新版第4章-快速傅里叶变换(-F-F-T)-课件.ppt
合集下载
《快速傅里叶变换》课件

FFT算法的出现极大地推动了数字信号 处理技术的发展和应用。
FFT的历史背景
01
1960年代,Cooley和Tukey提 出了基于“分治”思想的FFT 算法,为快速傅里叶变换的实 用化奠定了基础。
02
随后,出现了多种FFT算法的 变种和优化,如Radix-2、 Radix-4等。
03
随着计算机技术的发展,FFT 算法在硬件实现上也得到了广 泛应用,如FPGA、GPU等。
《快速傅里叶变换》ppt课件
contents
目录
• FFT简介 • FFT基本原理 • FFT实现 • FFT的应用 • FFT的优化与改进 • FFT的挑战与未来发展
01 FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,大大提高了计 算效率。
详细描述
混合基数FFT算法结合了基数-2和基数-4算法的特点,利用两者在计算过程中的 互补性,减少了计算量,提高了计算效率。同时,该算法在处理大规模数据时 ,能够保持较高的精度。
分段FFT算法
总结词
分段FFT算法将输入数据分成若干段,对每一段进行快速傅里叶变换,以降低计算复杂度和提高计算效率。
详细描述
02 FFT基本原理
离散傅里叶变换(DFT)
定义
应用
DFT是时间域信号到频域的变换,通 过计算信号中各个频率成分的幅度和 相位,可以分析信号的频谱特性。
DFT在信号处理、图像处理、频谱分 析等领域有广泛应用。
计算量
DFT的计算量随着信号长度N的增加 而呈平方关系增长,因此对于长信号 ,计算量巨大。
FFT的历史背景
01
1960年代,Cooley和Tukey提 出了基于“分治”思想的FFT 算法,为快速傅里叶变换的实 用化奠定了基础。
02
随后,出现了多种FFT算法的 变种和优化,如Radix-2、 Radix-4等。
03
随着计算机技术的发展,FFT 算法在硬件实现上也得到了广 泛应用,如FPGA、GPU等。
《快速傅里叶变换》ppt课件
contents
目录
• FFT简介 • FFT基本原理 • FFT实现 • FFT的应用 • FFT的优化与改进 • FFT的挑战与未来发展
01 FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,大大提高了计 算效率。
详细描述
混合基数FFT算法结合了基数-2和基数-4算法的特点,利用两者在计算过程中的 互补性,减少了计算量,提高了计算效率。同时,该算法在处理大规模数据时 ,能够保持较高的精度。
分段FFT算法
总结词
分段FFT算法将输入数据分成若干段,对每一段进行快速傅里叶变换,以降低计算复杂度和提高计算效率。
详细描述
02 FFT基本原理
离散傅里叶变换(DFT)
定义
应用
DFT是时间域信号到频域的变换,通 过计算信号中各个频率成分的幅度和 相位,可以分析信号的频谱特性。
DFT在信号处理、图像处理、频谱分 析等领域有广泛应用。
计算量
DFT的计算量随着信号长度N的增加 而呈平方关系增长,因此对于长信号 ,计算量巨大。
《快速傅里叶变换》PPT课件

然后计算圆周卷积
此时y(n)能代表线性卷积结果。
用FFT计算y(n)步骤如下: (1)求
,N点
(2)求
,N点
(3)计算
;
(4)求
,N点
工作量分析 FFT计算工作量
(4.105)
用线性相位滤波器来比较直接计算线性卷积和FFT法 计算线性卷积时比值
(4.106)
运算量分析:
(1)x(n)与h(n)点数差不多,设M=L,
2
X1 k
x1
r
W rk N2
x
2r
W rk N2
r0
r0
(4.6)
N 1
N 1
2
2
X2 k
x2
r
W rk N2
x
2r
1
W rk N2
(4.7)
r 0
r0
应用系数的周期性
可得
N 1
X1
N 2
k
2 r 0
x1
r
W x r
N 2
k
N2
N 1 2
1
r0
比较可知,只要把DFT运算中的每一个系数
变成
,最后再乘常数1/N,则以上所有
按时间抽选或按频率抽选的FFT都可以拿来运算
IDFT。
不改FFT的程序计算IFFT方法: 对4.29式取共轭
因而
4.6 N为复合数的FFT算法 --混合基算法
当N不满足
时,可有以下几种办法
(1)将x(n)补一些零值点的办法
y(n)也是有限长序列,其点数为L+M-1。 2. 线性卷积运算量 乘法次数
线性相位滤波器满足条件
运算结构如图5.26,5.27所示 线性相位FIR滤波器的乘法运算量
此时y(n)能代表线性卷积结果。
用FFT计算y(n)步骤如下: (1)求
,N点
(2)求
,N点
(3)计算
;
(4)求
,N点
工作量分析 FFT计算工作量
(4.105)
用线性相位滤波器来比较直接计算线性卷积和FFT法 计算线性卷积时比值
(4.106)
运算量分析:
(1)x(n)与h(n)点数差不多,设M=L,
2
X1 k
x1
r
W rk N2
x
2r
W rk N2
r0
r0
(4.6)
N 1
N 1
2
2
X2 k
x2
r
W rk N2
x
2r
1
W rk N2
(4.7)
r 0
r0
应用系数的周期性
可得
N 1
X1
N 2
k
2 r 0
x1
r
W x r
N 2
k
N2
N 1 2
1
r0
比较可知,只要把DFT运算中的每一个系数
变成
,最后再乘常数1/N,则以上所有
按时间抽选或按频率抽选的FFT都可以拿来运算
IDFT。
不改FFT的程序计算IFFT方法: 对4.29式取共轭
因而
4.6 N为复合数的FFT算法 --混合基算法
当N不满足
时,可有以下几种办法
(1)将x(n)补一些零值点的办法
y(n)也是有限长序列,其点数为L+M-1。 2. 线性卷积运算量 乘法次数
线性相位滤波器满足条件
运算结构如图5.26,5.27所示 线性相位FIR滤波器的乘法运算量
数字信号处理快速傅立叶变换PPT课件

第4章 快速傅立叶变换(FFT)
4.1 引
DFT是数字信号分析与处理中的一种重要变换。
但直接计算DFT的计算量与变换区间长度N的平方成正
比,当N较大时,计算量太大,所以在快速傅里叶变
换FFT(Fast Fourier Transform)出现以前,直接用
DFT算法进行谱分析和信号的实时处理是不切实际的。
i0
(4.2.11)
X X
2 2
(k) X5(k) WNk/2 X6 (k)
(k
N
/
4)
X5
(k)
Wk N/2
X
6
, (k )
k
0,1,N
/
4
1
第18页/共79页
第4章 快速傅立叶变换(FFT)
x1(0) x(0) x1(1) x(2) x1(2) x(4) x1(3) x(6)
X1(0)
1 N
N 1
X
(k
)W
nk N
,
k0
n 0,1,, N 1
两者的差别仅在指数的符号和因子1/N.
第2页/共79页
第4章 快速傅立叶变换(FFT)
一个X(k)的值的工作量,如X(1)
X(1) x(0)WN0 x(1)WN1 x(2)WN2 x(N 1)WNN1
计算一个X(k)的值: N次复数乘法运算 N-1 次复数加法运算.
N 2
X 1 (1)
点DFT X1(2)
X1(3)
x2(0) x(1) x2(1) x(3) x2(2) x(5) x2(3) x(7)
X 2 (0) WN0
N 2
X 2 (1)
W
1 N
点DFT X 2(2)
4.1 引
DFT是数字信号分析与处理中的一种重要变换。
但直接计算DFT的计算量与变换区间长度N的平方成正
比,当N较大时,计算量太大,所以在快速傅里叶变
换FFT(Fast Fourier Transform)出现以前,直接用
DFT算法进行谱分析和信号的实时处理是不切实际的。
i0
(4.2.11)
X X
2 2
(k) X5(k) WNk/2 X6 (k)
(k
N
/
4)
X5
(k)
Wk N/2
X
6
, (k )
k
0,1,N
/
4
1
第18页/共79页
第4章 快速傅立叶变换(FFT)
x1(0) x(0) x1(1) x(2) x1(2) x(4) x1(3) x(6)
X1(0)
1 N
N 1
X
(k
)W
nk N
,
k0
n 0,1,, N 1
两者的差别仅在指数的符号和因子1/N.
第2页/共79页
第4章 快速傅立叶变换(FFT)
一个X(k)的值的工作量,如X(1)
X(1) x(0)WN0 x(1)WN1 x(2)WN2 x(N 1)WNN1
计算一个X(k)的值: N次复数乘法运算 N-1 次复数加法运算.
N 2
X 1 (1)
点DFT X1(2)
X1(3)
x2(0) x(1) x2(1) x(3) x2(2) x(5) x2(3) x(7)
X 2 (0) WN0
N 2
X 2 (1)
W
1 N
点DFT X 2(2)
《快速傅里叶变换FF》课件

《快速傅里叶变换ff 》ppt课件
contents
目录
• FFT简介 • FFT的基本原理 • FFT的应用 • FFT的实现 • FFT的性能优化 • FFT的局限性
CHAPTER 01
FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,极大地提高了 计算效率。
通过选择适合特定数据集的基数,混 合基数FFT可以在不同的应用场景下 获得最佳性能。
混合基数FFT结合了基于2的幂次和基 于其他基数的算法,以获得更好的计 算效率和精度。
CHAPTER 06
FFT的局限性
浮点运算的开销
快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。然而, 由于FFT涉及到大量的复数运算,因此其计算开销相对较大,尤其是对于大规模数据。
分段FFT
分段FFT是一种将大规模FFT分 解为多个小规模FFT的方法, 可以显著提高计算速度。
通过将输入数据分成多个段, 每个段可以独立进行FFT计算 ,从而并行处理多个段。
分段FFT适用于大规模数据集 ,可以有效地利用多核处理器 和分布式计算资源,提高计算 效率。
混合基数FFT
混合基数FFT是一种将不同基数算法 结合在一起的FFT方法,可以获得更 好的性能。
快速傅里叶变换(FFT)算法
定义
快速傅里叶变换(FFT)是一种高效的计算离散傅里叶变换( DFT)和其逆变换的算法。它通过一系列数学运算将DFT的 计算量从N^2降低到了Nlog2N,大大提高了计算效率。
算法原理
FFT算法基于DFT的周期性和对称性,将一个N点的DFT分解 为多个较短序列的DFT,然后利用递归和分治的思想进行计 算,最终得到原始序列的频域表示。
contents
目录
• FFT简介 • FFT的基本原理 • FFT的应用 • FFT的实现 • FFT的性能优化 • FFT的局限性
CHAPTER 01
FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,极大地提高了 计算效率。
通过选择适合特定数据集的基数,混 合基数FFT可以在不同的应用场景下 获得最佳性能。
混合基数FFT结合了基于2的幂次和基 于其他基数的算法,以获得更好的计 算效率和精度。
CHAPTER 06
FFT的局限性
浮点运算的开销
快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。然而, 由于FFT涉及到大量的复数运算,因此其计算开销相对较大,尤其是对于大规模数据。
分段FFT
分段FFT是一种将大规模FFT分 解为多个小规模FFT的方法, 可以显著提高计算速度。
通过将输入数据分成多个段, 每个段可以独立进行FFT计算 ,从而并行处理多个段。
分段FFT适用于大规模数据集 ,可以有效地利用多核处理器 和分布式计算资源,提高计算 效率。
混合基数FFT
混合基数FFT是一种将不同基数算法 结合在一起的FFT方法,可以获得更 好的性能。
快速傅里叶变换(FFT)算法
定义
快速傅里叶变换(FFT)是一种高效的计算离散傅里叶变换( DFT)和其逆变换的算法。它通过一系列数学运算将DFT的 计算量从N^2降低到了Nlog2N,大大提高了计算效率。
算法原理
FFT算法基于DFT的周期性和对称性,将一个N点的DFT分解 为多个较短序列的DFT,然后利用递归和分治的思想进行计 算,最终得到原始序列的频域表示。
《数字信号处理教学课件》第四章 快速傅立叶变换

k
)
k 0,1,...... N 4 1
注意:通常我们会把
WNk
/
写成
2
W
2k N
。
N点DFT的第二次时域抽取分解图(N=8)
x(0)
x(4) x(2) x(6) x(1) x(5) x(3) x(7)
x(0) xD2(F2点)T
X3(0) X3(1)
4点
x2(4点) xD(F6)T
x2(1点) xD(F3)T
分解后的运算量:
一个N 点DFT 一个N / 2点DFT 两个N / 2点DFT
一个蝶形 N / 2个蝶形
总计
复数乘法 N2
(N / 2)2 N2/ 2
1 N/2 N2/2 + N/2 ≈ N2/2
运算量减少了近一半
复数加法 N (N–1) N / 2 (N / 2 –1) N (N / 2 –1)
x(1),x(3),x(5),x(7)为奇子序列 频域上:X(0)~X(3),由X(k)给出
X(4)~X(7),由X(k+N/2)给出
N=8点的直接DFT的计算量为: 复乘:N2次 = 64次 复加:N(N-1)次 = 8×7=56次
X (k )
X
1
(k
)
W
k N
X2(k)
k 0,, N / 2 1
N点 DFT
复乘:
N2
N/2点 DFT
N/2点 DFT
N/4点 DFT N/4点 DFT N/4点 DFT N/4点 DFT
…….
N
2
N
2
2 2
N2 2
精品课件-数字信号处理(第四版)(高西全)-第4章

点DFT和(4.2.10)式或(4.2.11)式所示的N/4个蝶形运算,
如图4.2.3所示。依次类推,经过M次分解,最后将N点DFT
分解成N个1点DFT和M级蝶形运算,而1点DFT就是时域序列
本身。一个完整的8点DIT-FFT运算流图如图4.2.4所示。
图中用到关系式
。W图N中k / m输入W序Nmk列不是顺序排
In Time FFT,简称DIT-FFT ); 频域抽取法FFT (Decimation In Frequency FFT,简称DIF-FFT)。本节介 绍DIT-FFT
设序列x(n)的长度为N,且满足N=2M,M为自然数。按n 的奇偶把x(n)分解为两个N/2点的子序列
x1(r) x(2r), x2 (r) x(2r 1),
x1
(2l
1)WNk
( /
2l 2
1)
l 0
l 0
N / 41
N / 41
x3 (l)WNkl/ 4 WNk / 2
x4
(l
)WNk
l /
4
l 0
l 0
X 3 (k ) WNk/ 2 X 4 (k )
k 0, 1, , N 1 2
(4.2.9)
第4章 快速傅里叶变换(FFT)
式中
N / 41
r0
2
(4.2.6)
由于X1(k)和X2(k)均以N/2为周期,
kN
WN 2
WNk
且
,因此X(k)又可表示为
第4章 快速傅里叶变换(FFT)
X (k) X1(k) WNk X 2 (k),
X
(k
N 2
)
X1(k)
WNk
X
快速傅里叶变换PPT课件

W
0 N
运算即可求出
所有8点X(k)的
W
1 N
值。
W
2 N
W
3 N
分解一次后所需的运算量=2个N/2的DFT+N/2蝶形
-
14
运算量比较
N点DFT的运算量
每次蝶形含一次复数
复数乘法次数: N2
乘和两次复数加
复数加法次数: N(N-1)
分解一次后所需的运算量=2个N/2的DFT+ N/2蝶形:
复数乘法次数: 2*(N/2)2+N/2=N2/2+N/2
-
3
4.2 直接计算DFT的问题及改进的途径
DFT的运算量 设复序列x(n) 长度为N点,其DFT为
N1
X(k) x(n)WNnk n0
k=0,,…,N-1
(1)计算一个X(k) 值的运算量
复数乘法次数: N
复数加法次数: N-1
(2)计算全部N个X(k) 值的运算量
复数乘法次数: N2
复数加法次数: N(N-1)
-
5
4.2.2 减少运算工作量的途径
主要原理是利用系数
W
nk N
的以下特性对DFT进行分解:
(1)周期性 W N (nN)kW N n(kN)W N nk
(2)对称性
(WNnk )
W nk N
W k(N n) N
(3)可约性
Wmnk mN
WNnk
WNnk WNnk/m/m
另外,
WNN/2 1
W(kN/2) N
复数加法次数: 2*(N/2)(N/2-1)+2*N/2=N2/2
通过一次分解后,运算工作量减少了差不多一半。
第4章傅里叶变换ppt课件

23
例题4.6 求正弦波的频谱
解:
x(t)si n0tej0t
ej0t 2j
1 a1 2 j
a-1
- 1 2j
X(j)j(0)j(0)
可编辑课件PPT
24
ej0t ej0t
x(t)co0st 2
a1
1 2
a-1
1 2
X (j ) ( 0 ) ( 0 )
本例的结论在信号调制理论中有着广泛的应用
可编辑课件PPT
12
例题4.2 求 x(t)(t) 的频谱。
解
X(j)x(t)ejtdt (t)ejtdt
(t)ej0dt1
可编辑课件PPT
13
单位冲激信号的频谱是常数1,或者说,在所有 的频率点上,频谱的值都是恒定的。
这个例子的物理含义非常广泛,它意味着,尖脉 冲信号的频谱非常宽,会对处于不同接收频率的电子 设备产生干扰。
X(jk0)ejk0t
0
面X 积 (jk0)ej k0t 0 k 0
X(j)ejtd
X(jk0)ejk0t0
k
可编辑课件PPT
10
0 0
傅里叶反变换
x(t)21 X(j)ejtd
一种分解
可编辑课件PPT
11
傅里叶变换
频谱
傅里叶正变换
X(j) x(t)ejtdt
F
F1
x(t)X(j) X(j)x(t)
可编辑课件PPT
2
抽样函数或者称为采样函数:
Sa(x) sinx x
S(ax)S(a x) 偶函数
通过罗必塔法则,可以得到
Sa(0) 1
Sa()0
x 抽样函数右边的第一个过零点在