高考数学(文)一轮对点训练:13-1合情推理与演绎推理答案解析

合集下载

2019年高考数学(文)一轮复习精品资料:专题53合情推理与演绎推理(教学案)含解析

2019年高考数学(文)一轮复习精品资料:专题53合情推理与演绎推理(教学案)含解析

2019年高考数学(文)一轮复习精品资料1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.一、合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.二、演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.高频考点一 归纳推理例1、观察下列等式: 3π-2+32π-2=34×1×2;5π-2+52π-2+53π-2+54π-2=34×2×3;7π-2+72π-2+73π-2+…+76π-2=34×3×4; 9π-2+92π-2+93π-2+…+98π-2=34×4×5; …照此规律,2n +1π-2+2n +12π-2+2n +13π-2+…+2n +12nπ-2=__________. 【答案】34×n ×(n +1)【解析】观察等式右边的规律:第1个数都是34,第2个数对应行数n ,第3个数为n +1. 【变式探究】已知a i >0(i =1,2,3,…,n ),观察下列不等式: 2a1+a2≥;3a1+a2+a3≥a1a2a33; 4a1+a2+a3+a4≥a1a2a3a44; …照此规律,当n ∈N *,n ≥2时,n a1+a2+…+an≥______.【答案】a1a2…an n【解析】根据题意得n a1+a2+…+an ≥a1a2…an n(n ∈N *,n ≥2). 【举一反三】观察下列等式: 1+2+3+…+n =21n (n +1);1+3+6+…+21n (n +1)=61n (n +1)(n +2);1+4+10+…+61n (n +1)(n +2)=241n (n +1)(n +2)(n +3); …可以推测,1+5+15+…+241n (n +1)(n +2)(n +3)=____________________. 【答案】1201n (n +1)(n +2)(n +3)(n +4)(n ∈N *)【变式探究】某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55【答案】D【解析】由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D.【感悟提升】归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.(2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【变式探究】(1)将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2 016到2 018的箭头方向是()【答案】A【解析】从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5箭头也是垂直指下,8→9也是如此,而2 016=4×504,所以2 016→2 017也是箭头垂直指下,之后2 017→2 018的箭头是水平向右,故选A.(2)如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为()A .6B .7C .8D .9【答案】C高频考点二 类比推理例2、 (1)等差数列{a n }的公差为d ,前n 项的和为S n ,则数列n Sn 为等差数列,公差为2d.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{Tn n}的公比为( )A.2qB .q 2C.D.q n【答案】C【解析】由题设,得T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1qn -1=b 1n q 1+2+…+(n -1)=.∴Tn n =,∴等比数列{Tn n}的公比为,故选C.(2)在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:ha Pa +hb Pb +hc Pc=1.把它类比到空间,则三棱锥中的类似结论为______________________.【答案】ha Pa +hb Pb +hc Pc +hd Pd=1【感悟提升】 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【变式探究】在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如下图1所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)如图1,17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如下图2.在杨辉三角中相邻两行满足关系式:C n r +C n r +1=C n +1r +1,其中n 是行数,r ∈N .请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是____________.1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1 …C n 0 C n 1 … C n r … C n n -1 C n n 图1 21 21 31 61 31 41 121 121 41 51 201 301 201 51 61 301 601 601 301 61 …n 0 n 1 … n r … n n -1 n n 图2【答案】n r =n +1r +n +1r +1【解析】类比观察得,将莱布尼茨三角形的每一行都能提出倍数n +11,而相邻两项之和是上一行的两者相拱之数,所以类比式子C n r +C n r +1=C n +1r +1,有n r =n +1r +n +1r +1. 高频考点三 演绎推理例3、数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n +2S n (n ∈N *).证明:(1)数列n Sn是等比数列; (2)S n +1=4a n .【感悟提升】演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,当大前提不明确时,可找一个使结论成立的充分条件作为大前提.【变式探究】 (1)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.(2)已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.【方法技巧】解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比推理问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.【变式探究】(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:①b2 018是数列{a n}的第________项;②b2k-1=________.(用k表示)(2)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(ⅰ)T={f(x)|x∈S};(ⅱ)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________.①A=N*,B=N;②A={x|-1≤x≤3},B={x|x=-8或0<x≤10};③A={x|0<x<1},B=R;④A=Z,B=Q.对于②,取f (x )=x2+1,0<x≤3,x +1,-1<x≤0,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②; 对于③,取f (x )=tan 2π(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③.④不符合,故填④.【答案】(1)①5 045 ②25k -1(2)④1.(2017·全国Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙1.(2016·北京)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多【答案】B的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选B.2. (2016·山东)观察下列等式: 3π-2+32π-2=34×1×2;5π-2+52π-2+53π-2+54π-2=34×2×3; 7π-2+72π-2+73π-2+…+76π-2=34×3×4; 9π-2+92π-2+93π-2+…+98π-2=34×4×5; …照此规律,2n +1π-2+2n +12π-2+2n +13π-2+…+2n +12nπ-2=__________. 【答案】34×n ×(n +1)【解析】观察等式右边的规律:第1个数都是34,第2个数对应行数n ,第3个数为n +1.。

新高考数学文科一轮总复习课时练习10.1合情推理和演绎推理(含答案详析)

新高考数学文科一轮总复习课时练习10.1合情推理和演绎推理(含答案详析)

第十章 推理与证明第1讲 合情推理和演绎推理1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x .由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )2.(2012年江西)观察下列各式:a +b =1.a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1993.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a·b +b 2.其中结论正确的个数是( )A .0个B .1个C .2个D .3个4.图K10-1-1的三角形称为谢宾斯基(Sierpinski)三角形.在下图中,将第1个三角形的三边中点为顶点的三角形着色,将第k (k ∈N *)个图形中的每个未着色三角形的三边中点为顶点的三角形着色,得到第k +1个图形,这样这些图形中着色三角形的个数依次构成一个数列{a n },则数列{a n }的通项公式为________________. ……图K10-1-15.如图K10-1-2,在平面上,用一条直线截正方形的一个角,则截下的一个直角三角形按图K10-1-2(1)所标边长,由勾股定理,得c 2=a 2+b 2.设想把正方形换成正方体,把截线换成如图K10-1-2(2)所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -ABC ,若用s 1,s 2,s 3表示三个侧面面积,s 4表示截面面积,则你类比得到的结论是__________________.(1) (2)图K10-1-26.已知cos π3=12,cos π5cos 2π5=14,cos π7cos 2π7cos 3π7=18,…,根据以上等式,可猜想出的一般结论是 .7.(2012年广东汕头一模)观察下列一组等式:21+2=4;21×2=4;32+3=92;32×3=92;43+4=163;43×4=163;…,根据这些等式反映的结果,可以得出一个关于自然数n 的等式,这个等式可以表示为_______________________________________________.8.(2013年广东)设整数n ≥4,集合X ={1,2,3,…,n }.令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三个条件x <y <z ,y <z <x ,z <x <y 恰有一个成立},若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( )A .(y ,z ,w )∈S ,(x ,y ,w )∉SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S9.(2012年福建)某同学在一次研究性学习中发现,以下5个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述5个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.第十章 推理与证明第1讲 合情推理和演绎推理1.D 2.C 3.B4.a n =3n -12解析:根据图形可知:a 1=1,a n +1-a n =3n (n ∈N *).当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+3+32+…+3n -1=3n-12. 5.s 24=s 21+s 22+s 236.cos π2n +1cos 2π2n +1…cos n π2n +1=12n ,n ∈N * 7.n +1n +(n +1)=n +1n×(n +1)(n ∈N *) 解析:由于n +1n +(n +1)=n +1+(n 2+n )n =(n +1)2n, n +1n ×(n +1)=(n +1)2n ,故可得n +1n +(n +1)=n +1n×(n +1)(n ∈N *). 8.B 解析:若(x ,y ,z )=(1,2,3)∈S 和(z ,w ,x )=(3,4,1)∈S 都在S 中,则(y ,z ,w )=(2,3,4)∈S ,(x ,y ,w )=(1,2,4)∈S ,故选B.9.解:(1)选择(2):由sin 215°+cos 215°-sin15°cos15°=1-12sin30°=34,故这个常数是34. (2)推广,得到三角恒等式sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.。

高考数学一轮复习专题训练—合情推理与演绎推理

高考数学一轮复习专题训练—合情推理与演绎推理

合情推理与演绎推理考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明.2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误.3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的.若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()答案(1)×(2)√(3)×(4)×解析(1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.如图,根据图中的数构成的规律,得a表示的数是()A.12 B.48 C.60 D.144答案 D解析由题干图中的数据可知,每行除首末两数外,其他数等于其上一行两肩上的数字的乘积.所以a=12×12=144.3.在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,且n∈N*)成立.类比上述性质,在等比数列{b n}中,若b9=1,则存在的等式为________.答案b1b2…b n=b1b2…b17-n(n<17,且n∈N*)解析根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…b n=b1b2…b17-n(n<17,且n∈N*).4.(2020·贵阳一模)有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x=0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理()A.大前提错误B.小前提错误C.推理形式错误D.结论正确答案 A解析大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.5.(2021·郑州质检)某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上;丙说:丁竞选成功;丁说:丙竞选成功.若这四人中有且只有两人预测的正确,则成功竞选学生会主席职位的是()A.甲B.乙C.丙D.丁答案 D解析若成功竞选的是甲,则甲、乙、丙、丁四人的预测均错误,故不合题意;若成功竞选的是乙,则甲、丙、丁三人的预测错误,乙的预测正确,故不合题意;若成功竞选的是丙,则甲、乙、丁三人的预测正确,丙的预测错误,故不合题意;若成功竞选的是丁,则甲、丙两人的预测正确,乙、丁两人的预测错误,符合题意.故选D.6.(2020·桂林模拟)已知函数f(x)满足f(1)=f(2)=1,且对任意n∈N*恒有f(n+2)=f(n+1)+f(n),观察下列等式:f(1)+f(2)=2=3-1,f(1)+f(2)+f(3)=4=5-1,f(1)+f(2)+f(3)+f(4)=7=8-1,f(1)+f(2)+f(3)+f(4)+f(5)=12=13-1,可推测f(1)+f(2)+f(3)+…+f(n+1)=________.答案f(n+3)-1解析根据题意可得f(3)=2,f(4)=3,f(5)=5,f(6)=8,f(7)=13,因为f(1)+f(2)=2=3-1=f(4)-1,f(1)+f(2)+f(3)=4=5-1=f(5)-1,f(1)+f(2)+f(3)+f(4)=7=8-1=f(6)-1,f(1)+f(2)+f(3)+f(4)+f(5)=12=13-1=f(7)-1,可推测f(1)+f(2)+f(3)+…+f(n+1)=f(n+3)-1.故答案为f(n+3)-1.考点一归纳推理角度1与图形变化有关的推理【例1】中国有句名言“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推.例如6 613用算筹表示就是,则8 335用算筹可表示为()答案 B解析各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,则8 335用算筹可表示为.故选B.角度2与数字或式子有关的推理【例2】 已知32+27=2327,33+326=33326,34+463=43463,……,3 2 021+mk=2 0213m k ,则k +1m 2=________.答案 2 021解析 由已知32+27=2327,33+326=33326,34+463=43463,……,可归纳出3n +n n 3-1=n 3nn 3-1, 又因为32 021+mk =2 0213m k,所以m =2 021,k =2 0213-1, 所以k +1m 2=2 0213-1+12 0212=2 021.感悟升华 归纳推理问题的常见类型及解题策略体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n =6时,该黑色三角形内去掉小三角形个数为( )A .81B .121C .364D .1 093(2)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2 =43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________. 答案 (1)C (2)4n n +13解析 (1)由图可知,每一个图形中去掉小三角形的个数等于前一个图形去掉小三角形个数的3倍加1,所以,n =1时,a 1=1; n =2时,a 2=3+1=4; n =3时,a 3=3×4+1=13; n =4时,a 4=3×13+1=40; n =5时,a 5=3×40+1=121; n =6时,a 6=3×121+1=364,故选C. (2)观察前4个等式,由归纳推理可知⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=43×n ×(n +1)=4n n +13.考点二 类比推理【例3】 (1)在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间中,则三棱锥中的类似结论为________.(2)已知命题:在平面直角坐标系xOy 中,椭圆x 2a 21+y 2b 21=1(a 1>b 1>0),△ABC 的顶点B 在椭圆上,顶点A ,C 分别为椭圆的左、右焦点,椭圆的离心率为e 1,则sin A +sin C sin B =1e 1,现将该命题类比到双曲线中,△ABC 的顶点B 在双曲线上,顶点A ,C 分别为双曲线的左、右焦点,设双曲线的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),双曲线的离心率为e 2,则有________.答案 (1)P a h a +P b h b +P c h c +P dh d =1(2)|sin A -sin C |sin B =1e 2解析 (1)设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.(2)因为△ABC 的顶点B 在双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)上,顶点A ,C 分别是双曲线的左、右焦点,所以有|BA -BC |=2a 2, 所以1e 2=2a 22c 2=|BA -BC |AC,由正弦定理可得BC sin A =AC sin B =AB sin C ,所以|sin A -sin C |sin B =1e 2.感悟升华 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;实数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】(2020·赣州一模)我们把平面内与直线垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3)且法向量为n=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0.类比以上方法,在空间直角坐标系中,经过点B(2,3,4)且法向量为n=(-1,-2,1)的平面(点法式)方程为________.答案x+2y-z-4=0解析将平面中的运算类比到空间中的运算得:经过点B(2,3,4)且法向量为n=(-1,-2,1)的平面(点法式)方程为(-1)×(x-2)+(-2)×(y-3)+1×(z-4)=0,化简得x+2y-z-4=0,即平面的方程为x+2y-z-4=0.考点三演绎推理【例4】(2020·河南六校联考)自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.调查某高中学校学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟;②报考“华约”联盟的学生,也报考了“京派”联盟;③报考“卓越”联盟的学生,都没报考“京派”联盟;④不报考“卓越”联盟的学生,就报考“华约”联盟.根据上述调查结果,下列结论错误的是()A.没有同时报考“华约”和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟答案 D解析设该校报考“北约”联盟,“华约”联盟,“京派”联盟和“卓越”联盟的学生分别为集合A,B,C,D,报考自主招生的总学生为U,则由题意,知A∩B=∅,B⊆C,D∩C=∅,∁U D=B,∴A⊆D,B=C,B∩D=∅.选项A,B∩D=∅,正确;选项B,B=C,正确;选项C,A⊆D,正确,故选D.感悟升华解决逻辑推理问题的两种方法:(1)假设反证法:先假设题中给出的某种情况是正确的,并以此为起点进行推理.如果推理导致矛盾,则证明此假设是错误的,再重新提出一个假设继续推理,直到得到符合要求的结论为止.(2)枚举筛选法:即不重复、不遗漏地将问题中的有限情况一一枚举,然后对各种情况逐个检验,排除一些不可能的情况,逐步归纳梳理,找到正确答案.【训练3】(1)(2019·全国Ⅱ卷)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙(2)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案(1)A(2)①6②12解析(1)由于三人成绩互不相同且只有一个人预测正确,故若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,又假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.故选A.(2)设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧x >y ,y >z ,2z >x ,且x ,y ,z 均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6. ②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.基础巩固一、选择题1.已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( ) A .a n =3n -1 B .a n =4n -3 C .a n =n 2 D .a n =3n -1答案 C解析 a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2.2.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( ) A .f (x ) B .-f (x ) C .g (x ) D .-g (x )答案 D解析 由已知得偶函数的导函数为奇函数,故g (-x )=-g (x ).3.(2020·合肥一模)2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”“国富民强”“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的.若三人的说法有且仅有一个是正确的,则“鸿福齐天”的制作者是()A.小明B.小红C.小金D.小金或小明答案 B解析依题意,三个人制作的所有情况如下所示:12345 6鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选B.4.(2021·安徽六校测试)如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案 D解析(1)由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断:第n个图形的顶点个数为(n+2)(n+3),故选D.5.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列{a n}的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1(a>b>0)的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇答案 B解析从S1,S2,S3猜想出数列{a n}的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故应选B.6.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案 C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C.7.若等差数列{a n}的前n项之和为S n,则一定有S2n-1=(2n-1)a n成立.若等比数列{b n}的前n项之积为T n,类比等差数列的性质,则有()A.T2n-1=(2n-1)+b n B.T2n-1=(2n-1)-b nC.T2n-1=(2n-1)b n D.T2n-1=b2n-1n答案 D解析 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n ,…,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n. 8.(2020·昆明质检)斐波那契数列,又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89,…,在数学上,斐波那契数列{a n }定义为:a 1=1,a 2=1,a n +2=a n +a n +1,斐波那契数列有种看起来很神奇的巧合,如根据a n +2=a n +a n +1可得a n =a n +2- a n +1,所以a 1+a 2+…+a n =(a 3-a 2)+(a 4-a 3)+…+(a n +2-a n +1)=a n +2-a 2=a n +2-1,类比这一方法,可得a 21+a 22+…+a 210=( )A .714B .1 870C .4 895D .4 896答案 C解析 将a n +1=a n +2-a n 两边同乘a n +1,可得a 2n +1=a n +2a n +1-a n +1a n ,则a 21+a 22+…+a 210=a 21+(a 2a 3-a 2a 1)+(a 3a 4-a 2a 3)+…+(a 10a 11-a 9a 10)=1-a 2a 1+a 10a 11=1-1+55×89=4 895.故选C. 二、填空题9.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0202<________. 答案4 0392 020解析 由题意得,不等式右边分数的分母是左边最后一个分数的分母的底数,分子是一个以3为首项,2为公差的等差数列中的项,可以推出1+122+132+…+1n 2<2n -1n ,所以1+122+132+…+12 0202<2 020×2-12 020=4 0392 020. 10.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.答案 55解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55.11.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线,则有如下命题:若P (x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________. 答案x 0x a 2-y 0y b 2=1 解析 类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为x 0x a 2-y 0yb2=1.12.如下分组的正整数对:第1组为{(1,2),(2,1)},第2组为{(1,3),(3,1)},第3组为{(1,4),(2,3),(3,2),(4,1)},第4组为{(1,5),(2,4),(4,2),(5,1)},……,则第40组的第21个数对为________. 答案 (22,20)解析 由题意可得第1组数对中的各数的和为3,第2组数对中各数的和为4,第3组数对中各数的和为5,第4组数对中各数的和为6, ……第n 组数对中各数的和为n +2,且各个数对中无重复数字, 可得第40组数对中各数的和为42, 则第40组的第21个数对为(22,20).能力提升13.天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立70周年时为( ) A .“丙酉”年 B .“戊申”年 C .“己申”年 D .“己亥”年答案 D解析 中华人民共和国成立70周年时为2019年,从1949到2019共有71个数,若把天干排成一列,记为{a n },且a 1=“己”,则a 71=a 7×10+1=a 1=“己”;若把地支排成一列,记为{b n },且b 1=“丑”,则b 71=b 5×12+11=b 11=“亥”.所以中华人民共和国成立70周年时为“己亥”年,故选D.14.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”代表无数次重复,但原式却是个定值,它可以通过方程1+1x =x求得x =5+12.类比上述过程,3+23+2…=( ) A .3 B .13+12C .6D .2 2答案 A解析 由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根), 令3+23+2…=m (m >0),则两边平方得,3+23+23+2…=m 2,即3+2m =m 2,解得m =3或m =-1(舍去).故选A. 15.(2021·武汉模拟)观察下列数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …设数100为该数表中的第n 行,第m 列,则mn =________. 答案 114解析 观察数表可知第n 行的数的个数为a n =2n -1,则前n 行的所有数的个数之和S n =1-2n1-2=2n -1,数表中的数是由正偶数排列而成的,而数100是第50个数,令2n -1=50,解得5<n <6,则100在这个数表中的第6行,S 5=31,则100在这个数表中的第19列,即n =6,m =19,所以mn =6×19=114.16.(2021·豫南九校质量考评)已知函数f (x )=1x +1x +1+1x +2,由f (x -1)=1x -1+1x +1x +1是奇函数,可得函数f (x )的图象关于点(-1,0)对称,类比这一结论,可得函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点________对称.答案 ⎝⎛⎭⎫-72,6 解析 由题意得g (x )-6=x +2x +1-1+x +3x +2-1+x +4x +3-1+x +5x +4-1+x +6x +5-1+x +7x +6-1=1x +1+1x +2+1x +3+1x +4+1x +5+1x +6, 则g ⎝⎛⎭⎫x -72-6=1x -72+1+1x -72+2+1x -72+3+1x -72+4+1x -72+5+1x -72+6=1x -52+1x -32+1x -12+1x +12+1x +32+1x +52, 令g ⎝⎛⎭⎫x -72-6=h (x ), ∴h (-x )=1-x -52+1-x -32+1-x -12+1-x +12+1-x +32+1-x +52=-h (x ),∴h (x )是奇函数,∴函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点⎝⎛⎭⎫-72,6对称.。

高考数学一轮复习选修系列13.1合情推理与演绎推理课件

高考数学一轮复习选修系列13.1合情推理与演绎推理课件

(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍 数”,这是三段论推理,但其结论是错误的.( √ ) (5) 一 个 数 列 的 前 三 项 是 1,2,3 , 那 么 这 个 数 列 的 通 项 公 式 是 an = n(n∈N*).( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )

sin

π9-2+sin
29π-2+sin
39π-2+…+sin
89π-2=43×4×5;


照 此 规 律 , sin

π 2n+1

2


sin

2π 2n+1

2


sin

3π 2n+1

2




sin
∵1=12,1+2+1=22,1+2+3+2+1=32, 1+2+3+4+3+2+1=42,…, ∴归纳可得1+2+…+n+…+2+1=n2.
题型分类 深度剖析
题型一 归纳推理 命题点1 与数字有关的等式的推理
例1 (2016·山东)观察下列等式:

sin

π3-2+sin
23π-2=34×1×2;
考点自测
1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+ b5=11,…,则a10+b10等于 答案 解析
A.28
B.76
C.123
D.199
从给出的式子特点观察可推知,等式右端的值, 从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和, 依据此规律,a10+b10=123.
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”) (1) 归 纳 推 理 得 到 的 结 论 不 一 定 正 确 , 类 比 推 理 得 到 的 结 论 一 定 正 确.( × ) (2) 由 平 面 三 角 形 的 性 质 推 测 空 间 四 面 体 的 性 质 , 这 是 一 种 合 情 推 理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较 为合适.( × )

高三一轮专题复习合情推理与演绎推理有详细答案

高三一轮专题复习合情推理与演绎推理有详细答案

§7.4合情推理与演绎推理1.推理根据一个或几个已知的判断来确定一个新的判断,这种思维方式叫做推理.推理一般分为合情推理与演绎推理两类.2.合情推理3.(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理;(2)特点:演绎推理是由一般到特殊的推理;(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N +).( × ) (6)2+23=223, 3+38=338, 4+415=4415,…, 6+b a=6ba(a ,b 均为实数),则可以推测a =35,b =6.( √ ) 2.数列2,5,11,20,x,47,…中的x 等于( ) A.28B.32C.33D.27 答案 B解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32.3.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的后四位数字为( ) A.3125B.5625C.0625D.8125 答案 D解析 55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,可得59与55的后四位数字相同,…,由此可归纳出5m +4k 与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 011=4×501+7,所以52 011与57后四位数字相同为8125,故选D. 4.(2013·陕西)观察下列等式 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2.5.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.答案T 8T 4T 12T 8解析 对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n , 则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12, T 16=a 1a 2…a 16,因此T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16,而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.题型一 归纳推理例1 设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.思维启迪 解题的关键是由f (x )计算各式,利用归纳推理得出结论并证明. 解 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x 1+x 2=1时,均为f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1,∵f (x 1)+f (x 2)=131x +3+132x +3=(31x +3)+(32x +3)(31x +3)(32x +3)=31x +32x +23321x x ++3(31x +32x )+3=31x +32x +233(31x +32x )+2×3=31x +32x +233(31x +32x +23)=33.思维升华 (1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的. (3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.(1)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第五个等式应为________________________.(2)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则有______.答案 (1)5+6+7+8+9+10+11+12+13=81 (2)f (2n )>n +22(n ≥2,n ∈N *) 解析 (1)由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81. (2)由题意得f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n)>n +22(n ≥2,n ∈N *).题型二 类比推理例2 已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m .类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________.思维启迪 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比,等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运算. 答案 n -m d n c m解析 设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a n =a 1+(n -1)d ,b n =b 1qn -1,a m +n =nb -man -m,所以类比得b m +n =n -m d nc m思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.(3)在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.(1)给出下列三个类比结论:①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是()A.0B.1C.2D.3(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r=a2+b22(其中a,b为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a,b,c且两两垂直的三棱锥的外接球半径R=________.答案(1)B(2)a2+b2+c22解析(1)①②错误,③正确.(2)由平面类比到空间,把矩形类比为长方体,从而得出外接球半径. 题型三演绎推理例3 已知函数f (x )=-aa x +a (a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.思维启迪 证明本题依据的大前提是中心对称的定义,函数y =f (x )的图象上的任一点关于对称中心的对称点仍在图象上.小前提是f (x )=-a a x +a (a >0且a ≠1)的图象关于点(12,-12)对称.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ), 它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知得y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-a a a x +a=-a ·a x a +a ·a x =-a xa x +a , ∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)解 由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.已知函数y =f (x ),满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). 所以y =f (x )为R 上的单调增函数.高考中的合情推理问题典例:(1)(5分)(2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数N (n,3)=12n 2+12n ,正方形数N (n,4)=n 2, 五边形数N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.思维启迪 从已知的部分k 边形数观察一般规律写出N (n ,k ),然后求N (10,24).解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000. 答案 1 000(2)(5分)若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________. 思维启迪 直接类比可得. 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是 x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上,故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1.答案x 0x a 2-y 0yb 2=1 (3)(5分)在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项: k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…,n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)]. 相加,得1×2+2×3+…+n (n +1)=13n (n +1)·(n +2). 类比上述方法,请你计算“1×2×3+2×3×4+…+n (n +1)·(n +2)”,其结果为________. 思维启迪 根据两个数积的和规律猜想,可以利用前几个式子验证.解析 类比已知条件得k (k +1)(k +2)=14[k (k +1)(k +2)(k +3)-(k -1)k (k +1)(k +2)], 由此得1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), …,n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)]. 以上几个式子相加得:1×2×3+2×3×4+…+n (n +1)(n +2)=14n (n +1)(n +2)(n +3). 答案14n (n +1)(n +2)(n +3) 温馨提醒 (1)合情推理可以考查学生的抽象思维能力和创新能力,在每年的高考中经常会考到;(2)合情推理的结论要通过演绎推理来判断是否正确.方法与技巧1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.失误与防范1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.A组专项基础训练(时间:40分钟)一、选择题1.(2012·江西)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199答案 C解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.2.定义一种运算“*”:对于自然数n满足以下运算性质:(1)1*1=1,(2)(n+1)*1=n*1+1,则n*1等于()A.nB.n+1C.n-1D.n2答案 A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1*1+(n-1).又∵1*1=1,∴n*1=n3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab D.科学家利用鱼的沉浮原理制造潜艇答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.4.已知△ABC 中,∠A =30°,∠B =60°,求证:a <b .证明:∵∠A =30°,∠B =60°,∴∠A <∠B .∴a <b ,其中,画线部分是演绎推理的( )A.大前提B.小前提C.结论D.三段论答案 B解析 由三段论的组成可得画线部分为三段论的小前提.5.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a n n)也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A.d n =c 1+c 2+…+c n nB.d n =c 1·c 2·…·c n nC.d n = n c n 1+c n 2+…+c n n nD.d n =n c 1·c 2·…·c n 答案 D解析 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d , ∴b n =a 1+(n -1)2d =d 2n +a 1-d 2,即{b n }为等差数列; 若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n (n -1)2, ∴d n =n c 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D. 二、填空题6.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2, 易知f (14)=119,f (15)=135,故n =14.7.若函数f (x )=x x +2(x >0),且f 1(x )=f (x )=x x +2,当n ∈N *且n ≥2时,f n (x )=f [f n -1(x )],则f 3(x )=________,猜想f n (x )(n ∈N *)的表达式为________.答案 x 7x +8x (2n -1)x +2n解析 ∵f 1(x )=x x +2,f n (x )=f [f n -1(x )](n ≥2), ∴f 2(x )=f (x x +2)=xx +2(x x +2+2)=x 3x +4. f 3(x )=f [f 2(x )]=f (x 3x +4)=x3x +4(x 3x +4+2)=x 7x +8. 由所求等式知,分子都是x ,分母中常数项为2n ,x 的系数比常数项少1,为2n -1,故f n (x )=x (2n -1)x +2n. 8.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =AC BC,把这个结论类比到空间:在三棱锥A -BCD 中(如图所示),平面DEC 平分二面角A -CD -B 且与AB 相交于点E ,则类比得到的结论是________.答案 BE EA =S △BCD S △ACD解析 易知点E 到平面BCD 与平面ACD 的距离相等,故V E -BCD V E -ACD =BE EA =S △BCD S △ACD. 三、解答题9.已知等差数列{a n }的公差d =2,首项a 1=5.(1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律.解 (1)由于a 1=5,d =2,∴S n =5n +n (n -1)2×2=n (n +4). (2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n .∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39,T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21,S 4=4×(4+4)=32,S 5=5×(5+4)=45.由此可知S 1=T 1,当n ≥2时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.解 如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2.又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD2. 证明:如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD .∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD2, ∴1AE 2=1AB 2+1AC 2+1AD2. B 组 专项能力提升(时间:30分钟)1.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③若“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比结论正确的个数是( )A.0B.1C.2D.3答案 C解析 ①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.2.设是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有a b ∈A ,则称A 对运算封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A.自然数集B.整数集C.有理数集D.无理数集答案 C解析 A 错:因为自然数集对减法、除法不封闭;B 错:因为整数集对除法不封闭;C 对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D 错:因为无理数集对加、减、乘、除法都不封闭.3.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为________.答案 n 2+n +22解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域. 4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明: (1)数列{S n n}是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n, ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .故S n +1n +1=2·S n n ,(小前提) 故{S n n}是以2为公比,1为首项的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)5.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )=13x 3-12x 2+3x -512的对称中心; (2)计算f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013). 解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1). (2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1), 所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2. 故f (12 013)+f (2 0122 013)=2, f (22 013)+f (2 0112 013)=2, f (32 013)+f (2 0102 013)=2, …f (2 0122 013)+f (12 013)=2. 所以f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013)=12×2×2 012=2 012.。

最新江苏高考数学文科一轮创设计总复习训练12.2合情推理与演绎推理(含答案解析)

最新江苏高考数学文科一轮创设计总复习训练12.2合情推理与演绎推理(含答案解析)

第 2 讲 合情推理与演绎推理基础稳固题组 (建议用时: 40 分钟 )一、填空题1.正弦函数是奇函数, f(x)=sin(x 2+1)是正弦函数,所以 f(x)=sin(x 2+ 1)是奇函数,以上推理 ________.①结论正确;②大前提不正确;③小前提不正确;④全不正确.分析f(x)=sin(x 2+ 1)不是正弦函数而是复合函数,所以小前提不正确.答案 ③2222.(2014 ·西安五校联考 )察看下式: 1=1 ;2+ 3+ 4= 3 ;3+4+ 5+ 6+ 7= 5 ;42+ 5+6+7+8+9+10=7 , ,则得出第n 个式子的结论: ________.分析 各等式的左侧是第 n 个自然数到第 3n - 2 个连续自然数的和,右侧是中间奇数的平方,故得出结论: n + (n +1)+(n + 2)+ + (3n -2)=(2n -1)2. 答案n +(n + 1)+(n +2)+ + (3n -2)= (2n -1)2.若等差数列 n 的首项为 n,公差为,前项的和为,则数列S 为等差3 {a } an数列,且通项为S ndn = a 1+(n - 1) ·,近似地,请达成以下命题:若各项均为正2数的等比数列 { b n的首项为1,公比为 q ,前 n 项的积为 T n ,则 ________.}b答案 数列 {nnnn =b 1n - 1T } 为等比数列,且通项为T( q)4.察看 (x 2)′= 2x ,(x 4)′= 4x 3,(cos x)′=- sin x ,由概括推理得:若定义在 R 上的函数 f(x)知足 f(- x)=f(x),记 g(x)为 f(x)的导函数,则 g(- x)=________.分析 由已知得偶函数的导函数为奇函数,故 g(-x)=- g(x).答案-g(x)5.(2012 ·江西卷改编 ) 察看以下各式: a +b =1,a 2+b 2= 3, a 3+b 3=4,a 4+ b 4= 7,a 5+b 5=11, ,则 a 10+b 10 等于 ________.分析 从给出的式子特色察看可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前方两个式子右端值的和,照此规律,则a10+b10=123.答案1236.(2014 ·长春调研 )类比“两角和与差的正弦公式”的形式,对于给定的两个函数: S(x)=a x- a-x, C(x)=a x+ a-x,此中 a> 0,且 a≠1,下边正确的运算公式是 ________.①S(x+ y)=S(x)C(y)+ C(x)S(y);② S(x- y)=S(x)C(y)- C(x)S(y);③ 2S(x+y)= S(x)C(y)+C(x)S(y);④ 2S(x-y)= S(x)C(y)-C(x)S(y).分析经考证易知①②错误.依题意,注意到 2S(x+y)= 2(a x+y-a-x-y),S(x)C(y)+C(x)S(y)= 2(a x+y-a-x-y),所以有 2S(x+y)= S(x)C(y)+C(x)S(y);同理有 2S(x-y)=S(x)C(y)-C(x)S(y).答案③④7.由代数式的乘法法例类比推导向量的数目积的运算法例:①“ mn= nm”类比获得“a·b=b·a”;②“ (m+ n)t=mt+nt”类比获得“ (a+b) ·c=a·c+b·c”;③“ (m·n)t=m(n·t)”类比获得“ (a·b) ·c=a·(b·c)”;④“ t≠ 0,mt=xt? m= x”类比获得“p≠0,a·p=x·p? a=x”;⑤“ |m·n|= |m| ·|n|”类比获得“ |a·b|=|a| ·|b|”;ac a a·c a⑥“ bc=b”类比获得“ b·c=b”.以上式子中,类比获得的结论正确的选项是________.分析①②正确;③④⑤⑥错误.答案①②.·南京一模给出以下等式:=π2=2cosπ2+ 2, 2+, 2+8 (2014) 2 2cos48π= 2cos16,请从中概括出第 n个等式:=________.π答案2cos 2n+1二、解答题9.给出下边的数表序列:此中表 n(n= 1,2,3, )有 n 行,第 1 行的 n 个数是 1,3,5,, 2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表 4,考证表 4 各行中的数的均匀数按从上到下的次序组成等比数列,并将结论推行到表 n(n≥3)(不要求证明 ).解表4为13574 812122032它的第 1,2,3,4 行中的数的均匀数分别是 4,8,16,32,它们组成首项为 4,公比为2 的等比数列.将这一结论推行到表 n(n≥3),即表 n(n≥ 3)各行中的数的均匀数按从上到下的次序组成首项为 n,公比为 2 的等比数列.10.f(x)=1,先分别求 f(0)+f(1),f(-1)+ f(2),f(-2)+f(3),而后概括猜3x+ 3想一般性结论,并给出证明.解f(0)+f(1)=01+11++ 3333=1+1=3+1=3,1+ 331+ 331+ 331+ 3333同理可得: f(-1)+f(2)=3,f(-2)+f(3)= 3 .3由此猜想 f(x)+f(1- x)=3 .证明: f(x)+f(1-x)=x1+ 1-x1++ 33 3 3=1+3x=1+3xx++x+3x 33 33·333+3=3+ 3x=33x3.3+3能力提高题组(建议用时: 25 分钟 )一、填空题1.(2012 ·江西卷改编 )察看以下事实: |x|+|y|= 1 的不一样整数解 (x,y)的个数为 4,|x|+ |y|=2 的不一样整数解 (x,y)的个数为 8,|x|+|y|= 3 的不一样整数解 (x,y)的个数为 12,,则 |x|+|y|=20 的不一样整数解 (x, y)的个数为 ________.分析由 |x|+|y|=1 的不一样整数解的个数为4,|x|+|y|=2 的不一样整数解的个数为 8,|x|+|y|= 3 的不一样整数解的个数为12,概括推理得 |x|+ |y|=n 的不一样整数解的个数为 4n,故 |x|+ |y|=20 的不一样整数解的个数为80.答案802.察看以下各式 9-1=8,16- 4= 12,25-9=16,36-16=20,,这些等式反应了自然数间的某种规律,设 n 表示自然数,用对于 n 的等式表示为 ________.分析9-1=(1+2)2-12= 4(1+ 1),16- 4= (2+2)2-22=4(2+1),25-9=(3+ 2)2-32=4(4+1),36-16= (4+2)2- 42=4×(5+ 1),,一般地,有 (n +2)2-n2=4(n+ 1)(n∈N* ).答案(n+ 2)2-n2=4(n+1)(n∈N* )3.(2013 ·湖北卷 )在平面直角坐标系中,若点P(x,y)的坐标 x,y 均为整数,则称点 P 为格点.若一个多边形的极点全部是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,界限上的格点数记为L.比如图中△ ABC 是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG 对应的 S,N, L 分别是________;(2)已知格点多边形的面积可表示为 S=aN+bL+c,此中 a,b,c 为常数.若某格点多边形对应的 N= 71,L=18,则 S=________(用数值作答 ).分析(1)四边形 DEFG 是一个直角梯形,察看图形可知: S= ( 2+2 2)×21×2=3,N=1,L=6.(2)由(1)知, S 四边形DEFG= a+ 6b+c=3.S△ABC=4b+c=1.在平面直角坐标系中,取一“田”字型四边形,组成边长为 2 的正方形,该正方形中S=4,N=1,L=8.则S= a+8b+c=4.联立解得1a= 1,b=2.c=-1.11∴S=N+2L -1,∴若某格点多边形对应的 N=71, L= 18,则 S=71+2× 18- 1=79.答案(1)3,1,6(2)79二、解答题4.(2012 ·福建卷 )某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin2 13°+ cos217°-sin 13 cos° 17 ;°② sin2 15°+ cos215°-sin 15 cos° 15 ;°③ sin2 18°+ cos212°-sin 18 cos° 12 ;°④ sin2 (-18°)+cos248°-sin(-18°)cos 48 ;°⑤ sin2 (-25°)+cos255°-sin(-25°)cos 55 . °(1)试从上述五个式子中选择一个,求出这个常数;(2)依据 (1)的计算结果,将该同学的发现推行为三角恒等式,并证明你的结论.解 (1)选择②式,计算以下:sin215°+cos215°- sin 15 cos° 15 °1= 1-2sin 30 °1=1-43.=4223.(2)三角恒等式为 sin α+cos (30°-α)-sin αcos(30-°α)=4证明以下:sin2α+cos2(30 °-α)-sin αcos(30 -°α)= sin2α+ (cos 30 cos° α+sin 30 sin° α)2-3231232sin α·(cos 30 cos° α+ sin 30 sin° α)= sinα+4cos α+2s in αcos α+4sin α-2 1232323sin αcos α-2sin α=4sin α+4cosα=4.。

苏教版 高三数学 一轮复习---专项解析13.2 合情推理与演绎推理

13.2 合情推理与演绎推理一、填空题1.下列表述正确的是________.①归纳推理是由部分到整体的推理 ②归纳推理是由一般到一般的推理 ③演绎推理是由一般到特殊的推理 ④类比推理是由特殊到一般的推理 ⑤类比推理是由特殊到特殊的推理解析 归纳推理是由个别到一般的推理,故②错. 答案 ①③⑤2.已知数列{a n }满足a n =log (n +1)(n +2)(n ∈N *),定义使a 1·a 2·a 3·…·a k 为整数的数k (k ∈N *)叫做幸运数,则k ∈[1,2 011]内所有的幸运数的和为________. 解析 a 1·a 2·a 3·…·a k =lg 3lg 2·lg 4lg 3·lg 5lg 4·…·lgk +2lgk +1=lg k +2lg 2=log 2(k +2)为整数,所以k =2t -2(t ∈N *),又k ∈[1,2 011],所以k =2,22,23,…,210,和为2(210-1)=2 046. 答案 2 0463.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=________.解析 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ). 答案 -g (x )4.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________. 解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8. 答案 1∶85.设等差数列{n a }的前n 项和为n S ,则484S S S ,-,1281612S S S S -,-成等差数列.类比以上结论有:设等比数列{n b }的前n 项积为n T ,则4T , , 1612T T ,成等比数列.解析 由于等差数列与等比数列具有类比性,且等差数列与和、差有关,等比数列与积、商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积成等比数列.下面证明该结论的正确性: 设等比数列{n b }的公比为q,首项为1b ,则46812782841811T b q T b q b q +++=,==,K 12121112661211T b q b q +++==,K ∴4224388121148T T b q b q T T =,=, 即2812448()T TT T T =⋅, 故812448T T T T T ,,成等比数列. 答案84T T 128TT 6.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直线坐标系中,利用求动点轨迹方程的方法,可以求出过点A (-3,4),且法向量为n = (1,-2)的直线(点法式)方程为1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A (1,2,3)且法向量为n =(-1,-2,1)的平面(点法式)方程为________(请写出化简后的结果); 解析 类比可得-1×(x -1)-2×(y -2)+(z -3)=0,即x +2y -z -2=0. 答案 x +2y -z -2=0 7.已知5×5数字方阵⎝ ⎛⎭⎪⎪⎫a 11 a 12 a 13 a 14 a 15a 21 a 22 a 23 a 24 a 25a 31 a 32 a 33 a 34 a 35a 41 a 42 a 43 a 44 a 45a 51a 52a 53a 54a 55中,a ij=⎩⎨⎧1 j 是i 的整数倍,-1j 不是i 的整数倍.则∑j =25a 3j +∑i =24a i4=________.解析∑j =25a3j+∑i =24a i4=(a 32+a 33+a 34+a 35)+(a 24+a 34+a 44)=(-1+1-1-1)+(1-1+1)=-1.答案 -18.已知a n =(13)n ,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9…记A(s ,t)表示第s 行的第t 个数,则A(11,12)=________.解析 由于该三角形数阵的每一行数据个数分别为1,3,5,7,9,…,可得前10行共有10(1+19)2=100个数,A(11,12)表示第11行的第12个数,则A(11,12)是数列{a n }的第100+12=112个数,即可得A(11,12)=(13)112,故应选D.答案 (13)1129.观察下列等式: ①cos 2α=2cos 2α-1;②cos 4α=8cos 4α-8cos 2α+1;③cos 6α=32cos 6α-48cos 4α+18cos 2α-1;④cos 8α=128cos 8α-256cos 6α+160cos 4α-32cos 2α+1;⑤cos 10α=m cos 10α-1 280cos 8α+1 120cos 6α+n cos 4α+p cos 2α-1. 可以推测m -n +p =________. 解析 m =29=512,p =5×10=50. 又m -1 280+1 120+n +p -1=1, ∴n =-400. 答案 96210.如图是一个数表,第一行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两个数的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行,第10个数为________.1 2 3 4 5 6 7 …3 5 7 9 11 13 …8 12 16 20 24 … … … …解析 观察数表可知,每行数分别构成公差为20,21,22,23,…的等差数列,所以第13行的公差为212.又每行第一个数分别为1,3=2+1×20,8=22+2×2,20=23+3×22,48=24+4×23,256=25+5×24,…故第13行第一个数为212+12×211=7×212,第10个数为7×212+9×212=16×212=216. 答案 216(或65 536)11.已知m >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,可推广为x +mxn ≥n +1,则m 的值为________.解析 x +4x 2=x 2+x 2+4x 2,x +27x 3=x 3+x 3+x 3+27x 3,易得其展开后各项之积为定值1,所以可猜想出x +mx n =x n +x n +…+x n +m xn ,也满足各项乘积为定值1,于是m =n n . 答案 n n12.已知结论:“在三边长都相等的△ABC 中,若D 是BC 的中点,点G 是△ABC 外接圆的圆心,则AGGD=2”.若把该结论推广到空间,则有结论:“在六条棱长都相等的四面体ABCD 中,若点M 是△BCD 的三边中线交点,O 为四面体ABCD 外接球的球心,则AO OM=________”.解析 如图,设四面体ABCD 的棱长为a ,则由M 是△BCD 的重心,得BM =33a ,AM =63a ,设OA =R ,则OB =R ,OM =63a -R ,于是由R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫63a -R 2,解得R =64a ,所以AOOM =64a 63a -64a =3.答案 313.将正△ABC 分割成n 2(n ≥2,n ∈N *)个全等的小正三角形((1),(2)分别给出了n =2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC 的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列,若顶点A ,B ,C 处的三个数互不相同且和为1,记所有顶点上的数之和为f (n ),则有f (2)=2,f (3)= ,…,f (n )= .解析 当n =3时,如图所示,分别设各顶点的数用小写字母表示,即由条件知a +b +c =1,x 1+x 2=a +b ,y 1+y 2=b +c , z 1+z 2=c +a ,x 1+x 2+y 1+y 2+z 1+z 2=2(a +b +c )=2,2g =x 1+y 2=x 2+z 1=y 1+z 2,6g =x 1+x 2+y 1+y 2+z 1+z 2=2(a +b +c )=2,即g =13而f (3)=a +b +c +x 1+x 2+y 1+y 2+z 1+z 2+g =1+2+13=103,进一步可求得f (4)=5.由上知f (1)中有三个数,f (2)中有6个数,f (3)中共有10个数相加,f (4)中有15个数相加…,若f (n -1)中有a n -1(n >1)个数相加,可得f (n )中有(a n -1+n +1)个数相加,且由f (1)=1=33,f (2)=63=3+33=f (1)+33,f (3)=103=f (2)+43,f (4)=5=f (3)+53,…可得f (n )=f (n -1)+n +13, 所以f (n )=f (n -1)+n +13=f (n -2)+n +13+n3=…=n +13+n 3+n -13+…+33+f (1)=n +13+n 3+n -13+…+33+23+13=16(n +1)(n +2).答案103 16(n +1)·(n +2) 二、解答题14.如图,一个树形图依据下列规律不断生长:1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点. (1)求第n 行实心圆点个数与第n -1,n -2行实心圆点个数的关系. (2)求第11行的实心圆点的个数.【解题指南】设出第n 行实心圆点的个数a n ,空心圆点的个数b n ,则它与第n -1行的关系由题意不难得出,整理可得解.【解析】(1)设第n 行实心圆点有a n 个,空心圆点有b n 个,由树形图的生长规律可得⎩⎨⎧b n =a n -1a n =a n -1+b n -1,∴a n =a n -1+b n -1=a n -1+a n -2,即第n 行实心圆点个数等于第n -1行与第n -2行实心圆点个数之和. (2)由(1)可得数列{a n }为0,1,1,2,3,5,8,13,21,34,55,89,…,∴第11行实心圆点的个数就是该数列的第11项55. 【方法技巧】解决“生成”数列的方法解决生成数列的关键在于抓住该数列的生成规律,一方面可以通过不完全归纳法来猜想结论,另一方面也可以通过第n 项与第n -1项的关系来分析与处理.此类问题是高考的热点.15.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论.解析 由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.16.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明 (1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DE ∥FA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提)ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎬⎫∠BFD =∠A ⇒DF ∥EA DE ∥FA ⇒四边形AFDE 是平行四边形⇒ED =AF .17.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,(1)求a 18的值;(2)求该数列的前n 项和S n . 解析 (1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3. (2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12. 综上所述:S n=⎩⎪⎨⎪⎧52nn 为偶数,52n -12n 为奇数.18.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式; (3)求1f 1+1f 2-1+1f 3-1+…+1f n -1的值.解析 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1,f (3)-f (2)=8=4×2,f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, ……由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n ⇒f (n +1)=f (n )+4n ⇒f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f n -1=12nn -1=12⎝⎛⎭⎪⎫1n -1-1n . ∴1f 1+1f 2-1+1f 3-1+…+1f n-1=1+12· ⎝⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1-1n =1+12⎝ ⎛⎭⎪⎫1-1n =32-12n .。

高考数学(理)一轮复习讲练测:专题13.2 合情推理和演绎推理(讲)答案解析

【课前小测摸底细】1.【人教A 版教材习题改编】数列2,5,11,20,x,47,…中的x 等于( ). A .28 B .32 C .33 D .27 【答案】B【解析】从第2项起每一项与前一项的差构成公差为3的等差数列,所以x =20+12=32. 2. (2016全国甲理15)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_______.[答案] ()13,【解析】由题意得:丙不拿()23,,若丙()12,,则乙()23,,甲()13,满足;若丙()13,,则乙()23,,甲()12,不满足,故甲()13,. 3. 【2017江西南昌模拟】观察下列各式:1a b +=,223a b +=,334a b +=,447a b +=,…,则1010a b +=( )A .28B .76C .123D .199 【答案】C 【解析】4.【基础经典试题】将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( ) 13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893【答案】A【解析】前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809. 5.【改编题陕西省咸阳2014届高考模拟】已知下列等式:222222222222222211135171357949135********=-+=-+-+=-+-+-+=观察上式的规律,写出第7个等式________________________________________. 【答案】22222213572325337-+-+-+=【考点深度剖析】1.本节是高考的热点内容,主要考查推理性问题和规律性问题. 2.本部分在高考题中以选择题、填空题为主,属于中档题. 【经典例题精析】考点1 合情推理与演绎推理【1-1】【2017河北邯郸模拟】用反证法证明命题“设3()3||()f x x x a a R =+-∈为实数,则方程()0f x =至少有一个实根”时,要做的假设是( ) A .方程()f x 没有实根 B .方程()0f x =至多有一个实根C .方程()0f x =至多有两个实根D .方程()0f x =恰好有两个实根 【答案】A 【解析】试题分析:由反证法证明命题的格式和步骤,可知应设方程()f x 没有实根,故应选A. 【1-2】【2017江西吉安一中】对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:3331373152,39,4,5171119⎧⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎩仿此,若3m 的“分裂”数中有一个是73,则m 的值为_____________. 【答案】9 【解析】试题分析:732361=⨯+,23835+++=,所以m 的值为9【1-3】【2017河北 沧州模拟】在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是_______________. 【答案】甲 【解析】【课本回眸】 1.合情推理(1)定义:根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理叫做合情推理.(2)合情推理可分为归纳推理和类比推理两类:①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理.简言之,归纳推理是由部分到整体、由个别到一般的推理; 归纳推理的分类常见的归纳推理分为数的归纳和形的归纳两类a.数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;b.形的归纳主要包括图形数目归纳和图形变化规律归纳.②类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理.类比推理的分类:类比推理的应用一般为类比定义、类比性质和类比方法a.类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;b.类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;c.类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论的推理叫做演绎推理.演绎推理的特征是:当前提为真时,结论必然为真.(2)模式:三段论①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(3)特点:演绎推理是由一般到特殊的推理.【方法规律技巧】1. 归纳推理与类比推理之区别:(1)归纳推理是由部分到整体,由个别到一般的推理.在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.(2)类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质.在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.2.演绎推理问题的处理方法从思维过程的指向来看,演绎推理是以某一类事物的一般判断为前提,而作出关于该类事物的判断的思维形式,因此是从一般到特殊的推理.数学中的演绎法一般是以三段论的格式进行的.三段论由大前提、小前提和结论三个命题组成,大前提是一个一般性原理,小前提给出了适合于这个原理的一个特殊情形,结论则是大前提和小前提的逻辑结果.3.应用合情推理应注意的问题:(1)在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.注意:归纳推理关键是找规律,类比推理关键是看共性.4.归纳推理与类比推理的步骤(1)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想);③检验猜想.实验、观察→概括、推广→猜测一般性结论(2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);③检验猜想.观察、比较→联想、类推→猜想新结论5.演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.6.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论,归纳推理所得的结论不一定可靠,但它是由特殊到一般,由具体到抽象的认知过程,是发现一般规律的重要方法.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质.在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.类比推理时要尽量从本质上去类比,不要被表面现象迷惑,否则会犯机械类比的错误.演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性. 【新题变式探究】【变式一】【2015高考浙江,理6】设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( ) A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立 【答案】A.【变式二】【湖北省八校2015届高三第一次联考数学试题(理科)】已知点)10(,A ,点B 在曲线11-=x e yC :上,若线段AB 与曲线xy C 12=:相交且交点恰为线段AB 的中点,则称点B 为曲线1C 与曲线2C 的一个“相关点”,记曲线1C 与曲线2C 的“相关点”的个数为n ,则( )A .0=nB .1=nC .2=nD .2>n【答案】B.【解析】试题分析:设(1)tB t e -,,则AB 的中点为()22t t e P ,,所以有22t e t =,即4t e t=,所以“相关点”的个数就是方程4x e x =解的个数,由于x y e =的图象在x 轴上方,且是R 上增函数,4y x=在(0)+∞,上是减函数,所以它们的图象只有一个交点,即1n =,故选B. 考点:1、函数与方程;2、函数的单调性. 三、易错试题常警惕易错典例:若数列{a n }(n ∈N +)是等差数列,则有通项为b n =a 1+a 2+…+a nn (n ∈N +)的数列{b n }也为等差数列,类比上述性质,若数列{c n }是等比数列,且c n >0,则有通项为d n =________(n ∈N +)的数列{d n }也是等比数列. 易错分析:类比时方法不恰当导致错误.温馨提醒:(1)合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.在进行类比推理时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.(2)演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.。

2019届高考数学一轮复习:《合情推理与演绎推理》教学案(含解析)

第五节合情推理与演绎推理[知识能否忆起]一、合情推理二、演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:[小题能否全取]1.(教材习题改编)A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析:选C 由条件知使用了三段论,但推理形式是错误的.2.数列2,5,11,20,x,47,…中的x等于( )A.28 B.32C.33 D.27解析:选B 由5-2=3,11-5=6,20-11=9.则x-20=12,因此x=32.3.(教材习题改编)给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是( )A.0 B.1C.2 D.3解析:选B 只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V1V2=13S1h113S2h2=⎝⎛⎭⎪⎫S1S2·h1h2=14×12=18.答案:1∶85.(2018·陕西高考)观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74……照此规律,第五个不等式为___________________________________________________.解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+1n2<2n-1n(n∈N*,n≥2),所以第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<1161.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.典题导入[例1] (2018·河南调研)已知函数f(x)=xx +2(x >0).如下定义一列函数:f 1(x)=f(x),f 2(x)=f(f 1(x)),f 3(x)=f(f 2(x)),…,f n (x)=f(f n -1(x)),…,n ∈N *,那么由归纳推理可得函数f n (x)的解析式是f n (x)=________.[自主解答] 依题意得,f 1(x)=xx +2, f 2(x)=xx +2x x +2+2=x3x +4=x2-+22,f 3(x)=x 3x +4x 3x +4+2=x7x +8=x3-+23,…,由此归纳可得f n (x)=xn-+2n(x >0).[答案]xn-+2n(x >0)由题悟法1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围. 2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.[注意] 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1.(2018·枣庄模拟)将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.典题导入[例2] 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a+b +c)r”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.[自主解答] 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD =13(S 1+S 2+S 3+S 4)r.[答案] V 四面体ABCD =13(S 1+S 2+S 3+S 4)r由题悟法1.类比推理是由特殊到特殊的推理, 2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n)a p +(n -p)a m +(p -m)a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -np ·b n -pm ·b p -mn =(b 1qp -1)m -n·(b 1qm -1)n -p·(b 1qn -1)p -m=b 01·q 0=1.答案:b m -np ·b n -pm ·b p -mn =1典题导入[例3] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[自主解答] (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n(S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S n n,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)由题悟法演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA.求证:ED=AF(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF.(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF.1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( ) A .① B .② C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.(2018·合肥模拟)正弦函数是奇函数,f(x)=sin(x 2+1)是正弦函数,因此f(x)=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f(x)=sin(x 2+1)不是正弦函数,所以小前提不正确.3.(2018·泰兴模拟)在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ) A.18 B.19 C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4.(2018·德州模拟)给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b”类比推出“a,c ∈C ,则a -c =0⇒a =c”;②“若a ,b ,c ,d ∈R ,则复数a +bi =c +di ⇒a =c ,b =d”类比推出“a,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a,b ∈R ,则a -b >0⇒a >b”类比推出“若a ,b ∈C ,则a -b >0⇒a >b”; ④“若x ∈R ,则|x|<1⇒-1<x <1”类比推出“若z ∈C ,则|z|<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.5.观察如图所示的正方形图案,每条边(包括两个端点)有n(n≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D 由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.6.(2018·武汉市适应性训练)下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f(x)=xcos x 满足f(-x)=-f(x)对∀ x ∈R 都成立,推断:f(x)=xcos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =+2n -2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7.(2018·杭州模拟)设n 为正整数,f(n)=1+12+13+…+1n ,计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,观察上述结果,可推测一般的结论为________.解析:由前四个式子可得,第n 个不等式的左边应当为f(2n),右边应当为n +22,即可得一般的结论为f(2n)≥n +22. 答案:f(2n)≥n +228.(2018·陕西高考)观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ;每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29.(2018·杭州模拟)在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24. 答案:S 21+S 22+S 23=S 2410.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+22个2+3+3+…+32个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎪⎨⎪⎧52n ,n 为偶数,52n -12,n 为奇数.12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想”归纳出f(n +1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求1+1-1+1-1+…+1-1的值.解:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1, f(3)-f(2)=8=4×2, f(4)-f(3)=12=4×3, f(5)-f(4)=16=4×4, …由上式规律,所以得出f(n +1)-f(n)=4n. 因为f(n +1)-f(n)=4n , 所以f(n +1)=f(n)+4n ,f(n)=f(n -1)+4(n -1) =f(n -2)+4(n -1)+4(n -2)=f(n -3)+4(n -1)+4(n -2)+4(n -3) =…=f(1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n≥2时,1-1=1-=12(1n -1-1n), ∴1+1-1+1-1+…+1-1=1+12⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1-1n =1+12⎝ ⎛⎭⎪⎫1-1n=32-12n.1.(2018·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:选C 记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n ∈N *,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123.2.对于命题:若O 是线段AB 上一点,则有|OB |·OA +|OA |·OB =0. 将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA +S △OCA ·OB +S △OBA ·OC =0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =03.(2018·福建高考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α =34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos 60°-2α2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.1.(2018·江西高考)观察下列事实:|x|+|y|=1的不同整数解(x ,y)的个数为4,|x|+|y|=2的不同整数解(x ,y)的个数为8,|x|+|y|=3的不同整数解(x ,y)的个数为12,…,则|x|+|y|=20的不同整数解(x ,y)的个数为( )A .76B .80C .86D .92解析:选B 由特殊到一般,先分别计算|x|+|y|的值为1,2,3时,对应的(x ,y)的不同整数解的个数,再猜想|x|+|y|=n 时,对应的不同整数解的个数.通过观察可以发现|x|+|y|的值为1,2,3时,对应的(x ,y)的不同整数解的个数为4,8,12,可推出当|x|+|y|=n 时,对应的不同整数解(x ,y)的个数为4n ,所以|x|+|y|=20的不同整数解(x ,y)的个数为80.2.(2018·豫东、豫北名校测试)已知如下等式: 3-4=17(32-42),32-3×4+42=17(33+43),33-32×4+3×42-43=17(34-44),34-33×4+32×42-3×43+44=17(35+45),则由上述等式可归纳得到3n-3n-1×4+3n-2×42-…+(-1)n4n=________(n∈N*).解析:依题意及不完全归纳法得,3n-3n-1×4+3n-2×42-…+(-1)n4n=17[3n+1-(-4)n+1].答案:17[3n+1-(-4)n+1]。

高中数学合情推理与演绎推理


合情推理是从已知的 结论推测未知的结论, 发现与猜想的结论都 要经过进一步严格证 明.
演绎推理是由一般到 特殊的推理,它常用 来证明和推理数学问 题,注意推理过程的 严密性,书写格式的 规范性.
归纳推理、类比推理、演绎推理等问题是 高考的热点,归纳、类比推理大多数出现 在填空题中,为中、低档题.演绎推理大 多数出现在解答题中,为中、高档题 目.在知识的交汇点处命题,背景新颖的 创新问题,常考常新,值得重视.
34.
新课标 ·文科数学(安徽专用)
自 主
(2)归纳三角恒等式sin2α+cos2(30°-α)-sin
落 实 ·
cos(30°-α)=34.


证明如下:

sin2α+cos2(30°-α)-sin αcos(30°-α)

α考 体 验
· 明 考 情

1-cos 2
2α +
1+cos(620°-2α) -sin
【思路点拨】
从特殊②计算结果为
3 4
,观察每个三角
函数式中三角函数名称与角的变化规律,归纳出一般性结
论;然后利根用据演(1绎)的推计理算进结行果证,将明该.同学的发现推
广为三角恒等式,并证明你的结论.
【尝试解答】 (1)选择②式,计算如下:
sin215°+cos215°+sin 15°cos 15°=1-12sin 30°=
01
归纳推理和类比推理的共同特点和区别是什么?
02
【提示】 共同点:两种推理的结论都有待于证明.
03
不同点:归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.
二.演绎推理所获得的结论一定可靠吗?
【提示】 演绎推理是由一般性的命题推出特殊性命 题的一种推理模式,是一种必然性推理.演绎推理的 前提与结论之间有蕴含关系,因而,只要前提是真实 的,推理的形式是正确的,那么结论必定是真实的, 但是错误的前提可能导致错误的结论.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )
A .-1是f (x )的零点
B .1是f (x )的极值点
C .3是f (x )的极值
D .点(2,8)在曲线y =f (x )上 答案 A
解析 由A 知a -b +c =0;由B 知f ′(x )=2ax +b,2a +b =0;由C 知f ′(x )=2ax +b ,令f ′(x )=0可得x =-b 2a ,则f ⎝⎛⎭⎫-b 2a =3,则4ac -b 24a
=3;由D 知4a +2b +c =8.假设A 选项错
误,则⎩⎪⎨⎪⎧
a -
b +
c ≠0
2a +b =0
4ac -b
2
4a =34a +2b +c =8
,得⎩⎪⎨⎪

a =5
b =-10
c =8
,满足题意,故A 结论错误.同理易知当B 或
C 或
D 选项错误时不符合题意,故选A.
2.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有 ( )
A .2人
B .3人
C .4人
D .5人
答案 B
解析 用A ,B ,C 分别表示优秀、及格和不及格.显然,语文成绩得A 的学生最多只有一人,语文成绩得B 的也最多只有1人,得C 的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.
3. 观察下列各式:
C 0
1=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43;
……
照此规律,当n ∈N *时,
C 02n -1+C 12n -1+C 22n -1+…+C n -
12n -1=________.
答案 4n -
1
解析 第一个等式,n =1,而右边式子为40=41-
1;
第二个等式,n =2,而右边式子为41=42-
1;
第三个等式,n =3,而右边式子为42=43-
1;
第四个等式,n =4,而右边式子为43=44-
1;
……
归纳可知,第n 个等式的右边为4n -
1.
4.一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).
已知某种二元码x 1x 2…x 7的码元满足如下校验方程组: ⎩⎪⎨⎪

x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,
其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.
答案 5
解析 因为x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=0⊕0⊕1=0⊕1=1≠0,所以二元码1101101的前3位码元都是对的;因为x 2⊕x 3⊕x 6⊕x 7=1⊕0⊕0⊕1=1⊕0⊕1=1⊕1=0,所以二元码1101101的第6、7位码元也是对的;因为x 1⊕x 3⊕x 5⊕x 7=1⊕0⊕1⊕1=1⊕1⊕1=0⊕1=1≠0,所以二元码1101101的第5位码元是错的,所以k =5.
5.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________. 答案 A
解析 根据甲、乙、丙说的可列表得
6.观察分析下表中数据
答案F+V-E=2
解析由表可知,三棱柱:5+6-9=2;
五棱锥:6+6-10=2;
立方体:6+8-12=2.由上面的结论可判定:凸多面体中面数(F),顶点数(V),棱数(E)的关系为F+V-E=2.
7.对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.
(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;
(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)
解(1)T1(P)=2+5=7,
T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.
(2)T2(P)=max{a+b+d,a+c+d},
T2(P′)=max{c+d+b,c+a+b}.
当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.
因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).
当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.
因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).
所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.
(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.。

相关文档
最新文档