数学排列组合公式
排列组合的数学公式

排列组合的数学公式排列组合的数学公式1. 排列及计算公式从n 个不同元素中,任取m(m≤n) 个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m 个宝鸡博瀚教育元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m) 表示.p(n,m)=n(n-1)(n- 2) ...... (n -m+1)= n!/(n-m)!( 规定0!=1).2. 组合及计算公式从n 个不同元素中,任取m(m≤n) 个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n) 个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3. 其他排列与组合公式从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这n 个元素的全排列数为n!/(n1!*n2!*...*nk!).k 类元素, 每类的个数无限, 从中取出m 个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)(n-m+1);Pnm=n!/(n-m)!(注:是阶乘符号);Pnn(两个n 分别为上标和下标) =n!;0!=1;Pn1(n 为下标1 为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标) =1 ;Cn1(n 为下标 1 为上标)=n;Cnm=Cnn-m 排列组合的数学解题技巧1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
排列组合数相关公式

排列组合数相关公式在咱们学习数学的道路上,排列组合数相关公式那可是相当重要的一部分。
就像一把神奇的钥匙,能帮咱们打开很多复杂问题的大门。
咱们先来说说排列数的公式。
排列数,简单说就是从 n 个不同元素中取出 m 个元素进行排列的方式总数。
排列数的公式是:A(n, m) = n!/ (n - m)! 这里的“!”表示阶乘,比如说 5! 就是 5×4×3×2×1。
给大家举个例子哈。
比如说学校要从 10 个同学中选出 3 个参加演讲比赛,并且要考虑他们上台的顺序,这时候就得用排列数来计算了。
那就是 A(10, 3) = 10! / (10 - 3)! = 10×9×8 = 720 种方式。
再来说说组合数的公式。
组合数呢,是从 n 个不同元素中取出 m 个元素组成一组,不考虑它们的顺序。
组合数的公式是:C(n, m) = n! / [m!(n - m)!] 。
我记得有一次,班级里组织活动,要从 20 个同学中选出 5 个组成一个小组,这时候就不用考虑这 5 个人的顺序,只关心选出这 5 个人的组合情况,那就是 C(20, 5) = 20! / [5!(20 - 5)!] ,算出来有 15504 种组合方式。
在实际生活中,排列组合数的应用那可太多了。
比如说彩票抽奖,从一堆数字中选出几个数字,这就是组合数的应用。
再比如密码设置,不同数字、字母的排列组合,增加了密码的安全性,这就用到了排列数。
咱们做排列组合数的题目时,一定要仔细分析题目是要考虑顺序还是不考虑顺序,不然很容易出错哦。
总之,排列组合数相关公式虽然看起来有点复杂,但只要咱们多做练习,多结合实际例子去理解,就一定能掌握好,让它成为咱们解决数学问题的有力武器!。
高中排列组合计算公式

高中排列组合计算公式高中数学中的排列组合计算公式,那可是相当重要且有趣的一部分内容呢!先来说说排列。
排列就是从 n 个不同元素中取出 m 个元素的排列数,记作 A(n, m) 。
计算公式是 A(n, m) = n! / (n - m)! 。
这里的“!”表示阶乘,比如说 5! = 5 × 4 × 3 × 2 × 1 。
给大家举个例子,假设咱们班有 10 个同学,要选 3 个同学去参加比赛,那一共有多少种选法呢?这就是一个简单的排列问题。
按照公式来算,A(10, 3) = 10! / (10 - 3)! = 10 × 9 × 8 = 720 种。
组合呢,组合是从 n 个不同元素中取出 m 个元素的组合数,记作C(n, m) 。
计算公式是 C(n, m) = n! / [m! × (n - m)!] 。
就说学校要从 10 个社团中选出 3 个社团参加校际交流活动,这时候就该用组合来计算,C(10, 3) = 10! / [3! × (10 - 3)!] = 120 种。
记得我之前监考的时候,发现有个同学在做排列组合的题目时,抓耳挠腮,苦思冥想。
我在旁边看着都替他着急,不过最后他还是算出来了,那股子认真劲儿真是让人欣慰。
在实际生活中,排列组合的应用那可太广泛了。
比如说抽奖,从一堆号码中抽出几个中奖号码,这就是组合。
而如果要考虑号码的顺序,那就是排列。
再比如安排座位,一排有 8 个座位,要安排 5 个人坐下,这又得考虑排列。
还有分东西,把10 个苹果分给3 个小朋友,每个小朋友至少一个,这也是组合问题。
总之,排列组合的计算公式虽然看起来有点复杂,但只要咱们多练习,多思考,就一定能掌握好。
就像咱们解决生活中的其他难题一样,只要用心,没有什么是做不到的。
大家在学习排列组合的时候,一定要多做练习题,熟悉各种题型,这样才能在考试中应对自如。
排列组合的公式总结

排列组合的公式总结排列组合是数学中一个有趣但有时也让人头疼的部分。
在咱们从小学到高中的数学学习旅程中,它可是个重要的角色。
先来说说排列的公式。
排列呢,就是从 n 个不同元素中取出 m 个元素的排列数,记作 A(n,m) 。
它的公式是 A(n,m) = n! / (n - m)! 。
这里的“!”表示阶乘,比如说 5! = 5 × 4 × 3 × 2 × 1 。
给大家举个例子吧,咱们学校组织演讲比赛,从 10 个同学中选 3个同学先后上台演讲,那一共有多少种不同的安排顺序呢?这就是一个排列问题。
按照公式,A(10,3) = 10! / (10 - 3)! = 10 × 9 × 8 = 720 种。
也就是说,有 720 种不同的上台顺序。
再说说组合的公式。
组合是从 n 个不同元素中取出 m 个元素的组合数,记作 C(n,m) ,公式是 C(n,m) = n! / [m! × (n - m)!] 。
比如说,咱们班要选5 个人参加数学竞赛,不考虑他们的参赛顺序,那一共有多少种选法?这就是组合问题。
C(20,5) = 20! / [5! × (20 - 5)!] ,算出来就是 15504 种选法。
排列和组合的区别,简单来说,排列讲究顺序,组合不讲究顺序。
就像分糖果,给小明、小红、小刚分 3 颗不同的糖果,如果考虑谁先拿谁后拿,那就是排列;要是不考虑谁先谁后,只看最后谁拿到了哪颗糖,那就是组合。
在实际做题的时候,大家可得擦亮眼睛,分清楚到底是排列还是组合。
我记得有一次考试,有一道题是从 8 个不同的水果里选 3 个装在一个果篮里,很多同学没搞清楚这是组合问题,用了排列的公式,结果就做错啦。
还有啊,做排列组合的题,有时候要分类讨论,有时候要用间接法。
比如说,计算从 1 到 20 这 20 个自然数中,能被 2 或 3 整除的数的个数。
排列组合公式公式解释

排列组合是数学中的一个重要概念,用于计算不同元素的组合方式。
它在组合数学、概率论、统计学等领域中经常被应用。
本文将详细介绍排列组合的概念以及相关公式,并给出一些实际应用的例子。
1. 排列的概念及公式排列是指从n个元素中选取r个元素进行排序的方式。
这个过程中,每个元素只能使用一次,并且顺序不同即为不同的排列。
排列通常用P(n, r)表示,计算公式如下:P(n, r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * … * 2 * 1。
n的阶乘表示从n个元素中选取所有元素进行排列的总数,而(n-r)!表示剩余元素的阶乘,即可以从n个元素中选取r个元素进行排列的总数。
排列的计算公式可以帮助我们高效地计算大量元素的排列情况。
例如,从10个数中选取3个数进行排列,即P(10, 3),可以通过计算10! / 7!得到结果。
2. 组合的概念及公式组合是指从n个元素中选取r个元素进行组合的方式。
与排列不同,组合不考虑选取元素的顺序,因此不同顺序的元素组合被视为同一种组合方式。
组合通常用C(n, r)表示,计算公式如下:C(n, r) = n! / (r! * (n-r)!)其中,n!仍表示n的阶乘,r!表示r的阶乘,(n-r)!表示剩余元素的阶乘。
组合的计算公式可以帮助我们统计不同元素组合的数量。
例如,从10个数中选取3个数进行组合,即C(10, 3),可以通过计算10! / (3! * 7!)得到结果。
3. 排列组合的应用排列组合在实际问题中有广泛的应用。
以下是一些例子:3.1. 抽奖问题假设有10个人参加抽奖,每个人的抽奖号码是从1到10之间的整数。
如果我们想要知道抽取出来的3个人的号码的所有可能情况,可以使用组合的方法计算。
结果为C(10, 3) = 120。
3.2. 选课问题假设有10门课程可以选择,每个人可以选择其中的5门进行学习。
如果我们关心的是不同学生选择不同课程的情况,可以使用排列的方法计算。
排列组合公式排列组合计算公式高中数学

排列组合公式排列组合计算公式高中数学Company number【1089WT-1898YT-1W8CB-9UUT-92108】排列组合公式/排列组合计算公式公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()个个个个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()种种种种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 38×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6在(x- )10的展开式中,x 6的系数是()解设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C 410(- )4=9C 410 故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x 2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为 在(x-1)6中含x 3的项是C 36x 3(-1)3=-20x 3,因此展开式中x 2的系数是-2 0. (五)综合例题赏析例8若(2x+ )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有() 种种种种解分医生的方法有P 22=2种,分护士方法有C 24=6种,所以共有6×2=12种不同的分配方法。
排列组合公式排列组合计算公式

和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差性质:若 m、n、p、q∈N①若m+n=p+q,则am+an=ap+aq②若m+n=2q,则am+an=2aq注意:上述公式中an表示等差数列的第n项。
求和公式Sn=(a1+an)n/2Sn=a1n+n(n-1)d d=公差Sn=An2+Bn A=d/2,B=1-(d/2)排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个D.24个解 因为要求是偶数,个位数只能是2或4的排法有P 12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P 13;在首末两位数排定后,中间3个位数的排法有P 33,得P 13P 33P 12=36(个) 由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P 13=9(种).例四 例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x-)10的展开式中,x6的系数是( )A.-27C610 B.27C410C.-9C610D.9C410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0. (五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
数的排列组合计算公式

数的排列组合计算公式数的排列组合计算,可以让我们更加深入探索宇宙的秘密。
数据排列组合计算是一种解决组合问题的技术方法,它是以计算机科学为基础的,利用数学知识和规则进行计算,求出所有可能的结果,它的计算公式具有很强的科学性和可靠性。
本文涉及到的数据排列组合计算公式:一、排列组合计算的基本公式:A(n,m)=n!/(n-m)!该公式表示从n个不同元素中选取m个元素,排列组合的个数为A(n,m),n!表示n的阶乘,大致意思是n个不同元素之间有多少种排列顺序来表示。
二、组合计算的基本公式:C(n,m)=n!/[m!(n-m)!]这个公式表示从n个不同元素中选取m个元素,组合的个数为C(n,m),其中m!表示m的阶乘,大致意思是m个不同元素之间有多少种排列顺序来表示。
三、环形排列组合计算公式:C(n,m)=(n-1)! /[(n-m)!(m-1)!]该公式表示圆环中从n个不同元素中选取m个元素,排列组合的个数为C(n,m),其中(n-1)!表示n-1的阶乘,(m-1)!则表示m-1的阶乘,能够得出从n个不同元素中选取m个元素,组合出多少种情况。
四、几何排列组合计算公式:P(n,m)=n! /(n-m)!该公式表示有n个不同元素,从中选取m角(点),组成多边形,计算几何排列组合的种类数P(n,m),其中n!为n的阶乘,(n-m)!为(n-m)的阶乘,表示有n个不同元素,组合出多少种情况。
五、排列组合计算的中间量公式:T(n,m)=m!/((m-n+1)*(m-n+2)*…*)该公式能够计算出从m个不同元素中选取n个元素,排列出多少种情况,其中m!表示m的阶乘,(m-n+1)*(m-n+2)* …* 为乘积,表示每次减去一个,例如从5个元素中选取2个元素排列的数目为T(2,5) = 5!/((5-2+1) * (5-2+2)= 5!/(3*4)=20。
六、排列组合计算例外情况公式:F(n,m)=m!/n! m-n该公式表示从m个元素中选取m个元素的排列组合的种数F(n,m),其中m!表示m的阶乘,n!表示n的阶乘,m-n表示每次减去一个,例如从5个元素中选取4个元素,排列组合的数目为F(4,5)=5!/(4! *(5 - 4))=5!/(4 * 1)=120。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数
R参与选择的元素个数
!-阶乘,如9!=9*8*7*6*5*4*3*2*1
从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?文案
A1:123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
文案
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1
排列、组合的概念和公式典型例题分析
例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.
点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.
文案
例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?
解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:
∴符合题意的不同排法共有9种.
点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.
例3判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
文案
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?
②从中选出2盆放在教室有多少种不同的选法?
分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.
(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).
(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.
(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.
(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.
例4证明.
文案
证明左式
右式.
∴等式成立.
点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.
例5 化简.
解法一原式
解法二原式
点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.
例6 解方程:(1);(2).
文案
解(1)原方程
解得.
(2)原方程可变为
∵,,
∴原方程可化为.
即,解得
第六章排列组合、二项式定理
一、考纲要求
1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.
文案
2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.
3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.
二、知识结构
三、知识点、能力点提示
(一)加法原理乘法原理
说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.
文案
例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?
解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有
3×3×3×3×3=35(种)
(二)排列、排列数公式
说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.
文案
例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()
A.60个
B.48个
C.36个
D.24个
解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)
由此可知此题应选C.
文案
标准
例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?
解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为
3P13=9(种).
文案。