北京大学数学物理方法经典课件第五章——傅里叶变换
合集下载
第五章 第一节 傅里叶变换

bk
1 l
l l
f sin k
l
d ,...... 5.1.5
练习解答
解:计算傅立叶系数有
a0
1
2
f (x)dx 1
2
0
xdx
1
2
x2
2
0
4
1
1
an
f (x) cos nxdx
x cos nxdx
0
1 x sin nx
n 0
1
n2
cos
nx 0
1
n 0 sin nxdx
幂函数没有周期性,所以周期函数展开为幂级数后,周期性就很 难体现出来。这样在研究函数的周期性的时候,幂级数展开并不 适用,需要采用其他函数作为基本函数族。
在科学技术的各个领域里广泛存在振动和波这类周期现象如弹性 振子、机械振动、声振动和声波、交变电流、电磁振荡和电磁波。 我们以前接触较多的是正弦和余弦函数所描写的振动和波。实际 情况千变万化,如锯齿波、矩形波(开关)。可能的复杂振动方式 不计其数,经过研究发现,这些复杂的振动可以分解为一系列各 种频率的谐振动的叠加。在数学上,这就是把周期函数分解为傅 里叶级数。
f
x
a0
k 1
a
k
cos
kx
l
bk
sin
kx
l
..........
..5.1.3
ak
1
kl
l f cos k d ,
l
l
k 2.......k 0 k 1.......k 0
bk
1 l
l l
f
sin k
l
d ,...... 5.1.5
f
数学物理方法 第五章 傅里叶变换

将上式改写成
f (x) 0 C() cos[x ()]d
其中
1
C() [ A()]2 [B()]2 2
称为f (x)的振幅谱
() arctan[B() / A()] 称为f (x)的相位谱
与傅里叶级数的情形类似,奇函数f (x)的傅里叶积分
是傅里叶正弦积分。
A
2N
0 0
[cos( 0 )t cos( 0 )t]dt
N 2
A
sin( 0 0
)t
sin( 0 )t 0
0 0
A sin( N 2 )[ 1 1 ]
0
0 0
解:f (t)是偶函数,可按余弦展开。
f (t) 0 A() costd
其中:
A() 2
f ( ) cos d
0
2
T
0
h cos d
2h
sin T
例2 由2N个(N是正整数)正弦波组成的有限正弦波列:
f
(t
)
A
sin
0t
l
cos
l
k x
l
cos n x
l
dx
0
(k n)
l
sin
l
k x sin
l
n x
l
dx
0
(k n)
l
cos
l
k x sin
l
数学物理方程第五章 傅里叶变换

1 k
1 k
0 2E0 ] 1 k [1 ( 2 n ) 2 ] 1
k 2n 1 k 2 n.
2012-8-1
阜师院数科院
b1
E0 2
,
和
bk 0
E (t )
E0
E0 2
sin t
2E0
1 (2n)
n 1
1
2
cos 2 n t .
f ( ) sin d .
(5.2.4) 是 f(x) 的傅里叶积分,(5.2.5) 为它的傅里叶变换。
f ( x ) A ( ), B ( )
为某函数从时域到频域的变换。频域中的函数可能是连续的。
傅里叶积分定理:若函数 f(x) 在区间 ( , ) 上满足条件(1) 在任意有限区间满足狄 里希利条件;(2) 在区间 ( , ) 上绝对可积(即
2 2
0
( ) tg
1
[ B ( ) / A ( )].
C ( )
为振幅谱
3. 奇、偶函数 偶函数
2012-8-1
( )
为相位谱
A ( ) cos xd ,
f (x) A ( )
0
奇函数
f (x) B ( )
B ( ) sin xd ,
f (x)
k
c
k
e
ikx
,
ck
1 2
f ( )e ( 1 ik e
ikx
d
0
1 2 ( 1 ik
数学物理方法 5 傅里叶变换

4
( t , t 0)
由上例可以推断:一个周期为2l的函数f(x+2l)= f(x) 可以 看作是许多不同频率的简谐函数的叠加.
6
2. 三角函数族及其正交性 引入三角函数族
①其中任意两个不同的函数之积在 [-l,l]上的积分等于 0 .
②两个相同的函数的乘积在[-l,l]
上的积分不等于 0 .
(2m ,(2m 1) ) ((2m 1) , 2m )
k
ce
k
ik
ikx
,
1
0
1
2
x
0
f ( )e
1 d 2
0
1 e
0
ik
1 d 2
1 e ik d
1 1 ik ( e ) 2 ik
ak cos
l
l
d
12
1 l k ak f ( )cos d ( k 1, 2 , ) l l l
类似地, 用 sin kπξ/l 乘 ① 式两边, 再逐项积分可得
1 l k bk f ( )sin d l l l
归纳:
(k 1, 2, )
变换 延拓
23
3. 傅里叶级数的复数形式
利用欧拉公式导出
• 1 • 2
24
5.2 傅里叶积分与傅里叶变换 (一) 傅里叶变换
周期函数的性质是f(x+2l)=f(x), x每增大2l,函数值就重复 一次,非周期函数没有这个性质,但可以认为它是周期2l∞ 的周期函数。所以,我们也可以把非周期函数展开为所谓“傅 里叶积分”。 考察复数形式的傅里叶级数:
数学物理方法(傅里叶变换法)

例5 恒定表面浓度扩散 在恒定表面浓度扩散中,包围硅片气体 中含有大量的杂质原子,源源不断穿过硅片表面向内部扩散,由 于杂质分子充足,硅片表面杂质浓度保持某个常数N0,这里所求 是半无界空间x>0中的定解问题
解 首先把非齐次边界条件化为齐次边界条件,令
则化为关于w的定解问题:
这是第一类齐次边界条件,意味着奇延拓,即 引用例2结果可得
解 做傅里叶变换,问题变换为常微分方程的初始值问题
这个方程的解为 再进行傅里叶逆变换
利用5.3例1的结果
应用延迟定理
出现
对 的积分只要在球面
以r为球心(矢径r),半径为at
上进行
为球面 的面积元,此即泊松公式.
三维无界空间中的波动,只要知道初始状况,就可以用泊松公式
求以后任一时刻的状况,具体说,为求时刻t在r的u(r,t),应以r为 球心,以at为半径作球面 然后拿初始扰动
第一个积分中令 第二个积分中令 则有
被积函数是偶函数,故
记做erfx,则w可写为:
所求的解如下:
误差函数
记做erfcx,则有
余误差函数
硅片表面
右图描述了杂质浓度u(x,t)在硅片中
分布情况,曲线1对应于某个较早的时 刻,2对应于较晚的时刻,3对应于更晚 的时刻,杂质浓度趋于均匀的趋势很 明显,如果扩散持续进行下去,则浓度分布最终将为常数N0(虚线) 例6 泊松公式 求解三维无界空间中的波动问题
数学物理方法(傅里叶变换法).ppt
第一节 傅里叶变换法
用分离变数法求解有界空间的定解问题时,得到的本征值是 离散的,所求的解可表为对本征值求和的傅里叶级数,对于 无界空间,分离变数法求解定解问题时,所得到的本征值是 连续的,所求的解可表示为对连续本征值求积分的傅里叶积 分,对于无界空间的定解问题,适用于傅里叶变换法求解。 例1 求解无限长弦的自由振动
解 首先把非齐次边界条件化为齐次边界条件,令
则化为关于w的定解问题:
这是第一类齐次边界条件,意味着奇延拓,即 引用例2结果可得
解 做傅里叶变换,问题变换为常微分方程的初始值问题
这个方程的解为 再进行傅里叶逆变换
利用5.3例1的结果
应用延迟定理
出现
对 的积分只要在球面
以r为球心(矢径r),半径为at
上进行
为球面 的面积元,此即泊松公式.
三维无界空间中的波动,只要知道初始状况,就可以用泊松公式
求以后任一时刻的状况,具体说,为求时刻t在r的u(r,t),应以r为 球心,以at为半径作球面 然后拿初始扰动
第一个积分中令 第二个积分中令 则有
被积函数是偶函数,故
记做erfx,则w可写为:
所求的解如下:
误差函数
记做erfcx,则有
余误差函数
硅片表面
右图描述了杂质浓度u(x,t)在硅片中
分布情况,曲线1对应于某个较早的时 刻,2对应于较晚的时刻,3对应于更晚 的时刻,杂质浓度趋于均匀的趋势很 明显,如果扩散持续进行下去,则浓度分布最终将为常数N0(虚线) 例6 泊松公式 求解三维无界空间中的波动问题
数学物理方法(傅里叶变换法).ppt
第一节 傅里叶变换法
用分离变数法求解有界空间的定解问题时,得到的本征值是 离散的,所求的解可表为对本征值求和的傅里叶级数,对于 无界空间,分离变数法求解定解问题时,所得到的本征值是 连续的,所求的解可表示为对连续本征值求积分的傅里叶积 分,对于无界空间的定解问题,适用于傅里叶变换法求解。 例1 求解无限长弦的自由振动
数学物理方法 第5章 傅里叶变换

0 xl l x 0 x l
-l 0
F(x)
l
x
图5.7(a)
1 l 1 l 1 l l a0 F ( x)dx f ( x) xdx l 0 l 0 l 0 2
2 l kx 2 l kx 2 l kx ak F ( x) cos dx f ( x) cos dx x cos dx 0 0 0 l l l l l l
k 1
a0 E (t )dt 2 2
1
0
E0 cost E 0 sin tdt 2
0
E0
E0 a k E0 sin t cos ktdt 0 2
0
[sin(k 1)t sin(k 1)t ]dt
解:
l 2 l kx 2 l kx l bk x sin dx x( ) cos 0 l l l k l 0 k
l 2 l l 2 kx 2l l ( )( 1) k ( ) sin (1) k 1 l k k l 0 k
f ( x)
0
A( ) cosxd
0
B( ) sin xd
(称为傅里叶积分式)
A( )
B( )
1
1
f ( x) cosxdx
f ( x) sin xdx
(称为傅里叶变换式)
在 f (x) 的间断点,傅里叶积分的值
1 [ f ( x 0) f ( x 0)] 2
例4:定义在区间 (0, l ) 上的函数 f ( x) x ,试把它 展开为傅里叶级数。 解:方法一:偶延拓法,所找的周期函数 F (x)为偶 函数,如图5.7(a)所示。
数学物理方法 第五章 傅里叶变换

l
2
1 2 2 2 2 [ f ( x )] dx 2la0 l a k l bk 2l l k 1 k 1
l n n
n n 1 l k x 2 k x 2 2 l 2 l 2 [ f ( x )] dx a k [cos ] dx bk [ sin ] dx l l l 2l l l k 0 k 1 n n 1 l k x 2 k x 2 2 l 2 l 2 [ f ( x )] dx a k [cos ] dx bk [ sin 10 ] dx l l l 2l l l k 0 k 0
积化和差后容易证明其余三式, 例如:
cos( ) cos( ) 2 cos cos kx nx 1 ( k n )x ( k n )x cos cos cos cos l l 2 l l l l kx nx 1 l ( k n )x ( k n )x -l cos l cos l dx 2 -l cos l dx -l cos l dx
0πx πx 2πx kx 1 cos , cos , cos , , cos , l l l l 0πx πx 2πx kx sin 0, sin , sin , , sin , l l l l
k x -l 1 cos l dx 0 (k 0) 正交性 l k x -l 1 sin l dx 0 l k x n x -l cos l cos l dx 0 (k n) l k x n x -l sin l sin l dx 0 (k n) l k x n x -l cos l sin l dx 0
f (x) f (x+2l) • -l o +l •
数学物理方法第五章傅里叶变换

l
l
l
l kx nx
sin cos dx0
l
l
l
l
1 2 dx 2 l
l
l
sin
2 k x dx
l
l
l
cos
2 k x dx
l
l
2、可以由函数的正交性求出傅立叶级数中的系数;
a f 1 l
0 2l l
xdx
a f 1l n l l
xconsxdx
l
(n1,2,3, )
b f 1l n l l
( a k cos
kπx l
b k sin
kπx )
l
k 1
2
2l l
说明 1、三角函数族是两两正交的
l kx
cos d x 0
l
l
(k 0),
l kx
sin d x 0
l
l
l kx nx
cos cos d x 0 (k n)
l
l
l
l kx nx
sin sin dx0 (kn),
f (x)
a
x
l
延拓到(- l,l)后再周期延拓,如图做偶延拓:
f (x)
a
l 0 l
x
所以
1l
x
a
a0
l
a(1
0
l
)dx 2
ak2 l0 la(1x l)co k lx sd x 2(2 4 n a 0 1 )2(k (k 2n )2n1 )
如图做奇延拓: f (x)
a
l
0l
x
2l x kx 2a
An 2cn
A n 称为f ( x)的振幅频谱(简称为频谱).它描述了各次谐波 的振幅随频率变化的分布情况。它清楚地表明了一个非正旋 周期函数包含了哪些频率分量及各分量所占的比重(如振幅 的大小)。因此频谱图在工程技术中应用比较广泛.所谓频谱 图,通常是指频率和振幅的关系图。