

4.如图1,用文字表述“AAS ”: 。

5.如2,用文字表述“HL ”: 。

判断两个三角形全等的常见思路如下表:11.3角平分线的性质1.定义:角平分线是把一个角分成两个相等的角的射线。

2.角平分线的尺规作图作法。

(见课本P19)3.角平分线的性质(1)性质:角的平分线上的点到两边的 相等。

(2)符号语言:如图3,).(, , HL DEF ABC DEF Rt ABC Rt ∆≅∆∴⎩⎨⎧==∆∆ 中,与ODCPBA图3).( D,OB PD C OP AOB 角平分线的性质于,于上,在射线,点平分∴⊥⊥∠OA PC P OP(3)应用角平分线性质解题的格式的两边的距离相等)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第11章《三角形》测试题
班级:座号:姓名:评分:
一、选择题(本大题10小题,每小题3分,共30分)
1、下列各组线段为边能组成三角形的是:( )
A.1cm,2cm,4cm.
B.2cm,3cm,5cm.
C.5cm,6cm,12cm.
D.4cm,6cm,8cm.
2、已知三角形的两边长分别为3cm和8cm,则它的第三边的长可能是:( )
A.4cm
B.5cm
C.6cm
D.13cm
3、一个三角形的三边长分别为x、2、3,那么x的取值范围是:( )
A.2<x<3
B. 1<x<5
C. 2<x<5
D. x>2
4、已知等腰三角形的两边长分别为3和5,则它的周长是:( )
A.8
B. 11
C.13
D.11或13
5、三角形的角平分线、中线和高:( )
A.都是线段
B.都是射线
C.都是直线
D.不都是线段
6、三角形的三条高在:( )
A.三角形的内部
B. 三角形的外部
C.三角形的边上
D.三角形的内部、外部或边上
7、八边形的对角线共有:( ) A.8条 B.16条 C.18条 D.20条
8、一个四边形截去一个内角后变为:( )
A.三角形
B.四边形
C.五边形
D.以上均有可能
9、六边形的内角和等于:( ) A.360° B.540° C.720° D.900°
10、直角三角形两锐角的平分线相交所成的钝角是:( )
A.120°
B.135°
C.150°
D.165°
二、填空题(本大题6小题,每小题4分,共24分)
11、已知等腰三角形的两边长分别为4和9,则它第三边的长是.
12、盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三
角形具有的原理.13、五边形的外角和等于.
14、一个多边形每个外角都是60°,此多边形一定是边形.
15、如图所示∠A+∠B+∠C+∠D+∠E+∠F= .
16、如图所示,已知△ABC 为直角三角形,∠B=90°,若沿图中虚线剪去∠B ,则∠1+∠2 = .
15题
图 16题图
三、解答题(一)(本大题3小题,每小题6分,共18分)
17、如图所示,用火柴杆摆出一系列三角形图案,共摆有n 层,当n=1时,需3根火柴;当n=2
时,需9根火柴,按这种方式摆下去,
(1)当n=3时,需 根火柴.(2)当n=20时,需 根火柴.
18、如图,AB∥CD,∠A=45°,∠C=∠E,求∠C 的度数.
19、如图所示,在△ABC 中,∠A=60°,BD ,CE 分别是AC ,AB 上的高,H 是BD 和CE 的交点,求∠BHC 的度数.
四、解答题(二)(本大题3小题,每小题7分,共21分) 22、一个多边形的外角和等于内角和的7
2
,求这个多边形的边数.
n=3
n=2
n=1
A
20、如图,已知P 是△ABC 内一点,试说明PA+PB+PC>1
2
(AB+BC+AC) .
21、如图所示五角星,试求∠A+∠B+∠C+∠D+∠E.
五、解答题(三)(本大题3小题,每小题9分,共27分)
22、如图,AB ∥CD ,∠ABD 、∠BDC 的平分线交于E ,试判断△BED
23、四边形ABCD 中,∠A =∠C =90°,BE 、CF 分别是∠ABC 、∠ADC 的平分线.
求证:(1)∠1+∠2=90°;(2)BE ∥DF.
24、已知一个三角形的三边长分别是4,2a – 3 ,5,其中a 是奇数,求a 的值。

25、如图所示,CD 是⊿ABC 的角平分线,E 是BC 边上的一点,
且∠1 = ∠2。

试判断DE 与AC 的位置关系并说明理由。

P
C
B
A
A
C
1
2
B
D
26、如图,AD 是⊿ABC 的外角平分线,交BC 的延长线于D 点,若∠B = 30º,∠DAE = 55º,求∠ACD 的度数。

27、(12分)已知如图,在四边形ABCD 中,∠A = ∠C ,∠B = ∠D ,试判断AB 与DC 、AD 与
BC 各自具有怎样的位置关系?说明理由。

28、(1)如图:点P 为△ABC 的内角平分线BP 与CP 的交点,
求证:∠BPC =90°+1
2
∠A.
(2)如图:点P 是△ABC 内角平分线BP 与外角平分线CP 的交点,请直接写出∠BPC 与∠A
的关系.
(3)如图:点P 是△ABC 的外角平分线BP 与CP 的交点,请直接写出∠BPC 与∠A 的关系
.
A
E
C
B
D
A
B。

相关文档
最新文档