3.1.4空间向量的坐标运算
课时作业10:3.1.4 空间向量的直角坐标运算

3.1.4 空间向量的直角坐标运算一、选择题1.在空间直角坐标系Oxyz 中,已知点A 的坐标为(-1,2,1),点B 的坐标为(1,3,4),则( ) A.AB →=(-1,2,1)B.AB →=(1,3,4)C.AB →=(2,1,3)D.AB →=(-2,-1,-3)答案 C解析 AB →=OB →-OA →=(2,1,3).2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到C 的距离|CM |的值为( ) A.534 B.532 C.532 D.132 答案 C解析 AB 的中点M ⎝⎛⎭⎫2,32,3,又C (0,1,0), 所以CM →=⎝⎛⎭⎫2,12,3,故M 到C 的距离为 |CM |=|CM →|=22+⎝⎛⎭⎫122+32=532. 3.已知a =(1,5,-2),b =(m,2,m +2),若a ⊥b ,则m 的值为( )A .0B .6C .-6D .±6答案 B解析 ∵a ⊥b ,∴1×m +5×2-2(m +2)=0,解得m =6.4.已知a =(1,0,1),b =(-2,-1,1),c =(3,1,0),则|a -b +2c |等于( )A .310B .210 C.10 D .5答案 A解析 a -b +2c =(9,3,0),|a -b +2c |=310 .5.若△ABC 的三个顶点坐标分别为A (1,-2,1),B (4,2,3),C (6,-1,4),则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形答案 A解析 AB →=(3,4,2),AC →=(5,1,3),BC →=(2,-3,1).由AB →·AC →>0,得A 为锐角;由CA →·CB →>0,得C 为锐角;由BA →·BC →>0,得B 为锐角.所以△ABC 为锐角三角形.6.已知向量a =(2x,1,3),b =(1,-2y,9),若a 与b 为共线向量,则( )A .x =1,y =1B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32答案 C解析 ∵a =(2x,1,3)与b =(1,-2y,9)共线,∴2x 1=1-2y =39(y ≠0),∴x =16,y =-32.7.设AB →=(cos α+sin α,0,-sin α),BC →=(0,cos α,0),则|AC →|的最大值为( )A .3 B. 3 C .2 3 D .3 3答案 B解析 ∵AC →=AB →+BC →=(cos α+sin α,cos α,-sin α),∴|AC →|2=(cos α+sin α)2+cos 2α+(-sin α)2=2+sin 2α≤3,∴|AC →|的最大值为 3.8.已知向量a =(2,-1,2),b =(2,2,1),则以a ,b 为邻边的平行四边形的面积为() A.652 B.65 C .4 D .8答案 B解析 ∵|a |=22+(-1)2+22=3,|b |=22+22+12=3,∴cos 〈a ,b 〉=a ·b |a ||b |=4-2+23×3=49,∴sin 〈a ,b 〉=659,∴S =|a |·|b |·sin 〈a ,b 〉=65.二、填空题9.若A (m +1,n -1,3),B (2m ,n ,m -2n ),C (m +3,n -3,9)三点共线,则m +n =________. 答案 0解析 因为AB →=(m -1,1,m -2n -3),AC →=(2,-2,6),由题意得AB →∥AC →,所以m -12=1-2=m -2n -36, 所以m =0,n =0,所以m +n =0.10.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.答案 2π3解析 AB →=(-2,-1,3),CA →=(-1,3,-2),AB →·CA →=-7,|AB →|=14,|CA →|=14,∴cos θ=-714×14=-12, 又∵θ∈[0,π],∴θ=2π3. 11.已知点A (1,0,0),B (0,1,0),C (0,0,2),则满足DB ∥AC ,DC ∥AB 的点D 的坐标为________. 答案 (-1,1,2)解析 设点D (x ,y ,z ),则DB →=(-x,1-y ,-z ),AC →=(-1,0,2),DC →=(-x ,-y,2-z ),AB →=(-1,1,0),因为DB ∥AC ,DC ∥AB ,所以DB →∥AC →,DC →∥AB →,则⎩⎪⎨⎪⎧ -x -1=-z 2,1-y =0,-x -1=-y 1,2-z =0,解得⎩⎪⎨⎪⎧ x =-1,y =1,z =2,所以D (-1,1,2).三、解答题 12.已知向量a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),且a ∥b ,b ⊥c .(1)求向量a ,b ,c ;(2)求向量a +c 与向量b +c 所成角的余弦值.考点 空间向量运算的坐标表示题点 空间向量的坐标运算解 (1)因为a ∥b ,所以x -2=4y =1-1,且y ≠0, 解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1).又由b ⊥c 得b ·c =0,故(-2,-4,-1)·(3,-2,z )=-6+8-z =0,得z =2,此时c =(3,-2,2). (2)由(1)得,a +c =(5,2,3),b +c =(1,-6,1),因此向量a +c 与向量b +c 所成角θ的余弦值为cos θ=(a +c )·(b +c )|a +c |·|b +c |=5-12+338×38=-219. 13.已知直线l 1的一个方向向量为s 1=(1,0,1),直线l 2的一个方向向量为s 2=(-1,2,-2),求直线l 1和直线l 2夹角的余弦值.解 ∵s 1=(1,0,1),s 2=(-1,2,-2),∴cos 〈s 1,s 2〉=s 1·s 2|s 1||s 2|=-1-22×9=-22<0, ∴〈s 1,s 2〉>π2, ∴直线l 1与直线l 2的夹角为π-〈s 1,s 2〉,∴直线l 1与直线l 2夹角的余弦值为22.14.已知O 为坐标原点,OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为( )A.⎝⎛⎭⎫12,34,13B.⎝⎛⎭⎫12,23,34C.⎝⎛⎭⎫43,43,83D.⎝⎛⎭⎫43,43,73考点 空间向量运算的坐标表示题点 空间向量的坐标运算答案 C解析 方法一 设OQ →=λOP →,则QA →=OA →-OQ →=OA →-λOP →=(1-λ,2-λ,3-2λ),QB →=OB→-OQ →=OB →-λOP →=(2-λ,1-λ,2-2λ),所以QA →·QB →=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=2⎣⎡⎦⎤3⎝⎛⎭⎫λ-432-13.当λ=43时,QA →·QB →取得最小值,此时点Q 的坐标为⎝⎛⎭⎫43,43,83. 方法二 设OQ →=λOP →=(λ,λ,2λ),其中λ≠0,因为λ∶λ∶2λ=1∶1∶2,观察选项只有C 符合.15.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AB 和BC 的中点,试在棱B 1B 上找一点M ,使得D 1M ⊥平面EFB 1.解 建立如图所示的空间直角坐标系Dxyz ,则A (1,0,0),B 1(1,1,1),C (0,1,0),D 1(0,0,1),E ⎝⎛⎭⎫1,12,0,设M (1,1,m ). 连接AC ,则AC →=(-1,1,0).而E ,F 分别为AB ,BC 的中点,所以EF →=12AC →=⎝⎛⎭⎫-12,12,0. 又因为B 1E →=⎝⎛⎭⎫0,-12,-1,D 1M →=(1,1,m -1), 而D 1M ⊥平面EFB 1,所以D 1M ⊥EF ,且D 1M ⊥B 1E ,即D 1M →·EF →=0,且D 1M →·B 1E →=0.所以 ⎩⎨⎧ -12+12+(m -1)×0=0,0-12+1-m =0,解得m =12,即M 为B 1B 的中点.。
3.1.4 空间向量的坐标表示

与x轴、y轴、z轴方向相同的单位向量 i, rj, k
作为基向量,对于空间任意一个向量 a ,
根据空间向量基本定理,存在惟一的有序实数组
rrr r
(x,y,z ),使 a= xi+ yj+ zk. r 有序实数组(x,y,z )叫做向量 r a 在空间直角
坐标系O-xyz中的坐标,记 作 : a = (x , y , z) u u u r u u u r
对于空间任意一点A(x,y,z ),向 量 O A 坐 标 为 O A = ( x , y , z ) .
3.空间向量的坐标运算法则.
r
r
(1r )若ra = ( a 1 , a 2 , a 3 ) , b = ( b 1 , b 2 , b 3 ) ,
则 a + b = ( a 1 + b 1 , a 2 + b 2 , a 3 + b 3 ) ,
rr 解: a+b=(4, 7, 4) ,
rr a-b=(-2, -13, 12) ,
r 3a=(3, -9, 24)
例2 已知空间四点A(-2,3,1),B(2,-5,3),C(10,0, 10)和D(8,4,9),求证:四边形ABCD是梯形.
uuur uuur uuur
解: AB=OB- OA=(4, -8, 2) ,
rr a - b = ( a 1 - b 1 , a 2 - b 2 , a 3 - b 3 ) ,
r a = (a 1 , a 2 , a 3 ) (∈ R ) ,
r r
a b a 1 = b 1 , a 2 = b 2 , a 3 = b 3 ( ∈ R ) ,
数学应用
已知 a r = ( 1 , - 3 , 8 ) , b r = ( 3 , 1 0 , - 4 ) , 求 a r+ b r, a r+ b r, 3 a r.
原创2:3.1.4 空间向量的直角坐标运算

(1)依题意得B(0,1,0),N(1,0,1).∴||= 3,
∴BN的长为 3.
(2)依题意得A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2),
变式训练
∴ BA1=(1,-1,2), CB1=(0,1,2),
∴ BA1 ·CB1=3.
原点O重合,得到向量OP=p,由空间向量基本定理可知,存在有
序实数组{x,y,z},使得p=
xԦi+yԦj+zkԦ
.把 x,y,z 称作向
量p在单位正交基底Ԧi,Ԧj,k 下的坐标,记作 p=(x,y,z) .
走进教材
2.空间向量运算的坐标表示
若a=(a1,a2,a3),b=(b1,b2,b3).
Ԧ ∙
cos<a,b>
Ԧ ||
走进教材
3.空间中向量的坐标及两点间的距离公式
在空间直角坐标系中,设A(a1,b1,c1),B(a2,b2,c2),则
(1)= (a2-a1,b2-b1,c2-c1) ;
(2)d AB=||=
(a2−a1)2 +(b2−b1)2 +(c2−c1)2
.
(1)设|Ԧc|=3,Ԧc∥BC,求Ԧc;(2)若ka+b与ka-2b互相垂直,求k.
【解析】
(1)∵BC=(-2,-1,2),且Ԧc∥BC,∴设Ԧc=λBC=(-2λ,-λ,2λ).
∴|Ԧc|= (-2λ)2 +(-λ)2 +(2λ)2 =3|λ|=3.解得λ=±1.
∴Ԧc=(-2,-1,2)或Ԧc=(2,1,-2).
=1×(-1)+1×0+0×2=-1
∴(-1,0,2)=(x-2y,x-y,2y)
学案10:3.1.4 空间向量的正交分解及其坐标表示

3.1.4 空间向量的正交分解及其坐标表示学习目标1.了解空间向量的正交分解的含义.2.掌握空间向量的基本定理,并能用空间向量基本定理解决一些简单问题.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.学习重点:空间向量基本定理的应用.学习难点:应用空间向量基本定理解决问题.要点整合细读课本知识点一空间向量基本定理[填一填]1.定理:条件:三个向量a,b,c.结论:对空间任一向量p,存在有序实数组,使得p=x a+y b+z c.2.基底:空间中任何的三个向量a,b,c都可以构成空间的一个基底,即{a,b,c}.3.基向量:空间的一个基底{a,b,c}中的向量a,b,c都叫做基向量.[答一答]1.(1)空间中怎样的向量能构成基底?(2)基底与基向量的概念有什么不同?2.空间的基底唯一吗?3.为什么空间向量基本定理中x,y,z是唯一的?知识点二空间向量的正交分解及其坐标表示[填一填]1.单位正交基底:有公共起点O的三个的单位向量e1,e2,e3称为.2.空间直角坐标系:以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz.3.空间向量的坐标表示:对于空间任意一个向量p ,一定可以把它 ,使它的起点与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.把 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作p =(x ,y ,z ),即点P 的坐标为 .[答一答]4.与坐标轴或坐标平面垂直的向量坐标有何特点?5.向量可以平移,向量p 在坐标系中的坐标唯一吗?特别关注1.空间向量基本定理注意点空间向量基本定理表明,用空间三个不共面的已知向量组{a ,b ,c }可以线性表示出空间任意一个向量,而且表示的结果是唯一的.我们在用选定的基向量表示指定的向量时.要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量,再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止.2.空间向量与平面向量的坐标运算的联系类比平面向量的坐标运算,空间向量的坐标运算是平面向量坐标运算的推广,两者实质是一样的,只是表达形式不同而已,空间向量多了个竖坐标.典例讲破类型一 空间向量基本定理的理解例1 已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底?通法提炼判断给出的某一向量组能否作为基底,关键是要判断它们是否共面.如果从正面难以入手,可用反证法或利用一些常见的几何图形进行判断. 针对训练1已知a 、b 、c 是不共面的三个向量,则下列选项中能构成一组基底的一组向量是( ) A .2a ,a -b ,a +2b B .2b ,b -a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c类型二 用基底表示向量例2 如图所示,平行六面体ABCD A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.(1)证明A ,E ,C 1,F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z .通法提炼在几何体中,根据图形的特点,选择公共起点最集中的向量中的三个不共面的向量作为基底,或选择有公共起点且关系最明确如夹角或线段长度的三个不共面的向量作为基底,这样更利于解题. 针对训练2已知平行六面体OABC O ′A ′B ′C ′,OA →=a ,OC →=c ,OO ′→=b ,D 是四边形OABC 的对角线交点,则( ) A.O ′D →=-a +b +c B.O ′D →=-b -12a -12cC.O ′D →=12a -b -12cD.O ′D →=12a -b +12c类型三 求向量的坐标例3 如图所示,已知点P 为正方形ABCD 所在平面外一点,且P A ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,且P A =AD ,求向量MN →的坐标.通法提炼用坐标进行向量的运算,关键之一是把相关的向量以坐标形式表示出来.这里有两个方面的问题:一是如何恰当地建系,一定要分析空间几何体的构造特征,选合适的点作原点、合适的直线和方向作坐标轴,一般来说,有共同的原点,且两两垂直的三条数轴,只要符合右手系的规定,就可以作为空间直角坐标系.二是在给定的空间直角坐标系中如何表示向量的坐标,这里又有两种方法,其一是运用基底法,把空间向量进行正交分解;其二是运用投影法,求出起点和终点的坐标. 针对训练3在直三棱柱ABC A 1B 1C 1中,∠ACB =90°,CA =CB =1,CC 1=2,M 为A 1B 1的中点.以C 为坐标原点,分别以CA ,CB ,CC 1所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则AB 1→的坐标为 ,MB →的坐标为(-12,12,-2).课堂达标1.设命题p :a ,b ,c 是三个非零向量;命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.已知{a ,b ,c }是空间的一个基底,则可以和向量p =a +b ,q =a -b 构成基底的向量是( ) A .a B .b C .a +2bD .a +2c3.设{i ,j ,k }是空间向量的一个单位正交基底,则向量a =3i +2j -k ,b =-2i +4j +2k 的坐标分别是 . 【答案】(3,2,-1),(-2,4,2)【解析】∵i ,j ,k 是单位正交基底,故根据空间向量坐标的概念知a =(3,2,-1), b =(-2,4,2).4.已知点G 是△ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值是 . 5.如图,四棱锥P OABC 的底面为一矩形,设OA →=a ,OC →=b ,OP →=c ,E 、F 分别是PC 和PB 的中点,用a ,b ,c 表示BF →、BE →、AE →、EF →.参考答案要点整合 细读课本知识点一 空间向量基本定理[填一填]1.不共面 {x ,y ,z }2.不共面[答一答]1.提示:(1)空间任意三个“不共面”的向量都可以作为空间向量的一个基底.(2)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.2.提示:不唯一,只要是三个向量不共面,这三个向量就可以组成空间的一个基底. 3.提示:平移向量a ,b ,c ,p 使它们共起点,如图所示,以p 为体对角线,在a ,b ,c 方向上作平行六面体,易知这个平行六面体是唯一的,因此p 在a ,b ,c 方向上的分解是唯一的,即x ,y ,z 是唯一的.知识点二 空间向量的正交分解及其坐标表示[填一填]1.两两垂直 单位正交基底 3.平移 x ,y ,z (x ,y ,z )[答一答]4.提示:xOy 平面上的点的坐标为(x ,y,0),xOz 平面上的点的坐标为(x,0,z ),yOz 平面上的点的坐标为(0,y ,z ),x 轴上的点的坐标为(x,0,0),y 轴上的点的坐标为(0,y,0),z 轴上的点的坐标为(0,0,z ).另外还要注意向量OP →的坐标与点P 的坐标相同.5.提示:唯一.在空间直角坐标系中,向量平移后,其正交分解不变,故其坐标也不变.典例讲破类型一 空间向量基本定理的理解例1 解:假设OA →,OB →,OC →共面,由向量共面的充要条件知存在实数x ,y ,使OA →=xOB →+yOC →成立.∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3)=(-3x +y )e 1+(x +y )e 2+(2x -y )e 3.∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3不共面,∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x ,y ,使OA →=xOB →+yOC →成立.∴OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 针对训练1 【答案】C【解析】因为a ,b ,c 不共面,易知a,2b ,b -c 不共面.故应选C. 类型二 用基底表示向量例2 (1)证明:∵AC 1→=AE →+EC 1→,又EC 1→=EB 1→+B 1C 1→=23BB 1→+B 1C 1→=23AA 1→+AD →,AF →=AD →+DF →=AD →+23DD 1→=AD →+23AA 1→,∴EC 1→=AF →,∴AC 1→=AE →+AF →,∴A ,E ,C 1,F 四点共面. (2)解:∵EF →=AF →-AE →=AD →+DF →-(AB →+BE →) =AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,∴x =-1,y =1,z =13.∴x +y +z =13.针对训练2 【答案】D【解析】O ′D →=O ′O →+OD →=O ′O →+12OA →+12OC →=-b +12a +12c .类型三 求向量的坐标例3 解:设正方形的边长为a ,∵P A =AD =AB , 且P A ,AD ,AB 两两互相垂直,故可设DA →=a i ,AB →=a j ,AP →=a k .以i ,j ,k 为坐标向量建立如图所示的空间直角坐标系.方法一:∵MN →=MA →+AP →+PN →=-12AB →+AP →+12PC →=-12AB →+AP →+12(AD →+AB →-AP →)=-12a j +a k +12(-a i +a j -a k )=-12a i +12a k ,∴MN →=(-12a,0,12a ).方法二:∵P (0,0,a ),C (-a ,a,0), ∴N 点的坐标为(-12a ,12a ,12a ).∵M 点的坐标为(0,12a,0),∴MN →=(-12a,0,12a ).针对训练3 【答案】(-1,1,2)【解析】A (1,0,0),B (0,1,0),B 1(0,1,2),M (12,12,2),AB 1→=CB 1→-CA →=(-1,1,2),MB →=(-12,12,-2). 课堂达标1.【答案】B【解析】当非零向量a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底,当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量. 2.【答案】D【解析】能与p ,q 构成基底,则与p ,q 不共面.∵a =p +q 2,b =p -q 2,a +2b =3p -q 2,∴A 、B 、C 都不合题意,由于{a ,b ,c }构成基底,∴a +2c 与p ,q 不共面,可构成基底. 3.【答案】(3,2,-1),(-2,4,2)【解析】∵i ,j ,k 是单位正交基底,故根据空间向量坐标的概念知a =(3,2,-1), b =(-2,4,2). 4.【答案】3【解析】如图,G 为△ABC 重心,E 为AB 中点,∴OE →=12(OA →+OB →),CG →=23CE →=23(OE →-OC →),∴OG →=OC →+CG →=OC →+23(OE →-OC →)=13(OA →+OB →+OC →),∴λ=3.5.解:BF →=12BP →=12(BO →+OP →)=12(c -b -a )=-12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →)=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF →=12CB →=12OA →=12a .。
3.1.4空间向量运算的坐标表示

13
练习 2: 0, ⑴已知 A( 2, 3),B( 2,1, 6), C (1, 1, 5) , 7 3 则 △ ABC 的面积 S=_____.
2
⑵ a = ( x , 2,1) , b = ( 3, x , 5) 且 a 与 b 的夹角为 5 钝角, 钝角,则 x 的取值范围为 ( 1, ) . 2
记为 a = ( a1 , a2 , a3 ) .
4
在空间直角坐标系O 对空间任一点A, 在空间直角坐标系 – x y z 中,对空间任一点 对应一个向量 O A ,于是存在唯一的有序实数组 x, y, z, 于是存在唯一的有序实数组 如图). 使 OA = xi + y j + zk (如图 如图 我们说,点 的坐标为 的坐标为(x,y,z),记作 记作A(x,y,z),其中 叫 我们说 点A的坐标为 记作 ,其中x叫 叫做点A的纵坐标,z叫做点 叫做点A的竖坐标. 做点A的横坐标,y叫做点 做点 的横坐标 叫做点 的纵坐标 叫做点 的竖坐标 显然, 的坐标,就是点A在此空间直角 显然 向量 OA 的坐标,就是点 在此空间直角 z 坐标系中的坐标(x,y,z). 坐标系中的坐标
λa
= (λ a1 , λ a2 , λ a3 )(λ ∈ R) a b = a1b1 + a2 b2 + a3 b3
a1 = λb1,a2 = λb2,a3 = λb3(λ∈R)
6
a // b
a ⊥ b a1b1 + a2b2 + a3b3 = 0.(a, b都不是零向量)
练习1:已知 练习1:已知 a 1:
7
如果知道有向线段的起点和终点的坐标, 如果知道有向线段的起点和终点的坐标 那么有向线段表示的向量坐标怎样求? 那么有向线段表示的向量坐标怎样求 结论: 结论:若A(x1,y1,z1),B(x2,y2,z2), 则 AB = OB-OA=(x2,y2,z2)-(x1,y1,z1) =(x2-x1 , y2-y1 , z2-z1) =(
高二数学 3.1.4 空间向量的直角坐标运算

3.1.4 空间向量的直角坐标运算1.空间直角坐标系及空间向量的坐标(1)建立空间直角坐标系Oxyz ,分别沿x 轴、y 轴、z 轴的正方向引单位向量i 、j 、k ,这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },这个基底叫做______________;单位向量i 、j 、k 都叫做____________. (2)空间向量的坐标:已知任一向量a ,根据空间向量分解定理,存在唯一实数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,a 1i ,a 2j ,a 3k 分别为向量a 在i ,j ,k 方向上的分向量,有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的________.上式可简记作a =____________. 23. 123123(1)a ∥b (b ≠0)⇔________⇔⎩⎪⎨⎪⎧当b 与三个坐标平面都不平行时,a ∥b ⇔__________________(2)a ⊥b ⇔________________⇔________________________. 4.两个向量夹角与向量长度的坐标计算公式:(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=________________,|b |=________________. cos 〈a ,b 〉=___________________________________________. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=________________________, |AB →|=________________________________________.探究点一 空间向量的坐标表示及运算问题1 如何确定向量的坐标? 问题2 向量的坐标和点的坐标有什么联系?例1 设正四棱锥S —P 1P 2P 3P 4的所有棱长均为2,建立适当的空间直角坐标系,求SP 1→、P 2P 3→的坐标.跟踪1 (1)已知向量a ,b ,c 分别平行于x 轴、y 轴、z 轴,它们的坐标各有什么特点? (2)设O 为坐标原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,求点Q 的坐标. 探究点二 垂直与平行问题问题1 已知a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),a 、b 共线的充要条件为a 1a 2=b 1b 2=c 1c 2,对吗?问题2 a 与b 垂直的充要条件是什么?例2 已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.若向量ka +b 与ka -2b 互相垂直,求k 的值.跟踪2 将本例中“若向量ka +b 与ka -2b 互相垂直”改为“若向量ka +b 与a +kb 互相平行”其他条件不变,求k 的值.探究点三 向量的夹角与长度计算例3 已知在△ABC 中,A (2,-5,3),AB →=(4,1,2),BC →=(3,-2,5),求顶点B 、C 的坐标,向量AC →及∠A 的余弦值.跟踪3 在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是D 1D 、BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,应用空间向量方法求解下列问题:(1)求EF 与C 1G 所成的角的余弦值; (2)求FH 的长. 【达标检测】1.若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a 1b 1=a 2b 2=a 3b 3是a ∥b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2.已知a =3i +2j -k ,b =i -j +2k ,i ,j ,k 是两两垂直的单位向量,则5a 与3b 的数量积等于 ( )A .-15B .-5C .-3D .-1 3.若ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (-3,7,-5),则顶点D 的坐标为 ( ) A .⎝⎛⎭⎫72,4,-1B .(2,3,1)C .(-3,1,5)D .(-1,13,-3)4.已知A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形5.已知A (1,-1,2),B (5,-6,2),C (1,3,-1),则AB →在AC →上的投影为______. 【课堂小结】1.利用空间向量的坐标运算可以判断两个向量的平行、垂直;可以求向量的模以及两个向量的夹角.2.几何中的平行和垂直可以利用向量进行判断,利用直线的方向向量的关系可以证明直线的平行和垂直;距离、夹角问题可以借助于空间直角坐标系利用数量积解决.3.1.4 空间向量的直角坐标运算一、基础过关1.在空间直角坐标系Oxyz 中,已知点A 的坐标为(-1,2,1),点B 的坐标为(1,3,4),则( ) A.AB →=(-1,2,1) B.AB →=(1,3,4)C.AB →=(2,1,3)D.AB →=(-2,-1,-3)2.与向量m =(0,2,-4)共线的向量是 ( )A .(2,0,-4)B .(3,6,-12)C .(1,1,-2)D.⎝⎛⎭⎫0,12,-1 3.设A (3,3,1)、B (1,0,5)、C (0,1,0),则AB 的中点M 到C 的距离|CM |的值为( ) A.534 B .532 C.532D.1324.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量AB →与AC →的夹角为( ) A .30° B .45° C .60° D .90°5.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x 等于( ) A .4 B .-4 C.12D .-66.已知a =(2,-1,2),b =(2,2,1),则以a 、b 为邻边的平行四边形的面积为( ) A.65 B.652C .4D .8 二、能力提升7.与a =(2,-1,2)共线且满足a·z =-18的向量z =__________.8.已知2a +b =(0,-5,10),c =(1,-2,-2),a·c =4,|b |=12,则〈b ,c 〉=________. 9.在长方体ABCD —A 1B 1C 1D 1中,AB =2,BC =1,DD 1=3,则AC →与BD 1→夹角的余弦值是________.10.单位向量a =(x ,y,0)与向量c =(1,1,1)的夹角为π4,求:x +y 与xy 的值.11.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以向量AB →,AC →为一组邻边的平行四边形的面积S ;(2)若向量a 分别与向量AB →,AC →垂直,且|a |=3,求向量a 的坐标.12.已知正四棱锥S —ABCD 的侧棱长为2,底面的边长为3,E 是SA 的中点,求BE →与SC →的夹角.三、探究与拓展13.已知a =(5,3,1),b =⎝⎛⎭⎫-2,t ,-25且a 与b 的夹角为钝角.求t 的取值范围.。
课件5:3.1.4空间向量的直角坐标运算

a1b1+a2b2+a3b3
a·b
2
2
2
2
2
2
cos<a,b>=
=_________________________.
a
+a
+a
b
+b
+b
1
2
3
1
2
3
|a||b|
设 A(x1,y1,z1),B(x2,y2,z2),则
2
2
2
→
x
-x
求:
(1)< ,>(精确到0.1°);
(2) 在上正投影的数量(精确到0.01).
解:(1)由点A,B,C的坐标可得
=(-1,2,0),=(1,1,3)
||= 5 , ||= 11 ,
||·||= -1×1+2×1+0×3=1,
因此cos< ,>=
AB·AC
5.已知向量a=(-2,2,0),b=(-2,0,2),
求向量n使n⊥a,且n⊥b.
解
设 n=(x,y,z),
则 n·a=(x,y,z)·(-2,2,0)=-2x+2y=0,
n·b=(x,y,z)·(-2,0,2)=-2x+2z=0.
-2x+2y=0,
解方程组
可得 y=x,z=x.
-2x+2z=0,
+y
-y
+z
-z
2
1
2
1
2
1
|AB|=________________________________.
名师点拨:(1)空间向量的坐标是空间向量的一种形
课时作业3:3.1.4空间向量的直角坐标运算

3.1.4空间向量的直角坐标运算一、选择题1.在空间直角坐标系Oxyz 中,下列说法正确的是( )A .向量AB →的坐标与点B 的坐标相同B .向量AB →的坐标与点A 的坐标相同C .向量AB →与向量OB →的坐标相同D .向量AB →与向量OB →-OA →的坐标相同【解析】 因为A 点不一定为坐标原点,所以A 不对,B 、C 都不对,由于AB →=OB →-OA →,故D 正确.【答案】 D2.已知A 、B 、C 三点的坐标分别为A (4,1,3)、B (2,-5,1)、C (3,7,λ),若AB →⊥AC →,则( )A .λ=28B. λ=-28 C .λ=14 D .λ=-14【解析】 由题意可得AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=(-2)×(-1)+(-6)×6+(-2)(λ-3)=0.∴λ=-14.【答案】 D3.已知向量a =(2,-3,5)与向量b =(-4,x ,y )平行,则x ,y 的值分别是( )A .6和-10B .-6和10C .-6和-10D .6和10【解析】 ∵a ∥b ,∴2-4=-3x =5y , ∴x =6,y =-10.故选A.【答案】 A4.已知a =(1-t,1-t ,t ),b =(2,t ,t )则|b -a |的最小值是( )A.55B.555C.355D.115 【解析】 b -a =(1+t,2t -1,0),∴|b -a |= (1+t )2+(2t -1)2+02= 5(t -15)2+95. ∴当t =15时,|b -a |min =355. 【答案】 C5.已知A (1,0,0),B (0,-1,1),OA →+λOB →与OB →的夹角为120°(O 为坐标原点),则λ的值为( )A .±66B.66 C .-66 D .±6【解析】 ∵OA →+λOB →=(1,-λ,λ),∴(OA →+λOB →)·OB →=λ+λ=2λ,|OA →+λOB →|=1+2λ2,|OB →|= 2.∴cos 120°=2λ1+2λ2·2=-12, ∴λ=-66,故选C. 【答案】 C二、填空题6.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量AB →与AC →的夹角为________.【解析】 ∵AB →=(0,3,3),AC →=(-1,1,0),∴|AB →|=32,|AC →|=2,AB →·AC →=0×(-1)+3×1+3×0=3,∴cos AB →,AC →=AB →·AC →|AB →||AC →|=12, ∴AB →,AC →=60°.【答案】 60°7.(2013·南通高二检测)已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29,且λ>0,则λ=________.【解析】 ∵a =(0,-1,1),b =(4,1,0),∴λa +b =(4,1-λ,λ).又∵|λa +b |=29,∴16+(1-λ)2+λ2=29,∴λ=3或-2.又∵λ>0,∴λ=3.【答案】 38.已知点A ,B ,C 的坐标分别为(0,1,0),(-1,0,-1),(2,1,1),点P 的坐标为(x,0,z ),若P A →⊥AB →, P A →⊥AC →,则P 点的坐标为______.【解析】 P A →=(-x,1,-z ),AB →=(-1,-1,-1),AC →=(2,0,1),由P A →⊥AB →,得x -1+z =0,由P A →⊥AC →,得-2x -z =0.解得x =-1,z =2.【答案】 (-1,0,2)三、解答题9.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a |=3,且a 分别与AB →、AC →垂直,求向量a 的坐标.【解】 设a =(x ,y ,z ),AB →=(-2,-1,3),AC →=(1,-3,2),根据题意,得⎩⎪⎨⎪⎧ -2x -y +3z =0,x -3y +2z =0,x 2+y 2+z 2=3,解得⎩⎪⎨⎪⎧ x =1,y =1,z =1或⎩⎪⎨⎪⎧ x =-1,y =-1,z =-1.∴a =(1,1,1)或(-1,-1,-1).10.已知a =(3,-2,-3),b =(-1,3,1),求:(1)(a -2b )·(2a +b );(2)以a ,b 为邻边的平行四边形的面积.【解】 (1)a -2b=(3,-2,-3)-2(-1,3,1)=(5,-8,-5),2a +b =2(3,-2,-3)+(-1,3,1)=(5,-1,-5).∴(a -2b )·(2a +b )=(5,-8,-5)·(5,-1,-5)=5×5+(-8)×(-1)+(-5)×(-5)=58.(2)∵cos a ,b =a ·b |a ||b |=-1222×11=-6211, ∴sin a ,b =1-cos 2(a ,b )=1-72121=711. ∴S ▱=|a |·|b |sina ,b =22×11×711=7 2. ∴以a ,b 为邻边的平行四边形的面积为7 2.11.在正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,问当点N 位于AB 何处时,MN ⊥MC 1?【解】 以A 为坐标原点,棱AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设正方体棱长为a ,则M (0,0,a 2),C 1(a ,a ,a ),N (x,0,0). MC 1→=(a ,a ,a 2),MN →=(x,0,-a 2), MN →·MC 1→=xa -a 24=0,得x =a 4. 所以点N 的坐标为(a 4,0,0),即N 为AB 的四等分点且靠近A 点时,MN ⊥MC 1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、向量的直角坐标系
给定一个空间坐标系和向 量 a ,且设i、j、k为坐标向量, 由空间向量基本定理,存在唯 一的有序实数组( a1, a2,a3)使
z
a
A(x,y,z)
k
a = a1i+a2j+a3k 有序数组(a1, a2, a3)叫做 a 在空 a =( a 1 ,a 2,a 3)
i
x
O j
y
间直角坐标系O--xyz中的坐标, 记作.
在空间直角坐标系O--xyz中,对空间任一点, A,对应一个向量OA,于是存在唯一的有序实数 组x,y,z,使 OA=xi+yj+zk 在单位正交基底i, j, k中与向量OA对应的有 序实数组(x,y,z),叫做点A在此空间直角坐标系中 的坐标,记作A(x,y,z),其中x叫做点A的横坐标, y叫做点A的纵坐标,z叫做点A的竖坐标.
四、练习与例题:
1、练习:课本P102. 1、2、3;
2、例题:课本P101. 例4 3、练习:课本P102. 3 作业:课本P42:习题3.1 4
3.1.4 空间向量的正交分解及其坐 标表示 江苏如东马塘中学 张伟锋
一、空间直角坐标系 单位正交基底:如果空间的一个基底的 三个基向量互相垂直,且长都为1,则这个 基底叫做单位正交基底,常用来 I , j , k 表示 空间直角坐标系:在空间选定一点O和一 个单位正交基底 i、j、k 。以点O为原点, 分别以i、j、k的正方向建立三条数轴:x轴、 y轴、z轴,它们都叫做坐标轴.这样就建立了 一个空间直角坐标系O--xyz
a (a1 , a2 , a3 ), b (b1 , b2 , b3 ) 则
设A(x1,y1,z1),B(x2,y2,z2), 则
AB=OB-OA=(x2,,y2,z2)-(x1,y1,z1) =(x2-x1,y2-y1,z2-z1). 一个向量在直角坐标系中的坐标等于表 示这个向量的有向线段的终点的坐键是注意空 间几何关系与向量坐标关系的转化,为此在 利用向量的坐标运算判断空间几何关系时, 首先要选定单位正交基,进而确定各向量的 坐标。
三、向量的直角坐标运算.
设
a b (a1 b1 , a2 b2 , a3 b3 ); a b (a1 b1 , a2 b2 , a3 b3 ); a (a1 , a2 , a3 )( R); a b a1b1 a2b2 a3b3 ; a // b a1 b1 , a2 b2 , a3 b3 ( R) a b a1b1 a2b2 a3b3 0.